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Abstract

A brief introduction to development of fractional

calculus, particularly with time as independent

variable, and its importance in taking care of

memory effects has been given. As expository

applications of this, topics of Newton’s second

law of motion and equations of motion, a

body falling under gravity in a viscous medium,

projectile motion in a resistive medium, simple

oscillator, Fourier law of heat conduction,

Newton’s law of cooling, Ohm’s law and RC,

RL circuits, and physics of decay / growth /

relaxation processes, have been dealt with. The

objective of this article is not only to put forth

the well-established things from introductory

physics in different perspective but also to bring

out the need to include the old (almost as much

as the classical calculus) and yet offbeat topic

of fractional calculus as a part of our curriculum

at some stage, and, thus, prepare the next

generation to capture the richness underlying

the complex systems in nature.

1 Introduction

In day-to-day life, we often come across
situations where a change or variation in
one quantity (called independent variable in
mathematics) brings about a change in an-
other related quantity (dependent variable)
and we are interested in finding the relevant
rate of change for a specific value of the for-
mer. Some typical examples where change
(increase) in time produces a change in an
observed quantity are: position of a moving

38/1/2 1 www.physedn.in



Physics Education April-June, 2024

person or a vehicle, leakage of water from
a tank through a hole, melting of ice cubes,
glucose infused to a patient, growth or de-
cay of some species, and so on. It is not
necessary that the independent variable be
time. It can be any other quantity as well.
For example, the description of trajectory of
projectiles like a cricket ball hit for a six,
a long jumper during flight, a missile pro-
pelled at a target, etc. involves height as
dependent variable and its projection on the
ground, with respect to the starting point, as
independent variable. Similarly, the effect of
a change in the price of a product on its de-
mand has price as an independent variable.
From mathematics point of view, study of
the rates of change falls under the purview
of differential calculus.

To be more explicit, differential calcu-
lus is branch of mathematics that deals with
precise description of rates and their wide-
range applications in different disciplines of
science and engineering. This rate of vari-
ation, in the limit of infinitesimally small
change in the independent variable at the
chosen input value, is called derivative of
the dependent variable (function) for that
value. Geometrically speaking, the deriva-
tive for a specific value of independent vari-
able is the slope of the tangent line to the
graph of the function at that point, provided
that the derivative exists and is defined
there. Furthermore, treating the derivative
so obtained as next function, we get second-
order derivative, and a repetition of this pro-
cess leads to higher-order derivatives. For

x as independent variable and y(x) as de-
pendent variable, the nth-order derivative
is denoted by y(n)(x) or dny(x)

dxn , which for
time-dependent function f (t) reads f (n)(t)
or dn f (t)

dtn . In this notation, y(0)(x) and f (0)(t)
denote the original function itself. Some-
times, symbol Dn, where D denotes opera-
tor d

dx or d
dt which when applied to a func-

tion yields its derivative with respect to the
independent variable, is also used to rep-
resent nth-order differentiation. Obviously,
D0 f (t) = f (t). As typical examples, we may
mention that the first-order time-derivatives
D f (t) for f (t) = constant(C), tj, sin(ωt),
eat are zero, jtj−1, ω cos(ωt), aeat, respec-
tively. Similarly, the second-order deriva-
tives D2 f (t) of the last three functions are
j(j − 1)tj−2, −ω2 sin(ωt), a2eat. Since the
functions so obtained are evaluated for a
specific value of t, these derivatives give in-
stantaneous rates of change in f (t), and are
localized in nature getting no contribution
from the earlier values.

It is interesting to note that information
about the derivative (say, dF(t)

dt ≡ f (t)), can
be used to obtain the relevant function F(t)
uncertain to a constant (because derivative
of a constant is zero). This process of de-
termining the antiderivative D−1 f (t), writ-
ten as F(t) =

∫
f (t)dt, is known as inte-

gration, and F(t) is an indefinite integral of
f (t) = F(1)(t) called the integrand. This
process too can be carried out repeatedly to
get F(t) from F(n)(t). The indefinite inte-
grals of f (t) = C, tj, sin(ωt), eat are Ct + C1,
tj+1

j+1 + C2, − 1
ω cos(ωt) + C3, eat

a + C4, respec-
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tively. Note that if the integral is found over
a specific interval of values of the indepen-
dent variable t from t = tl to t = tu, then
we get the definite integral I =

∫ tu
tl

f (t)dt,
which depends not only only on the nature
of f (t) but also on the values of upper and
lower limits tu and tl. The value of I is deter-
mined by evaluating the indefinite integral∫

f (t)dt, and then finding the difference of
its values for tu and tl; i.e., I = F(tu)− F(tl).
In geometrical sense, I represents sum of ar-
eas (in the general sense) of a large number
N of adjoining small strips of length f (t)
and infinitesimal width dt = tu−tl

N , formed
by plotting f (t) as a function of t over the
chosen interval tl to tu. Obviously, the def-
inite integral I incorporates complete infor-
mation about the behaviour of f (t) from tl

to tu. The study of various aspects of inte-
grals and their evaluation forms the content
of integral calculus.

The subjects of differential calculus and
integral calculus together constitute calcu-
lus. The credit for invention and initial
development of this branch of mathemat-
ics goes to Leibniz and Newton, (indepen-
dently of each other, first publishing their
works around the same time in the late
17th century). Leibniz started with inte-
gration and directed his efforts on devel-
oping the formalism in proper perspective
and defining appropriate symbols for differ-
ent concepts. On the other hand, Newton
started with differentiation and put empha-
sis on the use of the rules framed for ap-
plications in physics. However, it may be

mentioned that prior to its formal develop-
ment in the seventeenth century and after
that, some ideas of calculus were used by
scientists in different countries including In-
dia for specific purposes. Today, calculus
finds widespread applications in almost all
branches of science, engineering, and eco-
nomics.

It is worth pointing out that n, defining
the order of derivative, has integer values. It
is natural to ask: What will be outcome if n
has a non-integer value? In fact, such a ques-
tion was posed by L’Hospital, one of the
prominent developers of calculus, to Leib-
niz, nearly 327 years back in 1695, when he
sought the latter’s opinion about the mean-
ing of dn

dxn if n were 1
2 . It was on Sept 30,

1695, that Leibniz replied that ‘this was an
apparent paradox’, and that one day, useful
consequences would be drawn from this’.
It was followed by occasional reference to
fractional derivatives (FDs) by some math-
ematicians till 1819, when Lacroix showed
in his book that d1/2x

dx1/2 = 2
√ x

π . In 1823,
21 years old Abel, while solving the tau-
tochrone problem (viz., determination of a
curve in the vertical plane such that the
time taken by a particle to slide down with-
out friction under the influence of uniform
gravity to its lowest point is independent
of its initial position on the curve), put for-
ward the essential structure of fractional cal-
culus (FC), and introduced the FD in the
form now named after Caputo. This work
drew attention of Liouville, who made se-
rious effort to develop the subject in a log-
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ical manner from 1832 to 1837 and applied
his formulae to solve problems in electro-
magnetism. Besides, these creative minds,
prominent contributors to the development
of this subject until the middle of 20th cen-
tury included brilliant mathematicians Rie-
mann, Grunwald, Letnikov, Sonin, Weyl,
Erdelyi, and numerous others. Interest-
ingly, many of them introduced their own
formulae for fractional (and even general-
ized) derivative and integral, with strange
properties, following different approaches.
However, some of the early definitions of
FDs had a limited scope and could not be
considered as general definitions, and that
trend of suggesting new definitions contin-
ues to be there even now.

A significant development from the
point-of-view of future applications of the
FC occurred in 1967 when Caputo put for-
ward his definition of FD by reformulating
the Riemann-Liouville formula to accom-
modate the initial conditions (for fractional
differential equations) as are done in the
corresponding problems based on integer-
order derivatives. However, a systematic in-
terest in FC and its applications, started only
in 1974 when first exclusively dedicated
international conference was organized by
Ross at University of New Haven (USA) and
a well-written book, detailing concepts and
techniques of the subject and their applica-
tion to problems in physics, chemistry, and
engineering, was brought out by Oldham
(a chemist) and Spanier (a mathematician).
Since then, holding conferences, publishing

books as well as international research jour-
nals devoted to this subject and its various
aspects, has become a regular activity for
the scientists and engineers working in this
field. The main reason for a gap of nearly
280 years in the birth of the subject and
its applications is that unlike integer-order
derivative there are numerous definitions of
FD and that a simple geometrical interpreta-
tion was missing. Interestingly, various def-
initions of FD reduce to the standard deriva-
tive for integer value of the order but might
not be equivalent for the non-integer order.

As it stands now, FC has emerged as a
branch of mathematics that deals with inte-
grals and derivatives of any arbitrary real
non-integer or complex order α; α may even
be a complex function of time and space co-
ordinates. Despite this generalization of the
definition of order, the name still contains
word fractional for historical reasons. As
will be seen in section 3, the main feature of
FD of a function, which makes it different
from the integer-order derivative, is that it
incorporates the contribution of nonlocal ef-
fects to the dependent variable with respect
to changes in space and time. In the con-
text of time, this means that the FD at any
instant of time also includes the influence
of the past behaviour of the function as if it
had some memory to remember the states
through which it had passed. Of course,
it must be emphasized that the system de-
scribed by such a function does not have any
hidden intelligence but only delayed effects
of collisions, interactions, causative forces,
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etc. In addition to this, fractional vector cal-
culus involving FDs with respect to space
coordinates has also been developed.

Besides their spectacular use in the
development of classical mechanics (New-
tonian, and the latter sophisticated La-
grangian and Hamiltonian formulations)
and electromagnetics, the concepts and
methods of FC provide a powerful math-
ematical tool for an elegant description of
problems involving power-law non-locality
and memory effects leading to better insight
into the nature of the systems. These in-
clude anomalous diffusion in porous me-
dia, dense polymer solutions, composite
heterogeneous films, etc.; the behaviour
of viscoelastic materials, colloidal systems,
magneto-rheological fluids, and amorphous
semiconductors; wave propagation in me-
dia with long-range interaction; statisti-
cal mechanics of systems with long-range
power-law interactions; electrodynamics of
systems characterized by nonlocal dielectric
properties of the media; frequency depen-
dent acoustic wave propagation in porous
media; signal and image processing; analy-
sis and synthesis of different types of con-
trol systems; models for description of en-
vironment; and mathematical modelling of
economic processes and population growth
with memory effects.

It is important to note that Heisenberg’s
uncertainty principle and tunneling effect
in quantum mechanics are essentially man-
ifestation of nonlocality implying that this
aspect is inherent in quantum mechanics

(QM). Accordingly, a lot of effort has been
directed at developing nonrelativistic as
well as relativistic QM, quantum field the-
ory, and statistical mechanics in the frame-
work of FC and wide-ranging applications
of these in atomic, molecular, nuclear, parti-
cle, and metal cluster physics.

FC is also being used as an invaluable
technique in the description of physics of
biological structures and living organisms.
Some topics in this category are DNA dy-
namics; protein folding; and modeling for
neuron activity, for cancer growth, for HIV
dynamics, for human autoimmune diseases,
and for transport of drugs. Very recently,
some work has been reported on developing
FC based models for understanding dynam-
ics of covid-19.

Generally, the reformulation of con-
ventional physics problems in the frame-
work of FC is carried out either by replac-
ing the time-derivatives of integer order in
the mathematical description by the rele-
vant fractional-order derivative or by intro-
ducing FDs in the expression for the force
field. The first approach is followed in the
case of classical mechanics, the systems de-
scribed by classical wave equation or by
Schrodinger equation, etc. On the other
hand, the second option is used in handling
problems in field theory, nuclear physics,
etc.

The purpose of the present article is to
delineate upon the basics of FC in terms
of fractional-order temporal derivatives and
related mathematical tools needed for han-
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dling simple problems. This aspect is then
illustrated by derivation and discussion of
formulae for different topics of pedagogical
importance from elementary physics. These
are: Newton’s second law of motion and
equations of motion, a body falling under
gravity in a viscous medium, projectile mo-
tion, simple oscillator, Fourier law of ther-
mal conduction, Newton’s law of cooling,
Ohm’s law and RC, RL circuits, and physics
of decay / growth / relaxation processes [1-
13].

However, before embarking upon this
aspect, we briefly dwell upon some special
functions of mathematics that play an im-
portant role in the formulation and applica-
tions of FC.

2 Some Relevant Special

Functions

2.1 Factorial and Gamma Functions

The factorial of a positive integer n, denoted
by n!, is the product of all the integers from
1 to that number, i.e.,

n! = 1 × 2 × 3 × . . . × (n − 1)× n =
n

∏
j=1

j.

(1)
By convention, 0! = 1. Obviously, n! = (n −
1)! × n. An extension of the factorial, which
allows n to have non-integer or even com-
plex values, is provided by Euler’s gamma
function. For a complex number z, such that
its real part is positive, this function is de-

fined, in integral form, as

Γ(z) =
∫ ∞

0
tz−1e−tdt. (2)

Integrating by parts, we get

Γ(z) = (z − 1)Γ(z − 1), (3)

implying that Γ(z + 1) = zΓ(z). Also, from
Eq. (2), we have Γ(1) =

∫ ∞
0 e−tdt = 1. This

together with the preceding result gives, for
z = 1, 2, 3, . . . , n; Γ(2) = 1.Γ(1) = 1 = 1!,
Γ(3) = 2.Γ(2) = 2.1! = 2!, Γ(4) = 3.Γ(3) =
3.2! = 3!, . . . ; and, in general,

Γ(n + 1) = n.Γ(n) = n.(n − 1)! = n!. (4)

This justifies the use of these functions
as generalization of factorial for the non-
integer or complex values of z: Γ(z + 1) =

z!. It may be mentioned that Γ(1/2) =
√

π,
and that for n = 0, 1, 2, 3, . . . , 1

Γ(−n) = 0.

2.2 Exponential Function and

Mittag-Leffler Function

A function of great interest in mathematics
is the exponential function with base e =

2.71828 . . . . For real x, ex or exp(x) is given
by the power series

ex =
∞

∑
n=0

xn

n!
=

∞

∑
n=0

xn

Γ(n + 1)
. (5)

However, the exponent can be purely imag-
inary (which gives Euler’s relation for co-
sine and sine functions) and complex z. A
straight-forward extension of this function
for exponent z reads

Eρ1(z) =
∞

∑
n=0

zn

Γ (nρ1 + 1)
. (6)
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Here, the additional parameter ρ1 is real
positive. Eρ1(z) is known as one-parameter
or uni-parametric Mittag-Leffler function as
it was put forth by him in 1902-03. The prop-
erties of this function were meticulously in-
vestigated by him as well as Wiman, and
later by others. A further extended version
defined as

Eρ1,ρ2(z) =
∞

∑
n=0

zn

Γ (nρ1 + ρ2)
, (ρ1, ρ2 > 0),

(7)
is usually referred to as generalized or two-
parameter Mittag-Leffler function though it
was introduced and studied by other math-
ematicians. This function arises naturally in
the solution to problems described by differ-
ential equations of fractional order. It may
be noted that

Eρ1,1(z) =
∞

∑
n=0

zn

Γ (nρ1 + 1)
≡ Eρ1(z), (8)

E1,1(z) =
∞

∑
n=0

zn

Γ(n + 1)
= ez, (9)

E1,2(z) =
∞

∑
n=0

zn

Γ(n + 2)

=
1
z

[
−1 + 1 +

∞

∑
n=0

zn+1

Γ(n + 2)

]
=

ez − 1
z

,

(10)

E2,1

(
−z2

)
=

∞

∑
n=0

(−z2)
n

Γ(2n + 1)

=
∞

∑
n=0

(−1)n

(2n)!
z2n = cos (z), (11)

and

E2,2

(
−z2

)
=

∞

∑
n=0

(−z2)
n

Γ(2n + 2)

=
1
z

∞

∑
n=0

(−1)n

(2n + 1)!
z2n+1 =

sin(z)
z

. (12)

Furthermore,

Eρ1,ρ1+ρ2
(z) =

∞

∑
n=0

zn

Γ (nρ1 + ρ1 + ρ2)

=
1
z

[
∞

∑
n=0

zn+1

Γ {(n + 1)ρ1 + ρ2)}
+

1
Γ (ρ2)

− 1
Γ (ρ2)

]

=
1
z

[
Eρ1,ρ2(z)−

1
Γ (ρ2)

]
(13)

and∫ z

0
Eρ1,1 (azρ1) dz =

∫ z

0

∞

∑
n=0

(azρ1)n

Γ (nρ1 + 1)
dz

=
∞

∑
n=0

anzρ1n+1

(nρ1 + 1) Γ (nρ1 + 1)
|z0 = zEρ1,2 (azρ1) .

(14)

Also, if 0 < ρ1 < 2, and ρ2 is a real arbitrary
number, then for limit z → ∞, Eρ1,ρ2(−z) =
0. It may be mentioned here that in section
5, whenever solution of the fractional differ-
ential equation appears as Eρ1, 1(z), we shall
continue to use this as such rather than re-
placing it with Eρ1(z).

3 Basics of Fractional Derivatives

In order to obtain Riemann-Liouville (RL)
definition of FD, we consider the n-fold mul-
tiple integral

a In f (t) =∫ tn= t

a
dtn−1

∫ tn−1

a
dtn−2 . . .

∫ t1

a
f
(

t
′
)

dt
′
,

(15)
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where n is a positive integer and f is as-
sumed to be integrable on (a, ∞). Using
Cauchy repeated integration formula from
calculus together with Eq. (4), we get

a In f (t) =
1

(n − 1)!

∫ t

a
(t − t

′
)

n−1
f
(

t
′
)

dt
′

=
1

Γ(n)

∫ t

a
(t − t

′
)

n−1
f
(

t
′
)

dt
′
. (16)

Generalizing this integral of f to fractional
order α, we have for −∞ ≤ a < t < ∞,

a Iα f (t) = aD−α f (t)

=
1

Γ(α)

∫ t

a
(t − t

′
)

α−1
f
(

t
′
)

dt
′

=
1

Γ(α)

∫ t

a

f
(

t
′
)

(t − t′)1−α
dt

′
. (17)

Here, aD−α signifies the fact that it is an-
tiderivative of order α. Such an integral with

kernel (t − t
′
)

α−1
is said to define convolu-

tion of function f and power of time. Simi-
larly, for −∞ < t < b ≤ ∞,

b Iα f (t) = bD−α f (t)

=
1

Γ(α)

∫ b

t
(t

′ − t)
α−1

f
(

t
′
)

dt
′
. (18)

It may be noted that the parameter α can
be complex, but we are taking this to be
real fractional keeping in mind the applica-
tions to be discussed in section 5. Further-
more, the integral in Eq. (17) is valid for
a < t and it gets contribution with weight

(t − t
′
)

α−1
from t

′
< t , which in the lan-

guage of geometry means ‘from the values

to the left of t
′

. So a Iα f (t) is usually re-
ferred to as left-handed RL fractional inte-
gral of order α. In contrast, the integral de-
fined by Eq. (18) is determined by the con-
tributions for t

′
> t but less than b and the

weight in this case is (t
′ − t)

α−1
. Thus, the

integral b Iα f (t) exists for values of t
′

on the
right of t so that this is called right-handed
RL integral of fractional order α. a and b are
said to provide lower and upper bounds or
terminal points of the integral domain and
can be chosen arbitrarily; these even may be
−∞ and ∞ , respectively. These statements
regarding nonlocality of the fractional inte-
grals are true whatever be the nature of in-
dependent variable. However, if the inde-
pendent variable is time (as we shall use in
this article) and t is the instant of observa-
tion, then t

′
< t and t

′
> t correspond to

past and future, respectively. Accordingly,

a Iα f (t) is collection of weighted values in
the past (from initial time defined by the
value of a) and is causal. On the other hand,

b Iα f (t) pertains to the future and is anti-
causal. In view of this observation, now-
on-wards we shall focus our attention only
on the left-handed RL integral with lower
and upper terminal points as a and t, respec-
tively.

Next, we consider the FD operator aDα

and decompose this as

aDα = aDn
aD−n+α = aDn

a In−α

n ∈ N, and n − 1 < α ≤ n. (19)

Thus, we have
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aDα f (t) = aDn
a In−α f (t)

=
dn

dtn [
1

Γ(n − α)

∫ t

a

(
t − t

′
)(n−α)−1

f
(

t
′
)

dt
′
].

(20)

This defines the left RL FD RL
a Dα of order α,

and, obviously, its operation is equivalent to
(left-handed) RL fractional integration of or-
der (n − α) followed by ordinary differenti-
ation of order n. Note that the presence of
integral in the expression makes FD to be
nonlocal in nature, and that for α = n − 1,
the weight in the integral becomes unity so
that the expression on the right ultimately
becomes derivative of integer order n − 1.
Generally, Eq. (20) is said to give Liouville
FD when a is taken as −∞, and Riemann FD
for a = 0.

As illustrative examples of Eq. (20), we
consider (i) f (t) = Constant (C) and (ii)
f (t) = t, for n = 1 so that 0 < α ≤ 1.
Substituting these into this equation, we get

(i)

RL
a DαC =

1
Γ(1 − α)

×

d
dt

[∫ t

a

(
t − t

′
)−α

Cdt
′
]

=
C

Γ(1 − α)

d
dt

[
(t − a)1−α

(1 − α)

]
=

C(t − a)−α

Γ(1 − α)
; (21)

(ii)

RL
a Dαt =

1
Γ(1 − α)

d
dt

[
∫ t

a

(
t − t

′
)−α

t
′
dt

′
]

=
1

Γ(1 − α)

d
dt

t
′−

(
t − t

′
)1−α

(1 − α)
|t
t′=a

+
∫ t

a

(
t − t

′
)1−α

(1 − α)
dt

′


=

1
Γ(1 − α)

d
dt

[
a(t − a)1−α

(1 − α)

+
(t − a)2−α

(1 − α)(2 − α)

]
=

a(t − a)−α

Γ(1 − α)
+

(t − a)1−α

Γ(2 − α)
. (22)

For the commonly used lower terminal
value of time or initial value in physical
problems a = 0,

RL
0 DαC =

Ct−α

Γ(1 − α)
and RL

0 Dαt =
t1−α

Γ(2 − α)
.

(23)
The first result, viz., ‘FD of a constant is
nonzero and dependent on t’, is quite sur-
prising and not acceptable. The second re-
sult for α = 1

2 , gives RL
0 D1/2t = t1/2

Γ(3/2) =

2
√

t/π , which is the same result as found by
Lacroix. Despite the preceding drawback,
the RL definition (Eq. (20)) played an im-
portant role in the development of FC and
its applications in pure mathematics.

To circumvent the problem of nonzero
value of FD of a constant, we split aDα into
equally acceptable alternative form than
that given in Eq. (19) as

aDα = aD−n+α
aDn = a In−α

aDn

n ∈ N, and n − 1 < α ≤ n. (24)

In general, the outcome of the operation de-
fined on the right here is different from that
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in the previous case, and gives us

aDα f (t) = a In−α
aDn f (t)

=
1

Γ(n − α)
[
∫ t

a

(
t − t

′
)(n−α)−1 dn f

(
t
′
)

dt′n
dt

′
].

(25)

Here, the determination of FD of order α

comprises ordinary differentiation of inte-
ger order n and subsequent (left-handed) RL
fractional integration of order (n − α). Like
the previous case, this derivative is also non-
local and reduces to derivative of integer or-
der n − 1 for α = n − 1. The result obtained
from Eq. (25) is known as Caputo derivative
C
a Dα of order α. Obviously, it is convolution
of nth-order derivative of f and a power of
time.

As a special case, for n = 1 implying
0 < α ≤ 1,

C
a DαC

=
1

Γ(1 − α)

d
dt

[
∫ t

a

(
t − t

′
)−α dC

dt′
dt

′
] = 0;

(26)

and

C
a Dαt =

1
Γ(1 − α)

[
∫ t

a

(
t − t

′
)−α dt

′

dt′
dt

′
]

=
(t − a)1−α

Γ(2 − α)
. (27)

Thus, Caputo FD of a constant vanishes, as it
should, and its result for f (t) = t, for a = 0
is the same as found in Eq. (23). The first
result makes Caputo FD formula, Eq. (25),
more suitable for practical applications as
compared to the RL formula, Eq. (20).

It must be emphasized that the Ca-
puto as well as RL definitions involve dif-
ferentiation and integration. Therefore,
these are differintegrals of fractional or-
der, and the process of determining these
derivatives is essentially fractional integro-
differentiation. The presence of power

law term
(

t − t
′
)(n−α)−1

in the integrals in-
volved in the definition of these two FDs
takes care of the memory of the system.
Thus, time-evolution of physical systems
with memory effects of all types is described
in terms of FDs and the analytical solution
for the fractional differential equations so
obtained is found using Laplace transforms
and some other methods. Since the former
constitute the basis of the most commonly
used approach, we dwell upon this topic in
the next section.

However, before proceeding in this di-
rection, it is worth mentioning that RL FD
based differential equations require the ini-
tial conditions to be expressed in terms
of initial values of the FDs of yet-to-be-
determined function f (t), which do not
have any direct connection with experimen-
tal findings; of course, some way outs have
been put forth. Nonetheless, this limita-
tion together with the observation made af-
ter Eq. (23) leads to a serious constraint on
the use of RL formulation in practical prob-
lems. On the other hand, the initial con-
ditions involved in the fractional differen-
tial equations with Caputo derivative corre-
spond to physically definable integer-order
derivatives of f (t). Furthermore, as shown
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in Eq. (26), C
a DαC = 0. Accordingly, this for-

mula is usually preferred for handling prob-
lems in physics and engineering, and this
will be the one to be used in the remaining
part of the article. For convenience, we shall
drop C as well as a (taken to be 0 as the ini-
tial time) from the symbol C

a Dαfor the rele-
vant operator and denote it simply by Dα. It
may be pointed out that the value of the or-
der of derivative provides a measure of the
memory of the system - a lower value im-
plies higher memory effect and vice versa.

Furthermore, by carrying out integra-
tion by parts repeatedly in Eq. (25), it is
found that for n = 1 (implying 0 < α ≤ 1),

Dαtj =
Γ(j + 1)

Γ(j + 1 − α)
tj−α, j > −1. (28)

It is interesting to note that n repeated dif-
ferentiations of tj, for n ≤ j , give

Dntj =
dntj

dtn =
j!

(j − n)!
tj−n

=
Γ(j + 1)

Γ(j + 1 − n)
tj−n. (29)

A look at these two results shows that the
former can be taken as an extension of the
latter for a FD. A similar generalization of
Eq. (28) yields expression for FD of frac-
tional power of t.

4 Laplace Transforms

The Laplace transform (LT) is an integral
transform that converts a function f (t) of
real variable t (generally time) into a func-

tion F(s) of complex variable s (complex fre-
quency) defined by

F(s)≡ L{ f (t)} (s) =
∫ ∞

0
e−st f (t)dt. (30)

This integral exists if f (t) is piecewise con-
tinuous for 0 ≤ t < ∞ , and of exponential
order ζ meaning that there exist a constant
ζ, and positive constants M and t0 such that
| f (t)| e−ζt ≤ M for all s > ζ and t ≥ t0.
The weight e−st in Eq. (30) is called kernel
of the transform operator L. The transform
so defined is usually referred to as unilat-
eral or one-sided, while the one with lower
limit of integration as −∞ is said to be bilat-
eral. However, we shall be using only the
former and shall ignore the adjective uni-
lateral. As we proceed, we shall see that
this transform converts a (fractional) differ-
ential equation for f (t) in time domain into
an algebraic equation in F(s) in the com-
plex frequency domain, which is much eas-
ier to handle than actually solving the dif-
ferential equation. The solution so obtained
is then subjected to inverse Laplace trans-
formation to yield the solution for the dif-
ferential equation, f (t) = L−1F(s), with
the given initial conditions. The rigorous
procedure for evaluation of inverse Laplace
transform from this equation is quite com-
plicated, and, generally, the tables listing
f (t) and corresponding F(s) are used for
this purpose.

The LT for given function f (t) is ob-
tained from Eq. (30) by using integration by
parts. The results for some functions of our
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interest are given below.

L {C} =
C
s

,

L {tn} =
n!

sn+1 ,

L {tα} =
Γ(α + 1)

sα+1 ,

L
{

e±σt} =
1

s ∓ σ
; (31)

and

L
{

tρ1l+ρ2−1E(l)
ρ1,ρ2(±atρ1)

}
=

l! sρ1−ρ2

(sρ1 ∓ a)l+1 ,

Re(s) > |a|1/ρ1 , (32)

where E(j)
ρ1,ρ2(y) =

dj

dyj Eρ1,ρ2(y). Furthermore,

the LT of the Caputo FD of order α, (n − 1 <

α ≤ n), is given by

L {Dα f (t)} = sαF(s)−
n−1

∑
k=0

sα−k−1 f (k)(0).

(33)
The presence of f (k)(0) , viz., the values
of the function f (t) and its derivatives of
integer-order at t = 0, in this expression es-
tablishes direct contact with the initial con-
ditions of the physical system, which makes
these useful for practical applications. Note
that Eq. (33) reduces to LT of integer-order
derivatives for α = n.

5 Some Illustrative Examples

from Elementary Physics

Having equipped ourselves with the essen-
tials of FC, we now use this to discuss some
simple problems from introductory physics
in this section.

5.1 Newton’s Second Law and

One-Dimensional Equations of

Motion

One of the most important laws of physics
which finds wide range applications in al-
most all branches of science and engineer-
ing, the Newton’s second law of motion
states that for a material point or particle
of constant mass m, the time rate of change
of its momentum (mass × velocity) equals
the magnitude of the force applied and both
have the same direction. Thus, for a one-
dimensional motion with instantaneous ve-
locity v(t) under the influence of constant
force f , it reads

m
dv(t)

dt
= f . (34)

Replacing the ordinary first-order derivative
by a Caputo FD of arbitrary order α (0 <

α ≤ 1), this can be written as

mF
dαv(t)

dtα
≡ mFDαv(t) = f . (35)

Obviously, Eq. (35) is fractional or gener-
alized form of the Newton’s second law of
motion. To keep the meaning of v(t) and f
same as in Eq. (34), mF must have dimension
MTα−1. Mass parameter mF becomes mass
m for index value α = 1. Using Eq. (33) with
n = 1 and first expression in Eq. (31), we get
the LT of the two sides of Eq. (35) as

mF

[
sαV(s)− sα−1v(0)

]
=

f
s

, (36)

with v(0) as initial velocity. Note that the
fractional differential equation for v(t), viz.
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Eq. (35), has been converted into an alge-
braic equation in V(s). This gives us

V(s) =
f

mF

1
sα+1 +

v(0)
s

. (37)

Inverse LT of this equation yields

v(t) = v(0) +
f

mF

tα

Γ(α + 1)
, (38)

where we have used the third relation in
Eq. (31). This is equation of motion for ve-
locity in the framework of FC, and for α =

1, it reduces to the well-known equation of
motion,

v(t) = v(0) +
f
m

t = v(0) + at, (39)

with a = f
m as constant acceleration. The

dependence of v(t) on t for different values
of α for v(0) =1.0 ms-1, f = 1 N, and mF= 1
kgsα−1 is depicted in Fig. 1. As expected
from Eq. (38), for t > 1 s variation in ve-
locity v(t) with time is slow for small values
of α, as if the motion is facing some time-
delay causing dissipative resistance. In fact,
this is a manifestation of memory effects im-
plying their higher relevance for smaller α.
Note that these effects become more promi-
nent for higher values of t.

Next, in view of the fact that v(t) =
dx(t)

dt , where x(t) is instantaneous position
of the particle, Eq. (34) can be written as

m d2x(t)
dt2 = f , and the corresponding differen-

tial equation for arbitrary order β (1 < β ≤
2), reads

m
′
F

dβx(t)
dtβ

≡ m
′
FDβx(t) = f , (40)
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t (s)

1

2
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4
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 = 0.5

 = 0.8

 = 1.0

Figure 1: Plots showing velocity as function
of time for different values of fractional or-
der derivative parameter α for v(0) = 1.0
ms-1, f = 1 N, and mF= 1 kgsα−1.

Here, the mass parameter m
′
F has dimension

MTβ−2, and for β = 2, m
′
F = m. Finding LT

of both sides, with Eq. (33) for n = 2, and
rearranging various terms, we have

X(s) =
f

m′
F

1
sβ+1 +

x(1)(0)
s2 +

x(0)
s

. (41)

The inverse LT of this equation, together
with the fact that x(1)(0) = v(0), gives us

x(t) = x(0) + v(0)t +
f

m′
F

tβ

Γ(β + 1)
, (42)

which is equation of motion for position at
time t. For the special value β = 2, this reads

x(t) = x(0) + v(0)t +
1
2

at2, (43)

the so called second equation of motion. The
graphical representation for variation of x(t)
as function of t for x(0) = 1.0 m, v(0) = 1.0
ms-1, f = 1 N, and m

′
F= 1 kgsβ−2 for different

38/1/2 13 www.physedn.in



Physics Education April-June, 2024

0 1 2 3 4 5

t (s)

0

5

10

15

20

x
(t

)/
x
(0

)

 =1.2

 =1.5

 =1.8

 = 2.0

Figure 2: Variation of position of particle
with time for different values of fractional
order derivative parameter β. The parame-
ters used are x(0) = 1.0 m, v(0) = 1.0 ms-1,
f = 1 N, and m

′
F= 1 kgsβ−2.

values of β is projected in Fig. 2. Once again,
the departure of graphs for 1 < β < 2, from
the conventional case of β = 2 is a con-
sequence of memory effects. And this be-
comes more noticeable for t > 2 s.

It is worth mentioning that in the frame-
work of FC, linear momentum at any time t
is expressed in terms of position at that time
by

p(t) = m
′
F

dβ/2x(t)
dtβ/2 , 1 < β ≤ 2. (44)

Substituting for x(t) from Eq. (42) and using
the fact that the order of derivative β

2 satis-
fies the condition for Eq. (28), we get, using
this equation and its generalization for non-

integer power of t,

p(t) = m
′
F[

Γ(2)

Γ(2 − β
2 )

v(0) t1− β
2 +

f
m′

F

t
β
2

Γ
(

1 + β
2

) ].
(45)

For β = 2, this becomes

p(t) = m
[

v(0) +
f
m

t
]
= mv(t), (46)

which is the conventional expression for in-
stantaneous momentum. Also, for this value
of β, Eq. (44) reads p(t) = m dx(t)

dt . These
observations justify the above definition of
p(t).

5.2 An Object Falling Under Gravity in a

Medium Offering Resistance

When a particle-like small object (say, a solid
metallic ball) falls from an initial height y(0)
under the influence of a constant gravita-
tional field through a viscous fluid (castor
oil, glycerine, sugar syrup, etc), or a large
body (say, a human being in swimming
pose) falls through a low-viscosity fluid (wa-
ter, or even air), it experiences a viscosity-
associated upward resistive or drag force
that opposes its downward motion with re-
spect to the surrounding medium. The mag-
nitude of this drag force is proportional to
the magnitude of instantaneous relative ve-
locity v(t) for slow speeds and to its higher
powers for high speeds. Taking upward mo-
tion to be positive and assuming the speed
to be low, the equation of motion for a parti-
cle of mass m is given by

− m
dv(t)

dt
= − mg + γv(t). (47)
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Here, γ is the linear drag or friction coef-
ficient, which is determined by the shape,
material, and size of the falling body, and
by the nature and temperature of the fluid.
Using Caputo fractional derivative of order
α on the left side, we get the corresponding
fractional equation as

mFDαv(t) = mg − γv(t), 0 < α ≤ 1.
(48)

Taking LT on both sides and rearranging the
terms, we get

V(s) =
mg
mF

s−1

(sα + γ
mF

)
+ v(0)

sα−1

(sα + γ
mF

)
.

(49)
Finding inverse LT, in the light of Eq. (32),
we have

v(t) =
mg
mF

tαEα, α+1(−
γ

mF
tα)

+ v(0)Eα,1(−
γ

mF
tα)

=
mg
mF

tα 1
− γ

mF
tα

[
Eα, 1

(
− γ

mF
tα

)
− 1

]
+ v(0)Eα,1(−

γ

mF
tα)

=
mg

γ
+ [v(0)− mg

γ
]Eα,1(−

γ

mF
tα). (50)

Here, we have used Eq. (13) to go from
the first equality to the second one. Denot-
ing the instantaneous position of the body
by y(t), we have v(t) = dy(t)

dt , and, hence

y(t)− y(0) =
∫ t

0
v(t)dt

=
mg

γ
t+[v(0)− mg

γ
]
∫ t

0
Eα,1(−

γ

mF
tα)dt.

(51)

Substituting for the integral from Eq. (14),
we have

y(t) = y(0)+
mg

γ
t+[v(0)− mg

γ
]tEα,2(−

γ

mF
tα).

(52)
It may be remarked that the Mittag-Leffler
functions appearing in Eqs. (50) and (52) are
monotone so that the expressions for v(t) as
well as y(t) are physically acceptable.

In view of the statement after Eq. (14),
the Mittag-Leffler function in Eq. (50) van-
ishes for infinite values of t, and, therefore,

v(t)|t→∞ =
mg

γ
, (53)

irrespective of the value of v(0). This gives
the terminal speed of the particle, and, in-
terestingly, it depends upon m and not mF.
Note that if v(0) equals terminal velocity,
then the term containing Eα,1(− γ

mF
tα) in Eq.

(50) vanishes and v(t) =
mg

γ for all values
of t irrespective of the value of α.

For α = 1, Eqs. (50) and (52), together
with Eqs (9) and (10) give

v(t) =
mg

γ
+ [v(0)− mg

γ
]e−

γ
m t, (54)

and

y(t) = y(0)+
mg

γ
t+

[
v(0)− mg

γ

]
t
e−

γ
m t − 1
− γ

m t

= y(0)+
m
γ
[gt−{v(0)− mg

γ
}(e−

γ
m t − 1)].

(55)

These are the same results as we obtain by
solving the differential equation in Eq. (47).
Furthermore, the terminal speed of the par-
ticle as determined from Eq. (54) is the same
as found in Eq. (53).
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In order to explore the effect of frac-
tional order parameter α on the velocity of a
falling body, we have used Eq. (50) to obtain
plots for v(t) as function of time using m =

0.02 kg, mF = 0.02 kgsα−1, v0 = 0 (the ob-
ject is just dropped), g = 9.81 ms-2, γ = 0.05
kgs−1 ; Fig. 3. It may be mentioned that the
terminal velocity found through Eq. (53) is
3.924 ms-1. For α = 1.0, this value is attained
at t = 3.4 s, whereas for lower values of α,
this does not happen even at t = 8 s, for
which the v(t) values are 3.816, 3,852, and
3.896 ms-1 for α = 0.7, 0.8, and 0.9, respec-
tively. This slowness or time-delay in reach-
ing the terminal velocity is manifestation of
memory effects and is more pronounced for
lower α.

It is worth pointing out that if
v0

(
<

mg
γ

)
is taken to be nonzero, then

not only ordinates of the plots start from
this value but even the asymptotic values
for higher t values become closer to the
terminal velocity. For example, if we take
v0 = 1 ms-1 and 3 ms-1, then the values of
v(t) at t = 8 s for α = 0.7 are found to be
3.844 and 3.899 ms-1, respectively, in lieu
of 3.816 ms-1 for v0 = 0. Furthermore, if
v0 >

mg
γ , then the falling body decelerates

to attain the terminal velocity from above
and the dependence of time variation of
velocity on α appears as in Fig. 4, where
v0 = 6 ms-1. In this case, v(t) at t = 8 s for
α = 0.7 and 1.0 has values 3.981 and 3.924
ms-1, respectively.

In contrast with the above, if the falling
body is quite small and the surround-

0 2 4 6 8

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

v
(t

) 
(m

s
- 1

)

 = 0.7

 = 0.8

 = 0.9

 =1.0

Figure 3: Time-dependence of velocity of a
falling body for different values of α, The pa-
rameters used for obtaining these plots are
m = 0.02 kg, mF = 0.02 kgsα−1, v0 = 0 ms-1,
g = 9.81 ms-2, γ = 0.05 kgs−1.

ing medium has fairly low viscosity, say
air whose coefficient of viscosity is nearly
80,000 times less than that of glycerine, the
drag force can be taken to be negligible
as compared to the gravitational force or
weight. The formulae describing the motion
of the body falling under this friction-free
ideal condition can be obtained from Eqs.
(50) and (52) by taking the limit γ → 0. For
this purpose, we first write Eα,1(− γ

mF
tα) and

Eα,2(− γ
mF

tα) in these two equations as sum
using Eq. (7), simplify the expressions and
take the limit. This gives us, for the so
called freely falling body,

v(t) = v(0) +
mg
mF

tα

Γ(α + 1)
, (56)

and

y(t) = y(0) + v(0)t +
mg
mF

tα+1

Γ(α + 2)
; (57)
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Figure 4: Velocity of a falling body as func-
tion of t for different values of α and v0 = 6.0
ms-1. Other parameters are the same as used
in Fig. 3.

which for α = 1, become v(t) = v(0) + gt,
and y(t) = y(0) + v(0)t + 1

2 gt2. It can be
verified that the same results are obtained if
we put γ = 0 in Eqs. (47) and (48), yielding
m dv(t)

dt = mg and mFDαv(t) = mg, respec-
tively, and solving these adopting the proce-
dure followed for Eq. (48).

A perusal of Eq. (56) shows that in
the absence of resistive force, velocity of the
body continuously increases at a rate gov-
erned by the value of α , and will never at-
tain a terminal speed which is characteristic
of drag.

It may be mentioned that if the object
under consideration has a charge q and is
subjected to a downward (or upward) acting
constant electric field of magnitude E , it will
experience a downward (or upward) force
qE , and mg will be replaced by mg + qE (or
mg − qE ) in all the preceding expressions.

5.3 Projectile Motion in a Viscous

Medium

A projectile signifies a particle or a body
thrown or projected with some initial ve-
locity into a medium such that it moves
along a curved path in a vertical plane un-
der the influence of downward acting grav-
itational force and no other propelling force.
Depending on the nature of the projected
body and the surrounding medium, it may
or may not experience viscous friction force
opposing its horizontal as well as vertical
motion. Some typical examples of projec-
tiles are a shell fired by a tank, any ball hit
in the air by a sports person, an arrow shot
by an archer, etc.

Suppose a projectile of mass m is
thrown from point (x0, y0) with velocity
v(0) = v0 at angle of elevation θ with pos-
itive x – direction so that vx(0) = v0 cos θ

and vy(0) = v0 sin θ. We assume that the
heights involved are such that the body is al-
ways under the influence of the same grav-
itational field. Taking the upward motion
to be positive and assuming that the drag
force is linearly dependent on velocity, the
conventional equations describing the mo-
tion of the projectile in a resistive fluid with
friction coefficient γ can be written as

m
dvx(t)

dt
= −γvx(t), (58a)

m
dvy(t)

dt
= −mg − γvy(t). (58b)

The corresponding fractional differential
equations are

mFDαvx(t) = −γvx(t), (59a)
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mFDαvy(t) = −mg − γvy(t) (0 < α ≤ 1).
(59b)

Finding LT for both sides of Eqs. (59),
rearranging the terms to get Vx(s) and Vy(s),
and then determining the inverse Laplace
transforms, we get

vx(t) = v0 cos θEα,1(−
γ

mF
tα), (60)

and

vy(t) = −mg
mF

tαEα, α+1(−
γ

mF
tα)

+ v0 sin θ Eα,1(−
γ

mF
tα)

= −mg
γ

+ [ v0 sin θ +
mg

γ
]Eα,1(−

γ

mF
tα).

(61)

Integrating both sides in Eqs. (60) and (61)
from 0 to t, and using Eq. (14), we have

x(t) = x(0) + v0 cos θ tEα,2

(
− γ

mF
tα

)
,

(62)
and

y(t) = y(0)− mg
γ

t + [ v0 sin θ

+
mg

γ
] tEα,2(−

γ

mF
tα). (63)

For convenience, we take the point of launch
of the projectile as origin of the coordinate
system so that x(0) = 0 and y(0) = 0. Then
from Eq. (62), we have

t =
x(t)

v0 cos θ Eα,2(− γ
mF

tα)
(64)

Substituting this into Eq. (63) and simplify-
ing the resulting expression, we get

y = x tan θ +
mg

γv0 cos θ
x[ 1 − 1

Eα,2(− γ
mF

tα)
].

(65)

This defines trajectory of the projectile. The
value of x(t) for which y(t) again equals
y(0), gives range of the projectile and time
needed to cover this distance, as obtained
from Eq. (64), is the time of flight. Obvi-
ously, these and other characteristics of the
motion of the projectile depend on the val-
ues of θ and α besides its mass, initial ve-
locity, and friction coefficient. Once again,
α = 1 leads to results for the motion of a
projectile described by Eq. (58).

Next, if the resisting drag of the
medium is negligibly small, we can deter-
mine the corresponding results by evaluat-
ing Eqs. (62) and (63) in the limit γ → 0 as
done in subsection 5.2. This gives us

x(t) = x(0) + v0 t cos θ, (66)

and

y(t) = y(0) + v0 t sin θ − mg
mF

tα+1

Γ(α + 2)
.

(67)
Taking x(0) = y(0) = 0, so that t =
x(t)
v0

sec θ, we have for the trajectory of a
drag-free projectile,

y = x tan θ − mg
mF

( x
v0

sec θ)α+1

Γ(α + 2)
. (68)

For α = 1, the usual (inverted parabola) ex-
pression for trajectory of a projectile, viz.,

y = x tan θ − gx2 sec2 θ

2v0 2 , (69)

is regained.
As a typical illustration of Eq. (65), we

have shown the dependence of the trajec-
tory of a projectile with mF = 1 kgsα−1,
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v0 = 12 ms-1, g = 9.81 ms-2, γ = 0.05 kgs−1,
θ = π/4 for different values of α in Fig. 5.
The ranges for α = 0.5, 0.7, 0.9, and 1.0 are
found to be 10.65, 12.16, 13.34, and 13.90 m,
respectively. It may be noted that for the
classical integer order case with γ= 0, the
range is v0

2sin(2θ)/g = 14.68 m (maximum
because θ = π/4), which is higher by 0.78 m
as compared to the range in the presence of
drag force characterized by γ

mF
= 0.05 s−α.

5.4 Fractional Oscillator

A particle or an object executing repeated
back and forth motion after being displaced
from its equilibrium position in such a way
that the restoring force is always directed
towards the point of equilibrium and its
magnitude is proportional to the displace-
ment, is called a mechanical harmonic os-
cillator (HO). In one dimension, for a body
of mass m having instantaneous displace-
ment x(t) with equilibrium or centre point
at x = 0, such a motion (known as simple
harmonic motion) is described by the differ-
ential equation,

m
d2x(t)

dt2 = −kx(t). (70)

Here, the negative sign takes care of the fact
that the directions of force and the displace-
ment are opposite to each other. The pa-
rameter k, the force per unit displacement,
is called force constant. In case, the restor-
ing force depends on higher powers of dis-
placement, then the oscillator is said to be
anharmonic. If the oscillating system experi-
ences a friction-like force (which is generally
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Figure 5: Dependence of trajectory of a pro-
jectile (mF = 1 kgsα−1, v0 = 12 ms-1, g = 9.81
ms-2, γ = 0.05 kgs−1, θ = π/4) on α.

always present in real systems) that causes
continuous dissipation of energy, then it is
referred to as a damped oscillator. Further-
more, an oscillator subjected to a time de-
pendent external force is known as a forced
or driven oscillator. The basic equation
(70) is accordingly amended to accommo-
date relevant additional terms.

In general, any system, which need not
necessarily be a material object and may
be something like electric or magnetic field,
that can be described by an expression anal-
ogous to that in Eq. (70) or its modi-
fied version, is said to be oscillatory. Be-
sides everyday life examples of swings, cra-
dles, vehicle shock absorbers, musical in-
struments, process of hearing, etc., consid-
ered in its general sense, an oscillator (clas-
sical or quantum one- or three- dimensional
and their further modifications) is ubiqui-
tous in physics and finds wide-range appli-
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cations in developing theoretical models for
different phenomena in almost all branches
of physics. Some typical examples are sim-
ple, compound, and torsional pendulums;
spring-mass system; vibrating tuning forks,
strings, and gas columns; electric LC and
LCR circuits; electronic oscillators; vibration
of atoms in molecules; vibration of lattice
atoms and molecules in solids leading to cre-
ation of phonons; modelling nuclear collec-
tive motion; basics of quantum field theory;
and so on.

In view of Eq. (70), the FD equation for
a one-dimensional oscillator can be written
as

mFDβx(t) = −kx(t), 1 < β ≤ 2; (71)

where mF has dimension MTβ−2. The LT of
this yields

X(s) =
x(0)sβ−1(
sβ + k

mF

) +
v(0)sβ−2

(sβ + k
mF

)
. (72)

This gives analytical expression for instanta-
neous displacement as

x(t) = x(0)Eβ,1

(
− k

mF
tβ

)
+ v(0)tEβ,2

(
− k

mF
tβ

)
. (73)

We get only one of these two terms if either
v(0) = 0 or x(0) = 0. Note that the con-
dition v(0) = 0, x(0) ̸= 0 implies that the
oscillator is at the turning point at t = 0 and
x(0) is its amplitude. In contrast, the initial
condition x(0) = 0, v(0) ̸= 0 corresponds to
the situation that the oscillator starts its mo-
tion from the equilibrium point at the origin
with velocity v(0).

Next, the total mechanical energy of the
fractional oscillator at time t is given by

E(t) =
(

p2(t)
2mF

)
+ (

kx2(t)
2

).

To evaluate this, we use Eq. (44) for p(t),
and assume the initial conditions to be such
that v(0) = 0, so that

x(t) = x(0)Eβ,1

(
− k

mF
tβ

)
; (74)

p(t) = mF

d
β
2

[
x(0)Eβ,1

(
− k

mF
tβ
)]

dt
β
2

= mFx(0)
∞

∑
n=0

(
− k

mF

)n tβ(n− 1
2)

Γ
(

nβ + 1 − β
2

)
= −mFx(0)

k
mF

tβ/2Eβ,1+β/2

(
− k

mF
tβ

)
.

(75)

Therefore,

E(t) =
1
2

mFx2(0)(
k

mF
)

2
tβ[Eβ,1+β/2

(
− k

mF
tβ

)
]
2

+
1
2

kx2(0)[Eβ,1

(
− k

mF
tβ

)
]
2

. (76)

Obviously, E(t) varies with time implying
that the total mechanical energy of a frac-
tional oscillator is not a constant or is not
conserved.

Furthermore, for maximum allowed
value of β, i.e., β = 2, using Eqs. (11) and
(12), we get from Eq. (73),

x(t) = x(0) cos (

√
k
m

t)+ v(0)
√

m
k

sin (

√
k
m

t).

(77)

38/1/2 20 www.physedn.in



Physics Education April-June, 2024

This can be easily identified as displacement
of a conventional HO with natural angular

frequency ω =
√

k
m . The initial condition

v(0) = 0 leads to x(t) = x(0) cos (
√

k
m t).

Next, substituting β = 2 into Eqs. (75) and
(76), we get

p(t) = −m x(0)
k
m

tE2,2

(
− k

mF
t2
)

= −m x(0)

√
k
m

sin(

√
k
m

t), (78)

and

E(t) =
1
2

mx2(0)
(

k
m

)2

t2
[

E2,2

(
− k

m
t2
)]2

+
1
2

kx2(0)[E2,1

(
− k

m
t2
)
]
2

=
1
2

kx2(0).

(79)

Note that expression in Eq. (78) is the same
as is obtained by taking p(t) = m dx(t)

dt . Also,
Eq. (79) brings out conservation of mechan-
ical energy for the conventional HO, which
is in contrast with the finding in Eq. (76) for
a fractional oscillator.

The time dependence of x(t) and E(t)

for an oscillator with
√

k
mF

= 1.0 rad s−β/2,
as given by Eqs. (74) and (77), respectively,
for different β values are shown in Figs. 6
and 7. A look at Fig. 6 shows that for β = 2,
the plot represents a cosine variation so that
displacement (of the standard oscillator) is
periodic and has same amplitude. However,
for 1 < β < 2, the system makes a finite
number of oscillations with decreasing am-
plitudes and finally decays to x(t) = 0 posi-
tion. This attenuation of oscillations is simi-
lar to that observed in a damped HO. More-
over, this effect becomes more prominent as

β decreases; the number of zeros in the x(t)
plots is quite small for β close to 1 (implying
quite rapidly damped oscillations). In the
case of total mechanical energy (Fig. 7), the
graph for β = 2 corresponds to constancy of
E(t) and, hence, the conservation of energy,
while the β < 2 curves exhibit decrease in
energy with time as for the damped or dis-
sipative motion. Once again, the decrease
in the curve is faster for lower values of β.
Thus, a fractional oscillator (1 < β < 2) be-
haves as a damped oscillator even though
there is no resistive medium and this damp-
ing is absent for β = 2, which corresponds
to a simple HO. In other words, the past-
history of the oscillator with 1 < β < 2
influences its motion by producing damp-
ening effect as if it were interacting with it-
self – memory effect. Accordingly, it is usu-
ally referred to as fractional-order intrinsic
damping. Since the effect becomes more
pronounced with decrease in β, the order of
fractional derivative provides a measure of
memory effects.

With a view to look at this feature more
minutely, we recall that damping and hence
dissipation in a standard HO is obtained
when a velocity-dependent term (−γ

dx(t)
dt )

is added to the restoring force term on the
right side of Eq. (70) so that this is exter-
nal in nature. It is indeed interesting to note
that though we started with zeroth order
(i.e., no) derivative in the restoring force in
Eq. (71), we have also got an effect associ-
ated with first-order derivative of x(t). This
means that the fractional derivative on the
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Figure 6: x(t)/x(0) versus time plots for an

oscillator (
√

k
mF

= 1.0 rad s−β/2) for different
β values.

left side of this equation has led to a be-
haviour which is a mixture of zeroth order
and first order derivatives. The inclusion
of (ubiquitous) dissipation effect in a natu-
ral way in the description makes it closer to
reality, and, thus, brings out the importance
of FC as a logical and comprehensive tool
for modeling real systems by incorporating
memory effects.

It is worth pointing out that Rekhvi-
ashvili et al [11] studied vibrations of a free
piezoelectric plate under standard labora-
tory conditions and found that their exper-
imental data was best accounted for with
β = 1.998 (reasonably small memory effect).

Before closing this subsection, it may
be mentioned that non-conservation of me-
chanical energy is also observed in the FC
description of a freely falling body dis-
cussed in subsection 5.2.
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Figure 7: Time-dependence of total mechan-

ical energy of oscillator (
√

k
mF

= 1.0 rad

s−β/2) for different values of β.

5.5 Fourier’s Law of Thermal

Conduction

Heat conduction is the transfer of thermal
energy from a region at higher temperature
(Th) to a part at lower temperature (Tl) of
a body by microscopic collisions of atoms,
molecules and electrons, and it occurs in all
phases - solid, liquid, and gas. For a uniform
object (slab, cylinder, etc.) with parallel op-
posite faces having surface area A separated
by length L and maintained at constant tem-
peratures Th and Tl , respectively, with the
help of relevant heat reservoirs, the time rate
of thermal energy transfer from the hotter
face to the colder face, dQ(t)

dt , in the steady
state, is given by the Fourier law:

dQ(t)
dt

= kA
Th − Tl

L
, (80)

where k is thermal conductivity of the con-
stituent material. L/k is usually referred to
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as thermal resistance of the body, and the
quantity 1

A
dQ(t)

dt = dΦ(t)
dt is called thermal

flux density. In the framework of FC, Eq.
(80) reads

DαQ(t) = kF A
Th − Tl

L
,

0 < α ≤ 1. (81)

Here, kF is fractional thermal conductivity.
Note that for a specific system, the right side
of Eq. (81) is constant. Comparing this equa-
tion with Eq. (35), and using the relevant
correspondences, we have from Eq. (38), for
the quantity of thermal energy transferred in
time t,

Q(t) = kF A
Th − Tl

L
tα

Γ(α + 1)
, (82)

where we have taken Q(0)= 0. Obviously,
the formula for Q(t) given in books is re-
covered from Eq. (82) by putting α = 1.
By choosing appropriate values of various
parameters for a block of, say, plywood or
PVC, we can have magnitude of kF A Th−Tl

L
equal to unity so that the plots for Q(t) as
function of time for different α values will
be identical to those in Fig. 1, with ordinate
at t = 0 as 0 rather than 1.

5.6 Newton’s Law of Cooling

According to Newton’s law of cooling, the
rate of heat loss of a body at any time t,
(dQ(t)/dt), is directly proportional to the
difference in its instantaneous temperature,
T(t), and that of its surrounding environ-
ment (Te) provided the temperature differ-
ence [T(t) − Te] is small and the nature

of heat transfer mechanism is unchanged.
Thus, dQ(t)

dt = −ξ[T(t) − Te], where ξ is
temperature-independent heat transfer fac-
tor determined by the area and nature of the
body surface, and negative sign takes care of
the fact that heat is being lost. The surround-
ing is assumed to be such that its temper-
ature Te is not changed by the heat gained
from the body. Since Q(t) equals product
of heat capacity and temperature T(t) of the
body, we can write the above equation as

dT(t)
dt

= −µ[T(t)− Te], (83)

with µ as cooling constant. The correspond-
ing fractional differential equation for rate of
fall in body temperature reads

DαT(t) = −µF[T(t)− Te], 0 < α ≤ 1. (84)

Taking LT on both sides, rearranging the
terms to find an expression for LT of T(t)
and then proceeding as in subsection 5.2, we
finally get

T(t) = Te + [T(0)− Te]Eα,1(−µFtα). (85)

For special case α = 1, this becomes

T(t) = Te + [T(0)− Te] e−µt, (86)

as is obtained by solving Eq. (83).
It may be mentioned that Mondol et

al [12] have investigated the Newton’s law
of cooling in the framework of FC by per-
forming meticulous experiments on differ-
ent samples of water, mustard oil, and mer-
cury. They analysed their data to determine
the best fit plots in respect of the FD pa-
rameter, using an appropriately determined
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value of cooling parameter µF. In order to
discuss our expression (85), we have used
their results for 80 ml water sample with
initial temperature T(0) = 1000 C and sur-
rounding temperature Te= 23.50 C. For this
case, they obtained the best fit for µF= 0.109
and α = 0.79. Employing their values for
various parameters, we have drawn plots
for T(t) as function of t for α = 0.5, 0.75,
0.79, 0.85. and 1.0; Fig. 8. Also shown in
this figure are some experimental points ex-
tracted from the relevant plots in ref. [12]. A
perusal of these plots clearly brings out the
inadequacy of integer order Newton’s law
(α = 1.0), and highlights the correctness of
the findings for α = 0.79. In fact, Mondol et
al [12] found that their experimental results
for all the liquid samples studied by them
could be interpreted in terms of Eq. (85) us-
ing α < 1, indicating the importance of the
memory effects in cooling of liquids.

5.7 Ohm’s Law and RC, RL Circuits

Ohm’s Law, which is one of the most ba-
sic laws of electrical theory, states that the
instantaneous electric current i(t) (i.e., the
time rate of change of electric charge) flow-
ing through a conductor is directly pro-
portional to the potential difference, V(t),
across it at that instant of time. The con-
stant of proportionality, reciprocal of the re-
sistance (R) of the conductor depends on na-
ture of its material, length, area of cross sec-
tion and temperature. Thus, it reads i(t) =
dq(t)

dt = V(t)
R . The fractional version of this

law becomes RFDαq(t)=V(t), 0 < α ≤ 1.
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Figure 8: Time dependence of temper-
ature for different values of fractional or-
der derivative parameter α for water sample
with T(0) = 1000 C, Te= 23.50 C, and µF=
0.109 [12]. The sample experimental points
shown here have been obtained from figure
7 in the research paper of Mondol et al [12].

Here, RF is fractional resistance having units
Ohm sα−1.

Ohm’s Law, which is one of the most
basic laws of electrical theory, states that
the instantaneous electric current i(t) (i.e.,
the time rate of change of electric charge)
flowing through a conductor is directly pro-
portional to the potential difference, V(t),
across it at that instant of time. The con-
stant of proportionality, reciprocal of the re-
sistance (R) of the conductor depends on na-
ture of its material, length, area of cross sec-
tion and temperature. Thus, it reads i(t) =
dq(t)

dt = V(t)
R . The fractional version of this

law becomes RFDαq(t) =

V(t), 0 < α ≤ 1. Here, RF is fractional
resistance having units Ohm sα−1.
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Now, if we consider a series circuit of a
resistor having resistance R and a capacitor
of capacitance C (so that instantaneous po-
tential drop across this is q(t)/C) connected
to a constant source of potential difference V
(a battery), then

R
dq(t)

dt
+

q(t)
C

= V, (87)

which in the framework of FC reads

RFDαq(t) +
q(t)
C

= V, 0 < α ≤ 1. (88)

Proceeding as in subsection 5.2 to solve this
fractional differential equation, we get for
electric charge on the capacitor,

q(t) = VC + [q(0)− VC]Eα,1(−
tα

τF
), (89)

where τF = RFC is the fractional capaci-
tive time constant of the circuit. If the initial
charge on the capacitor is zero, then

q(t) = VC
[

1 − Eα,1

(
− tα

τF

)]
. (90)

In contrast, if the capacitor is initially
charged and is allowed to discharge through
a resistor, so that V = 0, then Eq. (89) yields

q(t) = q(0)Eα,1(−
tα

τF
). (91)

For α = 1, the conventional equations for
charging and discharging of the capacitor
through the resistance are recovered from
the preceding equations, with τ = RC as the
capacitive time constant.

A comparison of Eqs. (50) and (89)
shows that the latter can be obtained from
the former by replacing v(t) by q(t), mg

γ by

VC, and γ
mF

by 1
τF

; and Eq. (90) is special
case of Eq. (50) with v(0) = 0. Consequently,
the plots for charging of a capacitor obtained
from Eq. (90) with relevant values of differ-
ent parameters, will be analogous to those in
Fig. 3.

We can similarly discuss the RL series
circuit (connected to a battery of voltage V),
wherein capacitor is replaced by an inductor
with inductance L, for which the magnitude
of instantaneous potential drop is given by
L di(t)

dt , and the fractional differential equa-
tion takes the form LFDαi(t) + Ri(t) = V.
Here, LF is the fractional inductance, and
we talk about growth and decay of cur-
rent. Furthermore, the characteristic time
involved, the fractional inductive time con-
stant, is given by τF = LF

R .

5.8 Random Decay / Growth Processes

and Relaxation Phenomena

Many times, we come across situations
where the constituents of a sample undergo
random decay or growth in the sense that
we cannot predict which entity will change
the next regardless of how long it has ex-
isted. As typical examples, we may men-
tion the decay or disintegration of radioac-
tive nuclei and growth of bacteria. In such a
case, if the number of identical constituents
at an instant of time t is N(t), and the hap-
pening of an event is independent of the pre-
ceding one (no memory effect), then the time
rate of change is given by

dN(t)
dt

= ∓λN(t). (92)
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Here, negative sign indicates decay while
the positive sign pertains to growth. λ (> 0)
is called decay or growth constant and gives
the probability of occurrence of that process.
This interpretation demands that N(t) must
be a sufficiently large number. The corre-
sponding fractional differential equation for
the decay or growth process reads

DαN(t) = ∓ λF N(t), 0 < α ≤ 1, (93)

with λF as fractional decay or growth pa-
rameter. Obviously, this formula incorpo-
rates memory effect in the decay or growth
process. Once again, following the usual
procedure, we get

N(t) = N(0)Eα,1(∓ λFtα). (94)

TF = 0.693/λF defines half-life or dou-
bling time for the entity undergoing decay
or growth, with memory effects. Further-
more, using P(t) to denote electric polariza-
tion in a complex disordered system (where
memory effects of excitations are important)
and introducing τF = 1/λF, we have from
Eq. (94),

P(t) = P(0)Eα,1

(
− tα

τF

)
, (95)

which is relaxation equation for the system
characterized by fractional relaxation time
τF. In fact, this equation can be generalized
to describe the relaxation or return of any
perturbed system to its equilibrium state as,
for example, in nuclear magnetic resonance,
vibrational energy relaxation, structural re-
laxation, etc.

Note that for α = 1, Eqs. (94) and (95),
respectively, reduce to

(N(t) = N(0)e∓λt,

and
P(t) = P(0)e−t/τ. (96)

The first equation with negative sign is the
well-known Rutherford-Soddy formula for
radioactive decay of nuclei with disintegra-
tion constant λ, and the second expression is
the Debye relaxation relation with relaxation
time τ, used for simple dielectric materials.
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