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Abstract

The main topic of this article is a discussion
about the best way to show students that the
proportionality of mass and weight, strictly
true for point-like particles, is an excellent
approximation for objects of “normal” size. The
usual way of addressing this issue, although
very simple, is not entirely satisfactory. Our
approach considers first and second order,
coordinate dependent, gravimetric effects,
connected to the internal geometry of objects;
these effects, extremely small, are estimated
through examples.

1 Introduction

Direct proportionality of mass and weight is a
well-established principle, proven as an exper-
imental fact for all bodies in the same place.
However, apart from the special case of uni-
form gravitational field, this principle is only
valid locally, that is for point particles. When
both the variability of the gravitational field
and the bodies’ internal structure cannot be
ignored, the point-particle approximation fails

and the proportionality of mass and weight
cannot be regarded as strictly exact. Anyway,
discrepancies involved are generally tiny and
can safely be overlooked in most situations we
commonly experience.

It should be deemed that teachers usu-
ally show students that for common bodies
the acceleration of gravity does not vary ap-
preciably (or, otherwise said, the gravitational
field is uniform) within the size of the object,
which can be done very simply. At least at
the college level, but also at the high-school
level, after having presented relative motions
and introduced the “apparent forces” in non-
inertial reference frames - or “inertial forces”
as we want to call them - teachers specify that
the weight force on the earth’s surface is the
resultant of the (true) gravitational force and
of the apparent (inertia) forces, in particular
the centrifugal force if the body is stationary.

Limiting the problem to the gravitational
component only (let’s say it G) teachers
follow the usual simple path of differentia-
tion ∆G/G = ∆R−2/R−2 = −2∆R/R =

−2h/R, where R is the radius of the earth
and h is the height of the body (or, if stu-
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dents do not know the differentials, simply
calculate G(R + h)/G(R) = R2/(R + h)2).
Since the difference in the first order is already
very small, 2h/R typically being of the order
of 10−8, that of the second order is obviously
negligible for any practical effect.

But we immediately realize that this
method is flawed as the inverse proportion of
the gravitational force to the square of the
distance is strictly valid for point particles
(and in the other special case of centrally-
symmetric homogeneous bodies). In this way
we implicitly assume the conclusion, as affirm-
ing uniformity of the gravitational field within
point objects is tautological: our argument
contains a circularity and runs into a logical
fallacy (petitio principii). Furthermore, prop-
erly speaking, h does not correlate to the ob-
ject size: it merely represents a (small) dis-
placement of the body (or rather, its center of
mass) from the surface of the earth.

Thus the argument is ineffective for ex-
tended bodies of arbitrary shape as it does
not properly capture the effect on weight force
(in either a rotating or a non-rotating frame)
of the variation of g within the object size;
it would be preferable to find a different ap-
proach, allowing us to address the topic in
broader generality and rigour.

2 Background

According to the “Declaration on the unit of
mass and on the definition of weight; con-
ventional value of gn”: «The word “weight”
denotes a quantity of the same nature as a

“force”: the weight of a body is the product of
its mass and the acceleration due to gravity;
in particular, the standard weight of a body is
the product of its mass and the standard ac-
celeration due to gravity.» [1] And, contextu-
ally: «The kilogram is the unit of mass; it is
equal to the mass of the international proto-
type of the kilogram.»1 The value adopted for
the standard acceleration due to gravity (on
earth) is gn = 980.665 cm s−2. Thus, for the
weight force:

w = mg, (1)

where m is the mass of the object and g is the
acceleration vector due to gravity (We denote
vectors, like g, w, G, as bold letters and rep-
resent their magnitudes, like g, w, G, as italic
letters).

More generally, weight means the grav-
itational force (or this plus the centrifugal
force) on a small mass compared to that of
the source (e.g. “the weight of astronauts on
the Moon”).

It is important to notice that “weight”
and “gravitational force” are the same force
but the use of either term is contextual and it
is good practice to adhere to conventions on
their use to avoid ambiguity. Calling the grav-
itational force on a celestial body “weight”
creates confusion, and contradicts the conven-
tion that reserves this word for practical use
(on weight vs gravitational force see e.g. [2]).

Hence the use of “weight” should be re-

1The definition of the kilogram in terms of the in-
ternational prototype is obsolete and no longer in force
since 20 May 2019; it has been redefined in terms of
the Planck constant.
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served for the force experienced by an object
with mass in a gravitational field (e.g. light
is bent by gravitational fields, although it has
not weight, because it is massless).

We are now ready to introduce the
alternate differentiation pathway ∆g/g =

1/g (∆g/∆R)∆R = R/g (∆g/∆R) h/R,
where h is now the linear size of the object
and g(R) (gravitational + centrifugal) does
not have a form given a priori. In this way
we see that the less restrictive condition that
the gradient ∆g/∆R is the same order of g/R

would fulfill the requirement of uniformity of
the gravitational field within the size of the
object.

In a more formal way, if we think of the
body made up of particles of masses mi, being
m =

∑
i mi the mass of the entire body and

ρ(r) =
∑

i miδ(r − ri) its density, where δ is
the Dirac delta function, the weight force is
the generalization of eq. (1) by integration
over the whole space:

w =
∫∫∫

ρ(r)g(r) dτ =
∑

i

mig(ri). (2)

For an uniform field (g(r) = gẑ) the equation
(2) reduces to (1) and the internal size and
geometry of the body are irrelevant.

But the uniformity condition for g only
holds approximately near the earth’s surface.
The earth’s gravitational field is not uniform
even on a small scale; modern gravimeters al-
low us to appreciate g with eight or nine sig-
nificant digits (some µgals); this is how to say
that variations in the earth’s gravity between
points even a few centimeters apart are de-
tectable instrumentally.

In this article we consider very small
(some ppb) coordinate dependent effects. At
these scales there are several others effects,
both instrumental and environmental, which
are not so weak. For example, g has a depen-
dence on time: the effect of terrestrial tides
alone is two orders of magnitude greater (a
few hundreds µgals), to which are to be added
the effects of tides in the oceans, the hydro-
logical and barometric components, also vari-
able over time, and so on; also the motion (if
any) of the measuring instrument has to be
taken into account. Moreover, although in-
dependent of the mass m of the body under
consideration, g generally depends on “other”
masses; it will be assumed that these external
masses vary very slowly.

Obviously we should not forget to men-
tion the major non-gravitational contribution
to weight, that of the centrifugal force due to
diurnal rotation (which is a component of g);
the centrifugal force is some part per thousand
of the gravitational force and the dependence
of the two forces on the distance, from the cen-
ter or from the axis, is different; the effect on
the weight of Archimedes’ thrust in the air is
also significant. In the following we shall leave
all these effects just mentioned aside from the
present study and focus our attention on co-
ordinate related ones, dependent on size and
geometric configuration of objects.

It is easy to see that for bodies for
which experiments can be established, such
as for bodies near the earth’s surface, these
coordinate-dependent effects are far too small
for the standard resolution of dynamometers
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and scales. To this end we take Taylor series
expansions truncated to the second-order of
the functions g(ri) in eq. (2) centered about
Rcm = 1

m

∑
i miri, that is the radius vector

conducted from the origin of the coordinates
to the body center of mass:2

g(ri) = gcm + (ri − Rcm) · ∇g
∣∣∣
Rcm

+
1
2 ((ri − Rcm) · ∇)2 g

∣∣∣
Rcm

(3)

(where gcm is evaluated in the center of mass).

By fixing the origin of the coordinates in
the center of the earth, the equation (3) is
quite exact for all applications in which we
need to evaluate the weight force on bodies
located on or near the earth’s surface. In fact,
under these conditions |ri − Rcm| ≪ R with
|Rcm| ∼= R (assuming R ≃ 6.371 × 106 m for
the earth’s mean radius) and the third and
higher-order terms can be overlooked.

3 The first order effect.
Implications for precision mass
measurements

For a (small) displacement of a body from P

to a near point P ′ we can express the variation
of g within the body by means of the eq. (3)
as:

g(r′
i) = g(P′) +

(
r′

i − P′
)

· ∇g
∣∣∣
P′ (4)

(overlooking the small second order term).
For a rigid body holds the distance preserv-
ing condition ∥r′

i − P′∥ ≡ ∥ri − P∥. For the
2Under suitable analyticity conditions for the func-

tions g(ri).

sake of simplicity we assume the special con-
dition of a purely translational displacement
(preserving distance, angle, sense, and orien-
tation) such that r′

i − P′ ≡ ri − P, so that, if
we take P as the center of mass, the second
term of the right-hand side vanishes identi-
cally by introducing eq. (4) in eq. (2), and
eq. (4) reduces to

g(P′) = gcm +
(
P′ − Rcm

)
· ∇g

∣∣∣
Rcm

. (5)

In turn, eq. (2) reduces to

w′ = wcm + w−1, (6)

where

w−1 = m
(
P′ − Rcm

)
· ∇g

∣∣∣
Rcm

. (7)

Applying the gradient criterion ∇g ∼
g/R we easily obtain w−1/wcm ∼ h/R, so,
for a body similar in size and mass to the ob-
solete kilogram prototype (h ∼ a few centime-
ters) w−1 ∼ 10−7 − 10−8 N.

In recent decades, in view of the redefini-
tion of the SI units, in particular the kilogram,
the goal set by the CGPM was to achieve
accuracy of the order of 10−8. Laboratories
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such as the National Physical Laboratory in
the UK and numerous other metrology labs
around the world have worked for years to
achieve the required accuracy with Kibble’s
balances. At the meeting of 17th May 2019
of the CCM, I. A. Robinson (NPL) stated:
«Whilst, at present, it is theoretically possible
to measure the principal quantities to around
2–3 parts in 10 9 a number of other effects in
the apparatus must be taken into account.» [3]
This is a number of practical reasons, which
limit accuracy, such as alignments, vibrations,
etc. The NPL also plans to develop simpler
Kibble’s balances, affordable and operable in
laboratories not as highly–specialized as NPL,
capable of 10−8 accuracy. At this accuracy
level, a number of systematic effects has to be
taken into account, including gravimetric con-
tributions (see e.g. [4]). An historical account
of the development of these sensitive balances
in the context of the proposed reform of the
SI is outlined in [5].

Apparently, gravimetric effects such as
those we are talking about were first consid-
ered in the early 1970s in connection with the
development at the National Bureau of Stan-
dards of the “One Kilogram Balance” NBS
No. 2, whose standard deviation was approx.
4 µg. [6]

Such kind of balances, used for compar-
ing masses, compare the attractive gravita-
tional forces between weights (or loads) and
the earth. It is assumed (often implicitly)
that these forces are exactly proportional to
the masses of the loads (in vacuum) and do
not vary during the measurement. The force

on a standard weight used for the compari-
son of masses depends on the distance from
the center of the earth to the center of grav-
ity of the weight.3 A second weight, of a dif-
ferent configuration, may have its center of
gravity at a different distance from its base
and thus the distance of the weight’s center of
gravity from the center of the earth will be dif-
ferent when the weight is placed on the weigh-
ing pan (which operates with the bases of the
weights to be compared virtually on the same
level). In this way, the constant of propor-
tionality between the gravitational forces and
the masses of the weights on the pan will be
slightly altered, leading to a systematic error
in the results of the comparisons between the
masses, the so-called “gravitational configura-
tion effect” introduced by Almer and Swift. [7]

If we consider a reference weight wr =

mrg(R) and a second equal weight wx, whose
centers of gravity are spaced by a distance
∆h = d above their bases, then, from eqs.
(6) and (7):

wx = wx,cm + wx,−1,

wx,cm = mxg(R),

wx,−1 = wx,cm · 1
g

∂g

∂h
(∆h) ,

3We anticipate here the notion of center of grav-
ity that we will resume later. To practical effects of
the discussion carried out in this section we can con-
sider the center of gravity coincident with the center
of mass, although the two concepts, in general, are to
be kept distinct.
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or, in the approximation of the gravitational
component alone,

wx,−1 = −wx,cm · 2d

R
. (8)

And, having imposed wx = wr,

mx = mr + m−1 = mr +
2dmr

R
. (9)

The term m−1 = 2dmr/R in eq. (9) is
the (first order) corrective term that must be
applied to the mass of the second weight to
take into account the difference in the force of
gravity on the weights placed on the weigh-
ing pan of the balance whose centers of grav-
ity are at different distances from their bases.
The corrective term can be evaluated indepen-
dently of the equation (8), valid in the approx-
imation of the gravitational component alone,
by directly measuring the acceleration of the
free fall g and the gradient of the gravitational
field ∂g/∂h in the place in which the mass
calibration takes place.

In the case d = +1 cm the correction
for the comparison of nominal weights of
1 kg calculated using the equation (9) is ap-
prox. +3 µg. The old Pt-Ir kilogram proto-
type (density 21.55 kg/dm3) is a right circular
cylinder with a volume of approx. 46.5 cm3

and approx. the same height (39 mm) as
the diameter. Stainless steel samples (den-
sity 8.00 kg/dm3), having volume (125 cm3)
respecting the same proportions, have a height
of 54.2 mm. The resulting distance of the sam-
ples’ centers of mass (/gravity) from their base
is higher than that of the prototype’s center of
mass from its base by an amount of 7.6 mm,
which leads to a correction of +2.4 µg. For

comparison, as Almer and Swift stated: «Cur-
rently, mass comparisons at the 1-kg level
can be carried out with standard deviations as
small as 1.5 parts in 109.» [7]

This correction is far from being the most
significant; the largest volume (≈ 80 cm3)
of the stainless steel 1-kg samples results in
a correction for the aerostatic thrust of ap-
prox. +94 mg (assuming an air density of
1.2 kg/m3), that is about 40,000 times the
gravitational effect. [8] Nonetheless the grav-
itational correction becomes significant for
high precision mass measurements. In fact,
accuracy is limited not only by the achievable
precision and uncertainty associated with the
value of the sample, but also by systematic
errors. It can be said that the accuracy of
the results of the measurements is achieved
only after all the relevant systematic errors
have been identified and evaluated. This im-
plies that in the design of an experiment all
factors, even those that at first appear small,
must be estimated to establish their potential
importance as systematic factors affecting the
measured results.

4 The second order effect

By introducing eq. (3) into eq. (2) and notic-
ing that the first order term vanishes identi-
cally for the choice of Rcm , eq. (2) reduces
to

w = wcm + w−2,

where

wcm = mgcm
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and

w−2 =
1
2
∑

i

mi ((ri − Rcm) · ∇)2 g
∣∣∣
Rcm

(or, in the continuous limit)

=
1
2

∫∫∫
ρ(r) ((r − Rcm) · ∇)2 g

∣∣∣
Rcm

dτ .

The term wcm is the weight force acting
on the material point to which the body is
reduced, having the mass of the body and lo-
cated in its center of mass.

The term w−2 is a second order gravi-
metric correction that takes into account the
effect of the internal geometry of the body,
estimated as follows:

w−2 = wcm · 1
2 · 1

g

∂2g

∂z2 (∆z)2 ,

or, in the purely gravitational component ap-
proximation,

w−2 = wcm · 3d2

R2

(where ∆z = d is the linear size of the object).
It represents the difference due to mass distri-
bution around the center of mass compared to
the situation in which all the mass is thought
to be concentrated in one point. More for-
mally, it can be shown (see e.g. [9]) that the
mass distribution intervenes to second order
through the inertia tensor of the body. For
a right circular cylinder of mass 1 kg a few
centimeters high, like a copy of the old Pt-Ir
kilogram prototype, the order of magnitude
of the w−2 term is ∼ 10−16 − 10−17 N, the
same of the weight of the equivalent mass of
1 joule, just 1⁄10 of that of the mass of an
Escherichia coli bacterium and one hundred

thousand times smaller than that of the mass
of a human cell.

Although fully negligible for bodies of or-
dinary mass near the surface of the earth, sim-
ilar but a bit more significant effects occur in
various kinds of problems, often faced with
methods borrowed from celestial mechanics;
in these situations, all the possible contribu-
tions must be carefully evaluated both in the-
oretical analyses and in the design of the ex-
periments. A typical example are tidal phe-
nomena, whose effects depend on the gradient
of the gravitational field, rather than on in-
tensity, and the variations of the gravitational
force from one part of the object to the other
must be considered. Meanwhile, there is no
doubt that in these situations the bodies can-
not be thought of as material points; New-
ton had already noticed that the exact results
obtained for point-like particles are only ap-
proximate in presence of gravitational force
between extended bodies attracting at short
distances. In celestial mechanics it is usually
satisfactory to stop calculations at the second
order of approximation.

Moreover, as the size of the objects un-
der consideration are on a planetary or sub-
planetary scale, i.e. a significant fraction (say,
from a few thousandths to a few hundredths)
of the earth’s radius (think, for example, of
lithosphere segments of which we want to
study the isostatic conditions), or when the
bodies are very close to an attracting center
(a situation encountered in geophysical and
astrophysical contexts), also the assumptions
under which the equation (3) holds can fail
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and additional contributions should be con-
sidered.

In addition, sometimes it is not even pos-
sible to set up experiments or carry out direct
measurements; when this occurs, the evalua-
tion of gravitational forces needs ad hoc mod-
eling of objects, which may require, for exam-
ple, the computation of quadruple or sextuple
integrals and numerical integration (see, for
example, [10]).

5 The elusive center of gravity.
Near–uniform field

The slight variation of the gravitational field
within the size of earthly objects brings us to
the interesting questions of the parallel field
and the center of gravity.

The earth’s gravitational field can be lo-
cally modeled by a field consisting of paral-
lel vectors of (slightly) non-uniform intensity.
This picture is useful because it allows us to
introduce the “scalar weight” w in a coher-
ent way,4 providing a tool to face and clarify
the problem of determining a unique point (if
any) where you can think applied the total
weight force acting on all the particles of the
body, i.e. its center of gravity.5 A real gravita-
tional field cannot be both parallel and non-

4“scalar” here does not mean invariant under rota-
tion; here we intend 1-dimensional 1-component scalar
field.

5The center of gravity is susceptible to other def-
initions, which we will not deal with here. A defini-
tion different from that of the weighted average can
be given, for example, in the case of the spherically
symmetric field.

uniform at the same time. It is convenient
to examine the case of the near-uniform field,
which, in addition to being simplistic, repro-
duces the gravitational field near the earth’s
surface with an excellent degree of approxi-
mation. Furthermore, with this choice, the
problem can be dealt with in one dimension.
For the usual central field

g(r) = −k
r

∥r∥3

(k = GM for the earth’s gravitational field)
∇ · g = 0 everywhere. In the near-uniform
model we consider a small cylindrical region
where there is a field of vectors parallel to ẑ,
having non-uniform modulus, so defined:

g(r) = g(z)ẑ = −kz−2ẑ, (10)

with z ≳ R.
The equation (10) does not represent a

real Newtonian gravitational field as g does
not have zero divergence. However, for z large
enough, i.e. far from the center of the field
(e.g. near the earth’s surface), the divergence
is small and the eq. (10) is a very good ap-
proximation, locally (far from the center of the
earth), of a gravitational field generated by a
spherically symmetric mass distribution.6 In
this framework, the center of gravity of a body
can be defined through the “equipollent” mo-
ment condition (see [11], p. 18). The moment

6We assume the simplified picture of spherical
earth, uniform density, not rotating; we abstract from
all possible disturbing factors (assuming absence of
air, no influence of celestial bodies, etc.). The inin-
fluence of the body under examination on the central
gravitational field is also assumed (external field ap-
proximation).
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of a single force on a particle is perpendicular
to the force and the vector radius from the co-
ordinate origin to the position of the particle.
In general, however, this is not true for a sys-
tem of forces; the total moment of a system
of forces around a point O (the pole, which
we will also assume as the origin of the coor-
dinates) is generally not perpendicular to the
total force vector acting on the system.

The moment Teq of the system of forces
equipollent to a single weight force w acting
on the body satisfies the vector equation

Teq = Rcg × w, (11)

where w is the total weight force acting on
the body, defined by eq. (2) and Rcg is the
radius vector joining the pole with the point
of application of this force, i.e. with the body
center of gravity. The total moment of the
forces acting on the system is by definition
T =

∑
i ri × wi , and the total weight force

w =
∑

i wi . Imposing the perpendicularity
condition to these two vectors is equivalent to
making the equation (11) valid for T, that we
rewrite as

∑
i

(ri − Rcg) × wi = 0. (12)

The equation (12) (torque equation) does
not have solution if T and w are not orthog-
onal (and neither is zero) and in this case the
center of gravity vector Rcg ≡ (X, Y , Z) can-
not be determined by this method. We do
not examine here the existence conditions of
the solutions of the torque equation, whose de-
tailed discussion can be found, for example,

in [12]. Fortunately, in the special case of par-
allel field the orthogonality condition is met.7

If we choose the z–axis in the direction of the
field, then wi = wi ẑ and eq. (12) reduces to
the linear system

∑
i (xi − X) wi = 0 ,∑
i (yi − Y ) wi = 0 .

The moment of total weight force will
have only the x and y components different
from zero, from which the X and Y compo-
nents of the vector Rcg can be calculated;
these define the line of action of the total
weight force. There remains the z compo-
nent to be determined (the torque equation
for the z component is a null identity). We
observe, however, that under the assumptions
made the equation (12) can be rewritten as(∑

i

wiri − wRcg

)
× ẑ = 0. (13)

Then, as the pole O can be chosen arbi-
trarily and ẑ is a fixed vector, the equation
(13) can be satisfied by choosing the vector
Rcg defined as (see [11], p. 48)

Rcg =
1
w

∑
i

wiri =
1
w

∑
i

mig (ri) ri (14)

or, in the continuous limit,

Rcg =
1
w

∫∫∫
ρ(r)g (r) r dτ , (15)

which constitute the definition of the center
of gravity in the case of parallel field. For a
uniform field the equation (15) becomes

Rcm =
1
m

∫∫∫
ρ(r)r dτ , (16)

7Another case in which this condition is met is that
of a planar system of forces.
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that is Rcg coincides with the center of mass
radius vector. In the equations (15) and (16)
it is implied that

w =
∫∫∫

ρ(r)g(r) dτ ,

m =
∫∫∫

ρ(r) dτ .

With series expansions of w and g (r) in
eq. (15) around the center of mass,8 using the

equations (3) and (10), and truncating after
the first order, we have (we omit the detailed
steps):

Rcg = Rcm + R−1 + · · · ,

R−1 = − 2
mZcm

∫∫∫
ρ (r) (z − Rcm · ẑ) (r − Rcm) dτ . (17)

If as an example we consider a solid in
the shape of a right cylinder or a rectangle
parallelepiped, very elongated with respect to
its basis, resting on the earth’s surface so as
to approach the situation of a parallel and
near-uniform field, we reduce the problem to
one dimension. If h is the height of the solid,
the z–coordinate of its center of mass will be

given by Zcm = R + h/2; we also express the
variable of integration as a function of the co-
ordinate in the system of the center of mass
ζ = z − Zcm; finally, for simplicity, suppose
the solid of uniform density ρ. Then we can
write the Z coordinate of the center of gravity
as

Z = Zcm + Z−1 + · · · = Zcm − 2
hZcm

∫ h/2

−h/2
ζ2 dζ + · · · = Zcm − h2

6Zcm
+ · · · .

The term Z−1 = −h2/6Zcm
∼= −h2/6R

in the first order of approximation represents
the displacement of the center of gravity apart
from the center of mass. This is a tiny dif-
ference: in the case of Dubai’s Burj Khal-

8See previous note 2.

ifa, currently the tallest building in the world
(h = 829.80 m), the center of gravity is only
about 2 cm below the center of mass! The cen-
ter of gravity is a specially elusive concept. It
identifies a defined point, but, unlike the cen-
ter of mass, it does not have a definite posi-
tion. Its position depends, in general, on the
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relative positions of the body under consid-
eration and the attractive mass. As can be
seen from the equation (17), when the dis-
tance Zcm

∼= R of the body from the center
of the earth increases, the center of gravity
approaches the center of mass. This feature
makes it difficult to work with the center of
gravity and in practice this concept is seldom
used. The detailed treatment of this and other
interesting problems related to the center of
gravity is beyond our scope; an introductory
discussion on these topics can be found on the
Wikipedia page “Centers of gravity in non-
uniform fields”9 and related talk, 10 to which
the interested reader is referred.

6 Conclusions

We have established that the proportionality
of mass and weight for ordinary bodies can
be taken as an excellent approximation in all
cases of practical interest. However, it is ad-
visable for students to always clarify the limits
of validity of this approximation, both in their
theoretical meaning and for the aspects re-
lated to the sensitivity of the experiments. For
this purpose, the gradient criterion ∆g/∆R ∼
g/R is suitable for exploring the variation of
the gravitational force within the size of the
body. While it is easy to show that this gravi-
metric effect is negligible for ordinary bodies,
special caution should be observed when, in
investigating certain areas, you go beyond the

9https://en.wikipedia.org/wiki/Centers_
of_gravity_in_non-uniform_fields

10https://en.wikipedia.org/wiki/Talk:
Centers_of_gravity_in_non-uniform_fields

validity range of the point particle approxi-
mation. In geophysics, hydrostatics and as-
trophysics various situations are encountered
of strongly inhomogeneous gravitational field
and the gravitational effects connected to the
internal geometry of the bodies cannot be ne-
glected. Such effects must be carefully consid-
ered; for example: in celestial mechanics and
astrodynamics, in the calculation of the short-
distance interaction of non-spherical shaped
bodies (see, e.g., [13–15]); in geophysics, in the
calculation of the gravimetric field of a polyhe-
dral plate (see, e.g., [16–18]); in hydrostatics,
in the computation of the thrust, where the
pressure gradient is replaced by the product of
the density of the fluid and the gravitational
field (see, e.g., [19]). These problems are ad-
dressed on a case-by-case basis and often re-
quire the development of specific solutions.
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