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Abstract

The purpose of this article is to expose the

students and other readers to the wonderful

world of solitons – the self-sustaining solitary

waves. Beginning with a brief review of the

history of their discovery as waves on water

surface and their modeling by the Korteweg-de

Vries nonlinear partial differential equation, and

characterization as particles, we have given a

concrete definition for these. A simple soliton

solution for the afore-mentioned equation has

been elucidated. Also included is a summary

of Sine-Gordon and Nonlinear Schrödinger
equations. The question ‘why care for solitons?’

has been answered by giving an overview of

multifaceted theoretical and practical appli-

cations of its concepts in various branches of

science, particularly physics. Effort has been

made to keep the presentation as elementary as

possible omitting some mathematical subtleties

of the subject.

1 Introduction

When we read or hear the word ‘wave’, the
immediate thing that comes to our mind is
‘the wave moving on the surface of water’.
A stone thrown into still water of a pond cre-
ates a disturbance that travels radially out-
wards in all directions from the point of hit-
ting while the water particles on the surface
vibrate up-and-down. Thus, as the wave
propagates away from the point of its origin,
the water particles remain where they were
(a cork or a paper boat placed on the sur-
face shows only up-and-down oscillations
but no forward motion) and only energy is
transported outwards.
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A wave is a continuous disturbance
from the state of equilibrium that travels
from one region of space to another and
transports energy / information without
any translational movement of the interven-
ing medium. The properties which charac-
terize a wave and distinguish one from an-
other are velocity, amplitude, angular fre-
quency, and wavelength. Some well-known
examples of waves are transverse waves on
vibrating strings (which form the basis of
musical instruments like veena, sarangi, vi-
olin, etc.), longitudinal or pressure waves in
a gas, voltage and current waves along an
electrical transmission line, electromagnetic
waves (with light and radio waves as typ-
ical examples) in the free space / vacuum
or a material medium, etc. Interestingly, ir-
respective of their diverse individual prop-
erties, these waves are treated by common
mathematical formalism [1].

The partial differential equation (PDE)
describing a progressive wave, travelling
along x – direction with disturbance func-
tion u(x, t) at point x at instant of time t,
reads

∂2u(x, t)
∂t2 = v2 ∂2u(x, t)

∂x2 . (1)

This celebrated wave equation was first in-
troduced and solved in a general way by
d’Alembert in 1747, while developing a
mathematical model of a vibrating string.
Here, v is the velocity of propagation of the
wave and is also called phase velocity of the
wave. u(x, t) represents transverse displace-
ment in a string or water wave, pressure in
a sound wave in air, voltage or current in

an electrical transmission line (where Eq. (1)
is called telegraphist’s equation) and so on.
Note that Eq. (1) is a linear partial differ-
ential equation so that superposition princi-
ple holds good. Accordingly, if u1(x, t) and
u2(x, t) are solutions of this second-order
differential equation, then any linear combi-
nation of these functions is also a solution.
From physics point of view this means that
if two (or more) different waves are present
in a medium, the disturbance at any point
at any given time is the sum of the distur-
bances separately produced by these indi-
vidual waves.

It is common practice to denote partial
derivatives of a function u (x, t) with respect
to time and position coordinate by using t
and x as subscripts of ∂ and u, and to sup-
press the explicit dependence on these vari-
ables. Thus, ∂u(x,t)

∂t ≡ ∂tu≡ ut , ∂u(x,t)
∂x ≡

∂xu ≡ ux, and so on. In these short-hand no-
tations, the classical wave equation, Eq. (1),
can be written as

∂2
t u − v2∂2

xu = utt − v2uxx = 0. (2)

We shall use the second abbreviation in this
article. It may be added that waves are
quite commonly observed in higher spatial
dimensions and the preceding equation is
modified to read

utt − v2∇2u = 0, (3)

where ∇2 is the Laplace operator in the cho-
sen coordinate-system.

The wave travelling in +x – direction,
sometimes called the forward wave, is rep-
resented by the implicit function u (x, t) =
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f1(x − vt) while the one moving in −x –
direction (the backward wave) is given by
u (x, t) = f2(x + vt). The arguments x ∓ vt
are usually referred to as the characteristic
variables. The profile of the wave is gov-
erned by the mathematical form of f1 or
f2. Under ideal conditions, the waves de-
scribed by f1 and f2 do not change their
form as these propagate. Thus, the shape of
the wave given by f1(x − vt) at time t > 0
will be the same as at t = 0 except that it is
shifted to the right by an amount vt.

It may be added that if the function de-
scribing a progressive wave is such that the
profile of the disturbance at time t = 0 is
either a sine or a cosine function then it is
known as a harmonic or a sinusoidal wave.
Accordingly,

u (x, t) =a cos (k [x − vt]), (4)

a sin (k [x − vt]),

or

a exp (ik [x − vt])

represent a harmonic wave of amplitude a,
propagation constant or angular wave num-
ber k (which gives periodicity in the space
coordinate x), wavelength λ = 2π/k, and
angular frequency ω = 2πυ = 2πv

λ = vk.
Therefore, Eq. (4) can also be written as

u (x, t) = a cos (kx − ωt) (5)

and so on. The argument (kx − ωt) is phase
of the wave at point x at time t. Obviously,
for a specific point x it changes linearly with
time t. Of course, the phase of the wave can

be generalized to read (kx − ωt + θ), with θ

as phase at x = 0, t = 0.

If the medium through which a wave
is passing, is such that the phase velocity of
the wave is the same for all frequencies (i.e.,
v = ω

k = constant, independent of both ω

and k), then it is called a non-dispersive or
dispersion less medium. On the other hand,
a medium is said to be dispersive if the wave
velocity is different for different frequencies
( ω

k ̸= constant). Note that free space is non-
dispersive medium for light waves while
glass is a dispersive medium for these.

Now, if we consider an arbitrary pulse
(a one-time disturbance or a wave of very
short duration), which is a linear superpo-
sition of many harmonic waves with differ-
ent angular frequencies, it will travel with-
out deformation in its profile in a non- dis-
persive medium as all the constituent waves
move with the same speed. However, in a
dispersive medium, the phase velocities of
the component harmonic waves are differ-
ent so that the fast-moving constituents go
ahead, and the slow ones lag behind. Conse-
quently, the pulse changes its shape as time
evolves and will spread out or disperse as
it moves (leading to decrease in its ampli-
tude and increase in width). In this case, we
talk about group velocity vg = dω/dk. It
is this velocity with which energy is trans-
ported by the pulse or any wave comprising
different frequencies. The expression, such
as ω = k − k3 or ω = ω0| sin( k

2)|, giving the
variation of ω as a function of k is known as
a dispersion relation.
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Before proceeding further, it is worth-
while to point out that if we redefine time

such that t
′
= vt, then ut =

∂u(x,t
′
)

∂t′
∂t

′

∂t = vut′

and, similarly, utt = v2ut′t′ . Accordingly,
Eq. (2) is transformed to read ut′t′ − uxx= 0.
Replacing t′ by t and keeping in mind that
the rescaled time has dimension of length
rather than time, we can rewrite the wave
equation, as utt − uxx = 0. A comparison
of this equation with the original equation,
viz. Eq. (2), shows that the envisaged trans-
formation is equivalent to taking v = 1. Of
course, dimension of u in both the equations
is the same.

It is pertinent to note that like the lin-
ear differential equation describing simple
harmonic oscillator, the wave equation, Eq.
(1) or (2), is obtained by assuming the am-
plitude of wave to be small. As such, it
is an idealized model for the one- dimen-
sional wave motion. However, if the deriva-
tion is made for more realistic situations,
which necessarily involve nonlinearity, we
get wave equations involving dispersive as
well as nonlinear terms. One such nonlinear
partial differential equation (NLPDE) was
derived by Korteweg and de Vries (usually
abbreviated as KdV) in 1895 to describe the
propagation of waves in one-dimension on
the surface of a shallow canal assuming the
flow to be inviscid, incompressible, steady
and irrotational. In its standard dimension-
less form, as commonly used in the current
literature, it reads [2, 3, 5, 8]

ut − 6uux + uxxx = 0. (6)

Here, t and x are normalized time and nor-

malized coordinate in the direction of wave
propagation, respectively. If in any problem
similar equation of evolution turns out to
be of different form, it can be transformed
into this standard form of the KdV equa-
tion by using an appropriate scale. Here,
the first term gives time evolution of the dis-
turbance proceeding in +x – direction. The
second term in this equation is nonlinear,
which leads to steepening or narrowing of
the wave. Also, because of the presence of
nonlinear term, the principle of superposi-
tion of solutions does not hold good. This, in
turn, makes wave structure robust in inter-
actions / collisions with other wave struc-
tures. The third term is the dispersion part
and will give rise to a nonlinear relationship
between ω and k. In fact, the KdV equa-
tion is the simplest NLPDE that incorporates
both nonlinearity and dispersion.

Eq. (6) admits a solution of the form
u (x, t) = A sech2 (x, t, A) indicating pres-
ence of amplitude in the argument. This
represents a bell-shaped profile, which de-
scribes a solitary wave first observed by
Russell in 1834. This feature of the KdV
equation and its modified form has been
found to be very useful in the study of
waves in elastic rods, liquid-gas bubble mix-
tures, plasmas, anharmonic lattices, etc., be-
sides the water waves.

In this article, we delineate upon the
fascinating and interesting topic of solitary
waves from pedagogic point of view at rea-
sonably basic level [2-10]. In Section 2, we
give an overview of their discovery, devel-
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opment of the subject and nomenclature as
solitons. This is followed by Section 3 where
a precise definition of solitons is given. Sec-
tion 4 is devoted to description of a simple
soliton-solution of the KdV equation which
is being used as a prototypical example
of exactly solvable soliton-bearing model.
This approach involves easily understand-
able mathematics and, still, makes the con-
cept quite transparent. Also included are
some remarks regarding various solutions
of this equation. Then we move on to Sec-
tion 5 to give a brief information about two
other NLPDEs leading to different flavours
of solitons. Section 6 summarizes versatile
applications of the solitons to a wide vari-
ety of systems in diverse fields. We close the
article in Section 7 by making some general
comments.

2 A Historical Account of the

Discovery of Solitary Waves

and Growth of the Subject

We shall not be able to do justice to all the
spectacular developments in vast subject of
solitons with an elegant history of nearly
two centuries and shall concentrate mainly
on those contributions that had a larger in-
fluence on the overall progress, particularly
from physics point of view.

It was in 1830’s that a Scottish civil en-
gineer and naval architect named John Scott
Russell, with a view to develop an effi-
cient design for canal boats, performed ex-
periments on moving boats in Edinburgh-

Glasgow canal to find relation between their
shape, speed, and the force needed to push
them. One day in August 1834, this young
man (then 26 years old) was observing the
motion of a boat that was being rapidly
drawn along a narrow channel by a pair of
horses. He found that when the boat sud-
denly stopped, the moving water collected
around it in a state of violent agitation and
then abruptly it rolled forward with great
velocity of about 13 - 14 km / hr in the form
of a nearly 9 m long and 30 - 50 cm high
smooth and well-marked accumulation of
water. This heap travelled on the surface of
water without any change in its profile or
speed till it was lost in the windings of the
channel after a follow up of about 2 km. He
called this singular wave ‘the wave of trans-
lation’. Obviously, this discovery was essen-
tially a random happenstance.

Impressed by this unexpected observa-
tion, Russell carried out extensive meticu-
lous experiments about the nature of these
waves of elevation in many canals, rivers,
lakes, and in a large wave tank in his back
garden. He concluded that this wave mo-
tion was unique and quite different from
other types of oscillatory motions – the
speed depends on its amplitude and the
depth of water, and they never merge.
Therefore, he started referring to them as
‘solitary waves’ in the sense that this wave
had only a single protuberance traveling
without any change in its shape, size, or
speed. Treating it as a gravity wave, he
found that speed of the wave on a water sur-
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face with undisturbed depth h is given by
v =

√
g(h + a) , where a is amplitude of the

wave. This showed that the larger the am-
plitude of a wave higher its speed – a mirac-
ulous nonlinear effect.

However, he could not convince his
contemporaries, particularly mathemati-
cians, about the importance and even
novelty of these waves mainly because his
findings were at variance with the then
accepted theories of hydrodynamics and
he himself could not give an analytical
formalism. What was strikingly surprising
and unusual about this wave and was not
appreciated by the scientists at that time
is: A coherent hump of water was formed
out of turbulence produced by sudden
stopping of boat in shallow water and this
protrusion maintained its characteristics
over quite a long distance in contrast with
the normal behavior of water waves that
spread out and disappear after travelling
over reasonably short distances.

Despite this situation, Russell’s work
was followed by Stokes’ efforts in 1847 to
get some theoretical interpretation and by
Boussinesq’s (1871) and Rayleigh’s (1876)
successful explanation of the nature of these
waves. They used Euler’s equations of mo-
tion for an inviscid, incompressible fluid
and not only obtained Russell’s formula for
speed but also an expression for the wave
profile, reading

u (x, t) = a sech2 [A (x − vt)]. (7)

Here, A is a parameter that depends on the
amplitude a and the height h of water sur-

face from the base of the canal. This expres-
sion is strictly true for a ≪ h. However,
these scientists did not derive or write the
differential equation satisfied by the above
expression for u (x, t). This task was done by
Dutch mathematician Korteweg and his stu-
dent de Vries in 1895 who obtained the re-
markable Eq. (6) and derived various wave
properties which were similar to those ob-
served by Russell in different experiments,
though they did not refer to the work done
by him. Not only this, it also seems that
even they themselves did not realize the im-
portance of their finding as they did not
pursue it further. Continuing the narra-
tion of the history, it may be mentioned that
in 1955, Fermi, Pasta, Ulam, and Tsingou,
working at one of the world’s earliest com-
puters (the MANIAC machine), performed
numerical investigation of heat transfer in a
solid modeled by a one-dimensional lattice
consisting of equal mass anharmonic oscil-
lators. They observed that there was a pe-
riodic recurrence in the distribution of en-
ergy rather than expected equipartition of
energy among the modes. This astound-
ing result and the fact that the system con-
sidered by these scientists was closely re-
lated to discretization of the KdV equation,
prompted Zabusky and Kruskal (1965) to
undertake the initial value problem for the
KdV equation [11]. Pursuing insightful nu-
merical simulations, they (i) mimicked the
Russell’s solitary waves; (ii) explained the
odd results of Fermi, Pasta, Ulam, and Tsin-
gou; and (iii) found that when two or more
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of the KdV solitary waves interact or collide
with each other they neither break up nor
disperse and rather emerge out preserving
their individual shapes and velocities as if
there was no interaction. These do undergo
a small change in their phase on collision.

Keeping in view their last- mentioned
novel finding that assigned remarkable cor-
puscular or particle-like characteristic to
these waves, they coined the term ‘soliton’
for these solitary waves to emphasize its
kinship with electron, photon, phonon, etc.
that behave like both particle and wave. In
fact, it was this milestone work that brought
the KdV equation into limelight after being
in obscurity for nearly seven decades. How-
ever, the first rigorous analytical solution
to this famous equation reading u (x, t) =

−B sech2
[√

B
2 (x − 2Bt − x0)

]
was given

by Gardner and coworkers in 1967 [5,12].
The method developed by them involves
formulating a scattering problem with de-
sired solution as potential and solving this
as a first step. The outcome of this solu-
tion is then used to reconstruct u (x, t). This
technique is referred to as Inverse Scatter-
ing Method. They also obtained the general
multi-solitons or n-solitons solution for the
KdV equation. The salient feature of this
method lies in the fact that it provides ex-
act solution for nonlinear wave equations
by linear techniques and is useful in dis-
covering solitons. Later, this ingenious ap-
proach together with its generalizations and
the novel method put forward by Hirota
(1971) for obtaining multi-soliton solutions,

provided powerful tools for solving many
physically interesting NLPDEs and, thus,
for studying solitons. However, we shall not
dwell on details of these techniques or other
methods developed for solving the soliton-
bearing equations as these are too technical
in nature. In the meantime, Toda (1967) re-
ported existence of a soliton in a discrete, in-
tegrable system, which is now called Toda
lattice.

These developments opened up fasci-
nating vistas, and established study of soli-
tons or solitary waves as a vibrant and flour-
ishing topic of research among mathemati-
cians, physicists, engineers, and others. On
one hand, this boom led to discovery of nu-
merous soliton-bearing nonlinear evolution-
ary PDEs in one or more space-dimensions
and thus adding to mathematical richness
of theory of solitons. On the other hand,
solitons became objects of immense physi-
cal importance. In fact, solitons play same
role in the description of nonlinear systems
as harmonic waves in the linear systems.
Consequently, lot of effort has been directed
at exploiting fecundity of applications of
this concept in different branches of science.
However, before going ahead, we first de-
fine solitons in Section 3.

3 Defining a Soliton

Strictly speaking solitons are such solutions
of the NLPDEs that (i) do not change profile
while travelling nor do they disperse, im-
plying complete stability; (ii) survive colli-
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sions, emerging unblemished; (iii) cannot be
constructed as a superposition of harmonic
waves; and (iv) the speed of the wave pro-
file depends on its amplitude. Thus, soli-
tons are self-reinforcing, non-dissipative,
and persistent solitary waves of finite ampli-
tude, and are indubitably nonlinear entities.
These propagate undistorted over long dis-
tances and maintain their speed and shape
upon collision / interaction with other such
waves.

However, the term ‘soliton’ has been
used by scientists in a relatively loose man-
ner for the objects which do not necessarily
fulfil all the above requirements. It is, in a
way, used to signify a spatially compact, fi-
nite field energy configuration which may
or may not be time dependent. This term
has also been adopted to cover a large class
of solitary excitations that are localized in
space-time and though long-lived, are only
metastable. Thus, the condition of these be-
ing perfectly stable is relaxed. In this sense,
some of the soliton solutions can be identi-
fied as elementary excitations. Such moder-
ation of the definition has made the realm of
usage of the theory of solitons quite vast.

4 Rudimentary Solution of the

KdV Equation

Guided by the approach presented by
Drazin and Johnson [2], to obtain a travel-
ling or progressive wave solution to the KdV
equation, Eq. (6), we introduce a new vari-
able or parameter η = x − vt, which repre-

sents the position in a reference frame mov-
ing with the wave with speed v. Note that ∂η

∂x
= 1 and ∂η

∂t = −v. Also, the solution can be
written as f (η) ≡ f in place of u (x, t) and it
represents a wave travelling with speed v in
the original coordinate system. Now,

ut =
∂u
∂t

=
d f
dη

∂η

∂t
= −v f

′
,

ux =
∂u
∂x

=
d f
dη

∂η

∂x
= f

′
,

and

uxxx =
∂3u
∂x3 = f

′′′
.

Making these substitutions into Eq. (6), we
get

−v f
′ − 6 f f

′
+ f

′′′
= 0. (8)

Obviously, the NLPDE has been trans-
formed into an ordinary differential equa-
tion with the nonlinear and dispersive terms
intact. Integrating the above differential
equation with respect to single variable η,
we have

−v f − 3 f 2 + f
′′
= C1, (9)

where C1 is arbitrary constant of integration.
Multiplying with f

′
on both sides of this

equation and integrating again, we obtain

−v
f 2

2
− 3

f 3

3
+

( f
′
)

2

2
= C1 f + C2. (10)

Here, C2 is second arbitrary constant. Eq.
(10) can be rewritten as

( f
′
)

2
= 2{ f 3 +

v
2

f 2 + C1 f + C2} ≡ 2 F( f ).
(11)
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Figure 1: An arbitrary plot showing typical
dependence of F( f ) on f as per Eq. (11).

This gives us f
′

in terms of a cubic polyno-
mial in f , where C1 and C2 are determined
by the initial conditions satisfied by the KdV
equation.

Now, f (η) being solution of wave
equation, it represents a (classical) wave dis-
placement, and, therefore, it must be real
(so that it can be observed) and finite or
bounded. This, in turn, implies that f

′
too

is real so that ( f
′
)

2
≥ 0 and hence F( f ) ≥

0. Thus, only those f (η) are physically
acceptable for which F( f ) is non-negative.
Since F( f ) is a cubic polynomial, it will
have three real-valued zeros defined by f 3 +
v
2 f 2 + C1 f + C2 = 0. Let these be f1, f2, and
f3 and, in general, such that f1 < f2 < f3.
Of course, sometimes two or all the three ze-
ros may coincide with each other. Note that
for a cubic polynomial with the coefficient
of the cubic term as unity, the sum of its ze-
ros equals negative of the coefficient of the

square term. Thus,

f1 + f2 + f3 = −v
2

. (12)

Since v is speed of propagation of the wave,
it will be positive along the +x – direction
and this demands that

f1 + f2 + f3 < 0. (13)

Obviously, f1 will certainly be negative and
the signs of f2 and f3 may be negative or
positive depending on the values of v, C1

and C2.
For extremely large | f |, F( f ) is gov-

erned by f 3, and, therefore, F( f ) is negative
for negative large values of f and is positive
for positive large magnitudes of f . Since f1

and f3 are, respectively, the lowest and the
largest zeros of F( f ), it will be negative for
f < f1 and it will be positive for f > f3.
So, at the zero f1, F( f ) goes from negative
values to positive values, and at the zero f3,
it must again go from negative to positive
values. Accordingly, at the zero f2, sign of
F( f ) values changes from positive to nega-

tive; Fig. 1. Thus, F( f ) and hence ( f
′
)

2
is

positive for f1 < f < f2 and for f > f3. But
it is bounded only for f1 < f < f2, There-
fore, acceptable solution f (η) must lie be-
tween f1 and f2, which must be distinct.

Since f1, f2, and f3 are zeros of F( f ), we
can express it as product of three factors:

F ( f ) = ( f − f1)( f − f2)( f − f3). (14)

This together with Eq. (11) gives us

df
d η

= ±[2( f − f1)( f − f2)( f − f3)]
1/2.

(15)
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Confining ourselves to the region f1 < f <

f2 (and the corresponding η values η1 < η <

η2), we get from Eq. (15)∫ η

η1

dη =±
∫ f

f1

dg

[2(g − f1)(g − f2)(g − f3)]
1/2 .

(16)
We have used g as variable in the integral
on the right-hand side as f is being taken
as upper limit. Now, we substitute g =

f1 +( f2 − f1) sin2 θ so that lower limit g = f1

corresponds to θ = 0, and the upper limit
g = f implies

f = f1 + ( f2 − f1) sin2 Θ, (17)

where Θ is upper limit value of θ. Mak-
ing these substitutions together with dg =

2 ( f2 − f1) sinθ cos θ dθ on the right-hand
side of Eq. (16), simplifying the resulting
expression, and using the fact that left-hand
side equals η − η1, we finally obtain

η = η1 ±
√

2
f3 − f1

∫ Θ

θ

dθ√
1 − m sin2 θ

= η1 ±
√

2
f3 − f1

w (say). (18)

Here,

m =
f2 − f1

f3 − f1
, (19)

such that 0 ≤ m ≤ 1. Also,

w =
∫ Θ

θ

dθ√
1 − m sin2 θ

, (20)

is incomplete elliptic integral of first kind
with parameter m.

Now, we define a new pair of functions
corresponding to w:

sn w ≡ sn (w|m) = sin Θ, (21a)

cn w ≡ cn (w|m) = cos Θ, (21b)

These are, respectively, called the Jacobi el-
liptic sine (snoidal) and Jacobi elliptic cosine
(cnoidal) functions. Θ is usually referred to
as Jacobi amplitude.

Note that for m = 0, w =
∫ Θ

0 dθ = Θ, so
that

sn w ≡ sn (w|0) = sin Θ = sin w, (22a)

cn w ≡ cn (w|0) = cos Θ = cos w. (22b)

Obviously, for m = 0, which happens when
f2 merges with f1 from above, i.e., f2 → f+1 ,
the functions sn w and cn w are periodic sin
and cos functions, respectively.

On the other hand, for m = 1,

w =
∫ Θ

0

dθ√
1 − sin2 θ

=
∫ Θ

0
sec θdθ

= ln[tan Θ+ sec Θ]

= ln

1 + tan
(

Θ
2

)
1 − tan

(
Θ
2

)
 (23)

This, on simplification, yields

tan(
Θ
2
) = tanh(

w

2
) (24)

which, in turn, gives sin Θ = tanh w and
cos Θ = sech w. These imply that

sn w ≡ sn (w|1) = sin Θ = tanh w, (25a)

cn w ≡ cn (w|1) = cos Θ = sechw. (25b)

Thus, for m = 1, the elliptic functions
sn w and cn w are aperiodic tanh w and sech w,
respectively. Note that m = 1 if the zeros f2

and f3 of F( f ) coalesce to form a double zero
( f2 → f−3 as f2 < f3) but are distinct from f1.
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After this digression, we come back to
Eq. (17), replace sin2 Θ by 1 − cos2Θ, and get

f = f2 − ( f2 − f1) cos2 Θ. (26)

In view of Eq. (21b), this can be rewritten as

f = f2 − ( f2 − f1) cn2 (w|m) , (27)

where

w = ±(η − η1)/

√
2

f3 − f1
, (28)

from Eq. (18). Since cn is an even function,
we omit ± sign and express Eq. (27) as

f (η) = f2

− ( f2 − f1) cn2

(√
f3 − f1

2
{η − η1}

∣∣∣∣∣m
)

.

(29)

This is called cnoidal wave solution of the
KdV equation – generalization of the sinu-
soidal wave.

In the limit m → 0, which is achieved
when f2 → f+1 , we use Eq. (22b) for cn w and
then the double angle trigonometric iden-
tity cos2 w = 1

2(1 + cos 2w), and get f (η) in
terms of cos function with ( f2− f1)

2 as coef-
ficient. Thus, f (η) describes an oscillatory
cosine wave with amplitude ( f2− f1)

2 , which,
obviously, is quite small. It is found that the
wave is dispersive in nature. This is low am-
plitude linear wave limit of the cnoidal solu-
tion. However, we shall not go into its fur-
ther discussion.

Next, for the case m = 1, which is the
most nonlinear limit, we use Eq. (25b) for

cn w and put f2 = f3 into Eq. (29). Accord-
ingly, we have

f (η) = f3

− ( f3 − f1) sech2({
√

f3 − f1

2
} {η − η1}).

(30)

Now, from the definition sech y = 2
ey+e−y ,

we note that sech y = 1 for y = 0 and
equals zero for y → ±∞. Thus,

sech2({
√

f3− f1
2 } {η − η1}) =1 for η = η1 and

0 for η → ±∞. The corresponding values
of f (η) are f1 and f3, respectively. Since
f1 is necessarily negative and less than f3,
f (η) has minimum value f1 at η = η1, and
maximum value f3 for η → ±∞. In other
words, if we plot a graph of f (η) as func-
tion of η, this will be a wave profile with
depression (upside-down) having value f1

at η = η1, and depth f3 − f1. However,
as we are looking for a model to describe a
waveform above the water surface, we con-
sider − f (η) rather than f (η). Accordingly,
− f (η) represents a profile with − f 1 at η =

η1 as peak and − f3 as minimum value for
η → ±∞. Consequently, we can identify
− f 1 − (− f3) = f3 − f1 as amplitude a of the
wave. Thus, Eq. (30) can be written as

− f (η) = − f3 + a sech2{
√

a
2
(η − η1)}.

(31)
The velocity of this wave is given by

v = −2( f 1 + f2 + f3) = 2a − 6 f3, (32)

where we have used f2 = f3 and f3 − f1 = a
in Eq. (12). Furthermore,

η = x − vt = x + 6 f3t − 2at. (33)
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Note that v is directly proportional to ampli-
tude implying that the larger the amplitude
the higher the speed. Also, for v to be posi-
tive, the zero f3 must be less than a

3 .
Having obtained the solution, Eq. (31),

for Eq. (6), and using Eq. (33), we can write

−u (x, t) = − f3 + a sech2{
√

a
2
(x − vt − η1)}

= − f3 + a sech2{
√

a
2
(x + 6 f3t − 2at − η1)}.

(34)

This describes a wave of elevation having
nonperiodic bell-shaped profile of ampli-
tude a (> 3 f3), travelling with speed v =

2a − 6 f3, initial phase factor −
√ a

2 η1, and
− f3 as ambient or undisturbed or equilib-
rium level. The presence of a in the argu-
ment of sech in Eq. (34) shows that the
shape of the wave depends on amplitude
in a complicated manner, which, in turn,
implies that − u (x, t) represents a nonlin-
ear wave. From the first equality in Eq.
(34) it is found that − u (x, t) + f3 = a if
x = vt + η1. Obviously, the peak appears
at x = η1 for t = 0 implying that η1 can be
taken to be 0 by using the location of the
peak at t = 0 as reference for measuring x.
Furthermore, − u (x, t) + f3 = a/2 when

x± = vt + η1 +
√

2
a ln

(√
2 ± 1

)
. Taking

the distance between the points at which the
height of the wave above the ambient level
is half the amplitude, as width of the profile,
called full width at half maximum, we have
∆x ≡ x+ − x− =

√
2
a ln

√
2+1√
2−1

. Thus, width

of the profile is inversely proportional to
√

a.
Combining this result with the statement af-

ter Eq. (33), we note that the wave of eleva-
tion described by Eq. (34) is such that taller
the wave, narrower and faster it is. It is the
solitary wave discovered by Russell and its
plot is depicted in Fig. 2 for three values of
t. Note that profile of the wave is the same
for all the three t values shown here and has
∆x = 3.94.

As a follow up of the preceding dis-
cussion, suppose we launch two solitary
waves having different amplitudes such that
the one with smaller amplitude is leading.
The wave with higher amplitude will have
larger velocity so that as time passes it will
come closer to the other wave, bump into it
at some instant of time and ultimately over-
take it. The end-result will be that the two
waves pass through each other without los-
ing their identity, i.e., they come out of the
collision unscathed – a particle-like robust-
ness. In fact, this aspect was also observed
by Russell.

It may be mentioned that the actual so-
lution, Eq. (30), representing a wave of de-
pression rather than a wave of elevation, is
a consequence of the negative sign of the
nonlinear term in the standard form of the
KdV equation, which has been solved here.
Furthermore, the cnoidal wave solution, Eq.
(29), is not the only possible solution to the
KdV equation; other simple looking solu-
tions have also been found. Besides, solu-
tions leading to more than one soliton, have
also been obtained.

It is worth emphasizing that the disper-
sion term uxxx in Eq. (6) gives rise to ten-
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Figure 2: One-soliton solution of the KdV
equation given by Eq. (34) at t = 2.0 (black),
4.0 (red), and 7.0 (blue) for a = 0.4; v = 4.0,
η1= 0.

dency of flattening or spreading of the wave
profile, while the nonlinear term −6uux

makes it steep and cohesive. The precise bal-
ancing of these two tendencies leads to ‘no
change in the shape’ of the wave, i.e., the
soliton solution. The KdV equation has been
found to be very useful in modeling the dy-
namics of physical systems characterized by
mild dispersion and weak nonlinearity.

By convention, the word ‘soliton’ is
used for the wave profile with positive
displacement (i.e., an elevation) and the
envelope with negative displacement (i.e.,
a depression) is called an anti-soliton.
Thus, − u (x, t) given by Eq. (34) de-
fines a soliton, while u (x, t) = f3 −
a sech2(

√ a
2 {x + 6 f3t − 2at − η1}) is an anti-

soliton. When a soliton and corresponding
anti-soliton collide with each other, the net
displacement is zero and this is referred to

as annihilation of soliton − anti-soliton pair.
However, generally these pairs collide and
then separate.

5 Some Other Soliton-Bearing

Nonlinear Partial Differential

Equations

It has been pointed out in the preceding sec-
tion that the solution of the KdV equation
maintains its shape indefinitely because of
exact cancellation of the spreading or broad-
ening produced by the dispersive term and
the narrowing effects of the nonlinear term.
In fact, any NLPDE containing dispersive
and nonlinear terms counterbalancing detri-
mental effects of each other will have soli-
ton solution. Of course, these solitons can
be distinctly different from the bell-shaped
solitons of the KdV equation. Two such evo-
lution equations having more than one soli-
ton solution and finding wide range appli-
cations in physics, biology, and engineering,
together with relevant brief comments, are
listed below. While writing these NLDPEs,
the variables involved are taken to be prop-
erly rescaled. In fact, these equations are
more useful than the KdV equation, which
has been discussed in detail not because it
is the oldest but because it is the simplest in
nature.

5.1 Sine-Gordon Equation

This NLPDE reads

uxx − utt − sin u = 0, (35)
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with sin u as nonlinear term. The presence
of u as argument of sin implies that this
equation describes angular disturbance ex-
pressed in radians. It was originally put for-
ward by Bour in 1862 during the investiga-
tion of surfaces of constant negative curva-
ture in 3-dimensional space. Later, it was
rediscovered by Frenkel and Kontorova in
1939 in their seminal work on study of crys-
tal dislocations, which are defects or irreg-
ularities in the crystal structure along some
direction and can even be mobile. It was
in 1962 that Perring and Skyrme obtained
a 2-soliton solution for Eq. (35). Subse-
quently, 1- and 3- soliton solutions were also
obtained. This equation drew lot of atten-
tion in 1970s onwards as it was found to
be useful in explaining many physical phe-
nomena and is the simplest NLPDE in a
periodic medium. It is interesting to note
that the name ‘sine-Gordon equation’ (SGE
in short) has its origin in its resemblance to
the well-known Klein–Gordon equation for
a free particle in relativistic quantum me-
chanics, which reads ∑j=x,y,z ϕjj − ϕtt − ϕ =

0, in natural units m = c = ℏ = 1, and was
discovered in 1926. Of course, the Klein-
Gordon equation is a linear partial differ-
ential equation, which can be considered as
special case of the SGE obtained by retaining
only first term in the Taylor series expansion
of sin u.

One of the soliton solutions of Eq. (35)
is

u (x, t) = 4 tan−1

[
e
± x−αt−x0√

1−α2

]
, |α| < 1, (36)

where α is normalized velocity of propaga-
tion of the solitary wave. The initial position
x0 can be easily taken as 0. Note that for fi-
nite constant value of αt, u (x, t) in Eq. (36)
with positive exponent has values 0, π and
2π rad for x → −∞, x = αt and x → ∞,
respectively. On the other hand, the corre-
sponding values of u (x, t) with negative ex-
ponents are 2π, π and 0 rad. Thus, the solu-
tion given by Eq. (36) is monotonically vary-
ing function of x, and is such that as x in-
creases from −∞ to ∞ for fixed value of t, u
changes from 0 to 2π for positive exponent
and from 2π to 0 for the negative exponent.
The value of u in both the cases is π when
x = αt. This feature of the solution for the
SGE is interpreted as following. Eq. (36) rep-
resents a twist or kink having same sign as
that of the exponent. These two situations
define soliton and anti-soliton, respectively,
and are known as 2π-kink and − 2π-kink
(or antikink); Fig. 3. In the context of non-
linear optics, these are, respectively, referred
to as +2π pulse and −2π pulse.

It is worth mentioning that a soliton so-
lution is said to be topological if it has its
origin in topological constraints and a twist
with variation in the value of x is an exam-
ple of this situation. As such, the SGE kink is
an iconic one-dimensional topological soli-
ton while the Russell’s water wave soliton
is non-topological. In fact, the structure of
a system is changed after the passage of a
topological-soliton wave through this.

The soliton solutions of SGE and its
modified versions find numerous and in-
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Figure 3: A sketch of the analytic solution
u (x, t) as function of x for the Sine-Gordon
equation for α = 0.8, t = 2.0, and x0=0. The
black line represents a 2π – kink, while the
dash-dot red line depicts antikink. These
have value π rad at x = 1.6.

valuable applications in condensed mat-
ter physics, nonlinear optics, biophysics,
astrophysics, relativistic field theory, geo-
physics particularly seismic modeling, and
in the description of mechanical transmis-
sion lines.

5.2 Nonlinear Schrödinger Equation

In 1968, Zakharov while studying nonlin-
ear waves in the small amplitude approxi-
mation on the surface of a deep fluid intro-
duced a NLPDE that can be written as

iut + uxx ± |u|2u = 0 (37)

This equation is referred to as Nonlinear
Schrödinger equation (abbreviated as NLSE)
because it looks like the highly acclaimed

1-dimensional time-dependent Schrödinger
equation of non-relativistic quantum me-
chanics (i.e., ih̄ψt +

h̄2

2m ψxx − Vψ = 0), with
nonlinear term ±|u|2 corresponding to po-
tential V. Note that, the Schrödinger equa-
tion is a linear PDE and ψ(x, t) is wave-
function of the particle assumed to be spin-
less. Of course, generally, the derivation
of NLSE has nothing to do with quan-
tum mechanics. The exact analytic solution
of NLSE, obtained by Zakharov and Sha-
bat in 1972 by using the inverse-scattering
method, showed that these describe deep-
fluid wave-envelope solitons which mod-
ulate a periodic sinusoidal wave. These
findings were experimentally verified by
Yuen and Lake in 1975. A different soli-
tary wave solution to this equation was re-
ported by Ma in 1979, and a rational-cum-
oscillatory solution was presented by Pere-
grine in 1983. Note that ± |u|2 in the nonlin-
ear term in NLSE is a sort of self-interacting
quantity, wherein upper and lower signs,
respectively, represent repulsive and attrac-
tive self-interactions. In view of this feature,
Eq. (37) is also known as cubic Schrodinger
equation.

However, before proceeding further, it
may be pointed out that NLSE is a sim-
plified version of the equations used by
Ginzburg and Landau in 1950 in their study
of the macroscopic theory of superconduc-
tivity, and by Ginzburg and Pitaevskii in
1958 in the theory of superfluidity. Further-
more, in 1964, Chiao et al and Talanov em-
ployed similar equation while investigating
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the phenomenon of self-focusing of optical
beams and the conditions under which an
electromagnetic beam can propagate with-
out spreading in nonlinear media.

The soliton solution of Eq. (37), with +
sign for the nonlinear term, determined by
Zakharov and Shabat reads

u (x, t) = aei{ v
2 (x−vt)+bt }sech{ a(x − vt)√

2
}.

(38)
Here, the wave amplitude a, velocity v,
and real constant b are such that a2 =

2
(

b − v2

4

)
> 0. While writing this solu-

tion, the initial phase and the initial posi-
tion appearing in the exponential and the
sech terms have been assumed to be zero.
The exponential term leads to an oscillatory
component with amplitude dependent sech
term as the envelope profile so that the re-
sulting wave packet is a modulated one; Fig.
4. Such a solitary wave described by an en-
velope with an internal oscillation or pul-
sation, is called a breather. Sometimes, the
terms envelope soliton and intrinsic local-
ized modes are also used for this entity, par-
ticularly in nonlinear lattice dynamics. The
u (x, t) given by Eq. (38) represents a mov-
ing breather as it advances in space. In con-
trast, a breather solution has been obtained
for the SGE that does not move and, hence,
is referred to as a stationary breather.

In nonlinear optics, the breather solu-
tion that produces self-focusing of the car-
rier wave is known as bright soliton and the
one giving self-defocusing is called the dark
soliton.

It may be added that in addition to
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Figure 4: Profile of the breather solution
given by real part of Eq. (38) for a = 1.0, v =
15.0, t = 1.0, b = 56.75. The black line depict-
ing internal oscillations is confined within
the red-line envelope soliton.

continuous NLSE, soliton solutions have
also been found for the discrete nonlinear
Schrödinger equation

iun,t + un+1 + un−1 ± |un|2un = 0, (39)

and some of its generalizations leading
to proper elaboration of many interesting
properties of nonlinear lattice chains.

The models that are compliant with
NLSE and its different variants have played
an important role in the developments
in nonlinear optics (light waves), soft-
condensed matter physics particularly Bose-
Einstein condensation (matter waves), fluid
dynamics, plasma physics, etc. and con-
tinue to be valuable even now.
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6 Some Applications of Solitons

The concept of solitons, including their dif-
ferent cousins, as sophisticated mathemat-
ical constructs to explore nonlinear phe-
nomena has not only revolutionized re-
search in mathematics as well as mathe-
matical physics leading to advent of many
new ideas and techniques, but has also been
fruitfully exploited in developing numerous
practical applications in different branches
of science and engineering. Besides the
three NLPDEs discussed in Sections 4 and 5,
many other equations such as modified KdV
equation, Benjamin-Ono equation, Boussi-
nesq equation, Davydov’s equations, etc.
have been found to be of immense value.
Most of different soliton bearing NLPDEs
have been solved analytically as well as
by numerical methods. In this section, we
briefly describe some typical problems in
various fields where solitons with their dif-
ferent manifestations have been employed,
and we certainly do not claim exhaustive-
ness of the list. Also, the topics dealt with
are being listed in alphabetical order.

1. Astrophysics and Cosmology

(a) Electrostatic solitary waves have
been experimentally observed in
astrophysical plasmas such as the
sun, the solar wind, lunar wake,
the planetary magnetospheres,
etc. Also, many theoretical models
have been proposed to interpret
the observed characteristics of
these waves.

(b) It has been shown that low di-
mensional black holes can be real-
ized as solitons of the sine Gordon
equation. Furthermore, it has been
ferreted out that some field the-
oretic models for studying black
holes also have soliton solutions
indicating their intimate relation-
ship.

(c) The Great Red Spot of Jupiter
(GRS), which is slightly oval and
nearly 16,000 km wide, is an anti-
cyclonic vortex that has persisted
for hundreds of years of con-
tinuous observation despite the
highly turbulent atmosphere on
the planet. Two- and three- dimen-
sional soliton models were put for-
ward for this in 1980s, wherein the
latter were found to be in better
agreement with the then available
data. However, some scientists be-
lieve that these models do not cap-
ture every minute detail of the GRS
as soliton.

(d) The solutions of some cosmolog-
ical models with the cosmologi-
cal constant have been found to
exhibit the existence of solitary
waves under specific conditions
besides the travelling wave peri-
odic solutions that resemble the
gravito-static waves.

2. Biological Systems

(a) The model developed for energy
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transfer and energy coupling in
hydrogen-bonded spines that span
the length of protein α-helices and
stabilize it, encompasses the so
called Davydov soliton. This soli-
ton represents a state composed
of an excitation of amide-I and its
associated hydrogen-bond distor-
tion. In fact, the relevant conjec-
tures have been supported by dif-
ferent spectroscopic studies of pro-
teins.

(b) The concept of Davydov soliton
has also been used to describe a
local conformational change of the
deoxyribonucleic acid (DNA) α-
helix, which too has been con-
firmed by experiments.

(c) Generation of force in the sliding
filament model of muscular con-
traction has also been attributed to
Davydov solitons.

(d) The intrinsic localized modes,
which arise from the anharmonic-
ity of interatomic potentials, have
been observed in proteins and
identified as solitons localized in
both space and time.

(e) The studies pertaining to electron
/ proton transport in α - helix sec-
tions of proteins, and the signal as
well as energy propagation in lipid
membranes have brought out the
involvement of soliton-like mecha-
nisms.

(f) Solitons obtained as solutions for
the Peyrard–Bishop model (and
its extended versions) put for-
ward to understand the dynam-
ics of DNA, explain important fea-
tures like local opening (i.e., sep-
aration of double-stranded DNA
into two single strands) and DNA
transcription. A similar soliton-
bearing model has also been de-
veloped to elucidate the long-
distance charge transport in DNA
molecule.

(g) The behaviour of many biopoly-
mers has been explained in terms
of breathers and this aspect too has
been investigated experimentally.

(h) The concept of solitary waves
has been recently used in neuro-
science as an alternative to the
earlier accepted ionic-hypothesis
based Hodgkin–Huxley model to
describe the propagation of signals
along the excitable cells such as
neurons and cardiac myocytes.

(i) Soliton-related mechanisms have
been reported to play an impor-
tant role in the eukaryotic multicel-
lular movements during morpho-
genesis and development.

(j) It has been proposed that the blood
pressure pulse is an outcome of a
KdV soliton produced in the heart
and its propagation in blood ves-
sels.
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3. Condensed Matter Physics

(a) The phase-slip centres in the
charge density wave condensate
formed during phase transitions
in which the electron density de-
velops a small periodic distortion
accompanied by a corresponding
modulation of the ion equilibrium
position, are solitons. These soli-
tons are found in one-dimensional
metals and organic conductors.

(b) Solitons occur in structural
phase transitions in quasi-one-
dimensional ferroelectrics.

(c) The flipping of spins in mag-
netic phase transitions in quasi-
one-dimensional ferromagnets as
well as antiferromagnets is associ-
ated with the kink solitons.

(d) Solitons have been found to be
instrumental in polymerization
mechanism and creation of bond
defects in polymers.

(e) The phenomena of transport
and existence of defects in two-
dimensional Coulomb gases and
two-dimensional spin systems
(i.e., thin films) are understood in
terms of solitons.

(f) A domain wall or a Bloch wall
in ferromagnets, ferrimagnets, fer-
roelectrics, etc. is an interface
that separates magnetic or electric
polarization domains of different

types. These walls are exact solu-
tions to SGE, NLSE, and their mod-
ifications and, hence, these have
been identified as relevant soli-
tons. These aspects have been ex-
perimentally verified by neutron
scattering, NMR, and ESR studies
in many materials.

(g) Starting from the Frenkel-
Kontorova model with on-site
periodic potential, mentioned
earlier in Section 5.1, the atomistic
theories of crystal dislocations
have been generalized to in-
clude physically more relevant
non-sinusoidal and anharmonic
interactions. Solitons, particularly
kinks, have been found to play
an important role in all these
models and have been confirmed
in experimental measurements.

(h) Liquid crystals (which are used
in display devices like televi-
sions, computer monitors, laptop
screens, calculators, etc,) are self-
organized anisotropic fluids that
are thermodynamically intermedi-
ate between the isotropic liquid
and the crystalline solid, showing
the fluidity of liquids and the or-
der of crystals. Thus, these are
mesophase entities. Being non-
linear materials, these have been
widely used for creation and de-
scription of various types of soli-
tons since 1968. The associated as-
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pects have led to new applications
of the liquid crystals.

(i) Solitons have been experimen-
tally observed in thin superfluid
4He films (a few atomic lay-
ers thick) adsorbed on solid sub-
strates (two-dimensional system)
as well as bulk superfluid 4He
(three-dimensional quantum ma-
terial) and have been theoretically
expounded using KdV equation
and still better by employing phe-
nomenological modeling based on
time-dependent density functional
theory.

(j) Different types of solitons have
also been observed in ultracold su-
perfluid 3He phases in the absence
as well as presence of magnetic
field (magnetic solitons). These
have been explained theoretically
using an NLSE like equation.

(k) An arrangement or device ob-
tained by sandwiching a thin
layer of a non-superconducting
material (up to about 3 nm thick
insulator or a few µm thick non-
superconducting metal) between
two layers of superconducting
material, is known as a Joseph-
son junction. It has a unique
and important feature that a dc
(supercurrent) can pass through
the junction / barrier from one
superconductor to the other even
in the absence of an applied volt-

age and a sinusoidal ac current is
generated when a fixed voltage
is applied across it. The former
is a consequence of quantum
tunneling of Cooper pairs (pairs of
electrons with opposite momenta
and spins loosely bound at very
low-temperatures due to electron-
lattice interactions) across the
nonconducting barrier and the lat-
ter makes it a nonlinear oscillator.
These junctions find applications
in quantum-mechanical circuits
such as superconducting quantum
interference devices (SQUIDs),
superconducting qubits, and
rapid signal flux quantum digital
devices. The dynamics of the
Josephson junction is reasonably
well described by a perturbed
SGE, which makes it a system
for the study of solitons and phe-
nomena associated with these. In
fact, discrete breathers have been
observed in arrays of Josephson
junctions, and the solitons in the
junctions which are much longer
than characteristic Josephson
penetration depth (which is of the
order 1 – 1000 µm), are known
as fluxons because they contain
one quantum of magnetic flux
(h/2e = 2.07x10-15 Wb; here h is
Planck’s constant and e is charge
of an electron).

(l) The cumulation of a macroscopic
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fraction of noninteracting identical
boson particles (the entities hav-
ing integer spin, which is actu-
ally an integer multiple of ℏ =

h/2π, and is described by sym-
metric wavefunction) in the low-
est energy or the ground state in a
system under appropriate charac-
teristic conditions of temperature,
number density, etc. is known as
Bose-Einstein (BE) condensation.
It represents a phase transition to
a state of matter in which a good
number of constituents of the sys-
tem suddenly coalesce into a sin-
gle coherent quantum mechanical
entity that can be described by
a wavefunction on nearly macro-
scopic scale. The condensate ap-
pears as a sharp peak in both po-
sition and momentum space. The
macroscopic dynamics of BE con-
densates near 0 K is generally
modeled by a 3-dimensional ver-
sion of NLSE with a term for the
trap potential and is called the
Gross–Pitaevskii equation. The so-
lutions of this and other similar
equations, lead to solitons of dif-
ferent types which have been ob-
served experimentally as well. Be-
sides, investigations on manipu-
lating the properties of solitons in
the BE condensates via nonlinear-
ity management have also been
carried out.

4. Engineering

(a) Mathematical and computational
studies of a variety of problems
in theoretical aerodynamics have
shown that in some situations,
solitons can lead to chaotic motion.

(b) The use of electrical components
with nonlinear permittivity and
permeability makes a transmission
line to be nonlinear. In fact, such
transmission lines (constructed
with easily available components)
constitute reasonably simple and
low-cost experimental devices for
investigating various aspects of
nonlinear waves. These properly
designed networks have been
shown to produce (electrical)
soliton pulses over a wide range
of frequencies and find applica-
tions in wide band focusing and
shaping of signals, and in instru-
mentation for microwave systems,
in high-speed sampling oscillo-
scopes, and for data transmission
in high-speed digital circuits, etc.

(c) A structure such as a rod or a pile
of plates with rectangular or circu-
lar cross-section made from some
metal, polymeric materials, etc.
that propagates elastic waves with
minimal loss of energy by restrict-
ing their transmission along its
length, is called an elastic or a solid
waveguide. Such waveguides pro-
vided with piezoelectric transduc-
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ers are used for measurement of
strain, pressure, and temperature.
In addition, these waveguides find
applications in energy harvesting,
vibration control, health monitor-
ing, and wave steering for actua-
tion. If the nonlinearity produced
by properties of the constituent
material and by the strain is com-
pensated by the spatial dispersion
caused by the finite transverse size
of the waveguide, then longitudi-
nal density solitary waves can be
generated in it. These are gener-
ally described by Boussinesq-type
NLPDE of elasto-dynamics and
have been observed experimen-
tally. These so-called strain or bulk
solitons represent a powerful local-
ized wave that can transport elas-
tic energy over reasonably large
distances with negligible losses.

(d) Granular crystals are nonlinear tai-
lored metamaterials obtained from
tight packing of macroscopic solid
grains or particles like ball bear-
ings made of a metal or an al-
loy or bits of polymers such as
nylon, teflon, delrin, etc. (rather
than atoms or molecules) that in-
teract elastically. Like atoms in
a crystal, the particles in a gran-
ular crystal can also be arranged
in one-, two-, or three-dimensional
lattices. The freedom to choose
constituent particles with different

masses, sizes, material properties,
and geometries, and possibility to
arrange these in a variety of config-
urations in a lattice, make the gran-
ular crystals highly tunable even
in respect of the extent of nonlin-
earity. The dynamical description
of these fabricated crystals brings
out existence of traveling solitons
as well as discrete breathers in
these, which have been observed
experimentally. These aspects, in
turn, have made these engineered
or manipulated materials useful as
the shock-absorbers in armor and
sports helmets; for sound-focusing
devices, acoustic switches, acous-
tic logic elements; for mechanical
vibrational energy harvesting sys-
tems; and for converting mechan-
ical vibrations into electrical cur-
rent that could drive small sensors
or transmitters.

(e) The micro-electromechanical and
nano-electromechanical systems,
generally made from materi-
als like carbon nanotubes and
graphene, are artificial devices
that combine electrical and me-
chanical processes at micro and
nano scale, respectively. These
find applications in automobiles,
accelerometers, aerospace sys-
tems, sensors for environmental
monitoring, defence systems,
biomedical diagnostics, medical
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devices, signal processing, wire-
less communications, etc. Studies
pertaining to dynamics of many
such systems, particularly those
comprising arrays of nonlinear
oscillators, have established the
existence of discrete breathers in
these.

5. Hydrodynamics and Geophysics

(a) The discovery of ‘great wave of
translation’ by Russell in shallow
water and its theoretical model-
ing by KdV equation, have mo-
tivated many scientists to study
multifarious properties of shallow-
water solitary waves in the labora-
tory. A variety of wave-tank exper-
iments have been performed to in-
vestigate various aspects of these
waves, including different types
of collisions between solitons, and
these continue to be of interest
even now. Generally, the experi-
mental results exhibit good agree-
ment with relevant theoretical pre-
dictions. In addition, it is well
recognized that various properties
of shallow-water waves near the
beaches are successfully explained
by the KdV equation.

(b) The surface waves observed in
deep water have been identified
as envelope solitary waves, whose
theory was developed by Za-
kharov in terms of an NLPDE simi-

lar to the NLSE. These waves have
also been investigated experimen-
tally using large water tanks.

(c) The soliton solutions of the KdV
as well as the Benjamin-Ono equa-
tions have been used to de-
scribe internal gravity waves in
the ocean, which are large am-
plitude waves travelling at low
speed and originate from density
differences caused by variations in
temperature and saline concentra-
tion. These have been observed
and painstakingly studied in many
seas by oceanographers.

(d) The seemingly spontaneous and
extremely large rogue or monster
waves too have been modelled as
solitary waves.

(e) It has been argued that strong
velocity-dependence of amplitude
of a solitary wave disturbance
on the surface of water in an
ocean created by an underwater
earthquake, volcanic eruption, etc.
makes its amplitude larger as the
wave advances towards a beach. If
the wave energy is quite high, then
amplitude becomes so large that
the wave breaks down into numer-
ous waves of very large width (few
hundred kilometers) and small
amplitude (1 meter or so) as it
reaches the beach. The catastro-
phe so created at the beach results
in devastating tsunamis and hurri-
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canes.

(f) Because of resemblance of some
mountain ranges and layer dis-
tribution in some sedimentary
rocks with envelope wave pack-
ets, NLPDEs based mathematical
models have been developed to
show that geo-solitons may have
played an important role in their
formation.

6. Nonlinear Optics

Nonlinear optics is the branch of op-
tics that deals with the behaviour of
light in the materials in which the elec-
tric polarization produced by the elec-
tric field of the light passing through it
varies as higher powers of the electric
field strength, i.e. nonlinearly, partic-
ularly when the light intensity is high.
When a highly intense beam of laser ra-
diation propagates through a material
like silica-based glass, lithium niobate,
etc., additional phase shift (called self-
phase modulation) is introduced due
to intensity dependent refractive index
(the Kerr effect). This nonlinear phase
shift in the pulse leads to its shrinkage
in contrast with spreading produced by
dispersion. If these two opposing ef-
fects cancel each other, we get tempo-
ral optical solitons. Besides temporal
optical solitons, spatial optical solitons
have also been found to exist in many
nonlinear media. When an intense
light beam passes through such bulk

materials along, say, x – direction, it
may undergo diffraction along the two
transverse directions. If the broaden-
ing produced by diffraction is counter-
balanced by the narrowing caused by
the nonlinearity associated with inten-
sity dependent refractive index, spa-
tial optical solitons are obtained. In
addition to the temporal and spatial
solitons, spatiotemporal optical solitons
(where both the diffraction and disper-
sion effects are simultaneously compen-
sated by nonlinearity) have also been
created in some nonlinear optical ma-
terials. In a nutshell, an optical soliton
refers to a situation where light beam
or pulse (self-trapped in time or space
or both) travels through a nonlinear op-
tical material without any change in
its profile and velocity. These solitons
are mathematically described by NLSE
(continuous as well as discrete) and are
found in photonic crystal fibres, pho-
torefractive materials, photopolymers,
etc.

(a) The idea of temporal soliton trans-
mission in glass fibre waveguide
(or an optical fibre) was put forth
by Hasegawa and Tappert in 1973
on the basis of theoretical and nu-
merical calculations, and its exper-
imental observation in silica-glass
fibre was reported by Mollenauer
et al in 1980. When laser pulses
are used for communication em-
ploying optical fibre, the solitons
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involved are sometimes referred
to as fibre-solitons. Presently, it
is possible to propagate solitons
without degradation over thou-
sands of kilometers. Such a com-
munication has zero loss and no
dispersion, which explains the fo-
cus of a great research effort to un-
derstand the dynamics of soliton
transmission in optical fibres. Fur-
thermore, it brings out the impor-
tance of optical fibre communica-
tion in information technology and
in the long-distance, high band-
width communication – the well-
known internet and the world-
wide web.

(b) The spatial solitons in photorefrac-
tive polymers make these highly
efficient optical elements for trans-
mission of data and for control-
ling coherent radiation in various
electro-optical and optical commu-
nication devices.

(c) Ultra-short pulse solitons are being
used in the field of optical spec-
troscopy and medicine.

(d) Optical solitons in birefringent op-
tical fibres are used for optical
switching.

(e) The fabrication of materials with
extremely strong nonlinear effect
has made it possible to create op-
tical solitons even with very low
laser powers. These find applica-
tions in optical information storage

of large amount of data, all-optical
switches, and significantly faster
optical systems than any known
electronic devices. These concepts
form essential basis of the possible
optical digital computer system or
the photonic computer with soli-
tons as bits.

(f) Light or optical bullets which are
three-dimensional localized pulses
of electromagnetic energy and
have been observed in arrange-
ments like array of silica glass
waveguides, sapphire samples,
plasmas, etc., are examples of
spatiotemporal solitons. However,
these lose energy during interac-
tions / collisions implying that
these are not solitons in the strict
sense of the term.

7. Nuclear Physics

(a) Topological solitons have been
found to describe reasonably well
some properties of nuclei, includ-
ing prediction of binding energies
to the correct nuclear physics level.
This aspect has been found to have
substantial impact on the stud-
ies pertaining to nuclear matter in
neutron stars and in nuclear fu-
sion.

(b) Nontopological soliton models
based on simple phenomenologi-
cal field theories have been used
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to incorporate the quark structure
of hadrons in nuclear physics.

(c) It has been shown that the velocity
dependent terms in the nucleon-
nucleon potential lead to forma-
tion of solitons in nuclear matter,
which play role in nuclear multi-
fragmentation reactions.

8. Plasma Physics

Plasma physics deals with the study of
matter consisting of a large number of
charged particles – ions and / or elec-
trons. The presence of inter-particle
coulomb interaction makes plasmas a
nonlinear system and, as such, these of-
fer a good testing ground for the study
of solitons.

(a) The KdV and some other similar
NLPDEs have been used to de-
scribe the local charge density re-
flecting the local departure of the
charge from neutrality in the plas-
mas, and, thus, establishing the
presence of travelling solitons in
these.

(b) Ion-acoustic solitary waves have
been theoretically and experi-
mentally studied in magnetized
plasma.

(c) The Alfvén waves, observed in
plasmas on the earth and in the
space, are low-frequency travel-
ling oscillations of the ions caused
by the interaction of the magnetic

fields and electric currents within
the plasma. These magneto-
hydrodynamic waves were among
the first to be modeled using idea
of solitons.

(d) Dusty plasmas, which contain
small suspended particles, have
been modeled using nonlinear os-
cillator chains, showing the exis-
tence of discrete breathers in these.

(e) It is well known that space de-
bris objects, whose number in
earth’s orbit is estimated to be few
hundred million, pose immense
threat to the earth-orbiting satel-
lites. Also, these objects get elec-
trically charged due to their ex-
posure to the ionospheric plasma
environment. Some recent ana-
lytical, computational, and exper-
imental investigations have shown
that charged objects moving with
high speed through a plasma lead
to generation of plasma density
solitons. Accordingly, depending
on its size, charge and velocity, de-
bris object will produce solitons,
which can be detected by fixing
simple instruments on the space-
craft.

9. Quantum Mechanics, Elementary Parti-
cle Physics, and Field Theory

(a) With a view to develop a classi-
cal interpretation of quantum me-
chanics, Bohm and others treated
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quantum processes as stochas-
tic processes. This approach
was subsequently used to de-
rive a nonlinear relativistic Klein-
Gordon equation yielding soliton
solutions, which follow the aver-
age de Broglie-Bohm trajectories
analogous to the linear solutions
of the Schrödinger and the Klein-
Gordon equations. These ideas
have been extended to show that
even photon can be represented
as a soliton. A relationship be-
tween the electromagnetic ampli-
tude of this soliton and photon en-
ergy or frequency has been estab-
lished. Also, it has been proved
that the concept of photon-soliton
is in conformity with the famil-
iar interactions in the photoelectric
and Compton effects.

(b) Recall that solitons are confine-
ment of energy of the wave-
field, propagate without change in
shape, collide like particles, and a
soliton-antisoliton pair may get an-
nihilated. In view of these facts,
it was conjectured that if an ap-
propriate system of nonlinear field
equations admits soliton-solutions
then these may represent elemen-
tary particles. As such, ‘bags’ and
‘lumps’ in quantum fields are de-
scribed in terms of solitons. How-
ever, many of these issues are still
being debated [4].

(c) The instanton solutions of Yang-
Mills field equations used for
unifying electromagnetic and
weak forces are soliton-like be-
cause these are localized in space
as well as time.

(d) In order to explain the stability
of protons, neutrons, and mesons,
Skyrme (1961) developed a model
in which these elementary par-
ticles could be treated as topo-
logical defect solitons in a quan-
tum field. This stable field con-
figuration with special topological
properties came to be known as
skyrmion. However, this idea did
not find much ground in particle
physics even though it accounted
for some low-energy properties
of the nuclear particles. Inter-
estingly, skyrmion-like topologies
have been found to exist in many
condensed matter systems such
as some liquid crystal phases, BE
condensates, quantum Hall sys-
tems, and helimagnetic materials
in which neighbouring magnetic
moments arrange themselves in
a helical or spiral pattern. In
the last category of materials ex-
emplified by FeGe, Tb, Dy, etc.
these form domains as small as
1 nm and involve extremely low
energy. These features make mag-
netic skyrmions a good option for
developing very efficient memory-
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storage and other spintronics de-
vices. In fact, the activities in this
direction constitute the emerging
field called skyrmionics.

(e) The Einstein field equation, which
constitutes the backbone of the
general theory of relativity, de-
scribes gravity to be a consequence
of spacetime being curved by both
mass and energy. It is, in fact, a
set of ten NLPDEs in four indepen-
dent space and time variables, ex-
pressed as a tensor equation. Non-
linearity of the equation leads to
a solution, which has soliton char-
acteristics (confined to a finite re-
gion of spacetime and has a fi-
nite energy) and is called the grav-
itational soliton. It can be sep-
arated into two kinds - a soliton
of the vacuum Einstein field equa-
tion and a soliton of the Einstein–
Maxwell equations. Even black
holes, the main sources of gravi-
tational radiation, are two-soliton
solutions of Einstein’s equations in
vacuum.

7 Epilogue

It is indeed very interesting to note that
solitons occur over a wide range of scales.
On one side, these have been found to be
extremely useful in understanding various
phenomena at the nuclear and atomic level,
though their experimental manifestation is

not that straightforward. On the other hand,
these have been extensively observed and
manipulated in the macroworld. The linear
dimension of nuclear solitons is few femto-
meter (10-15 m), of the optical solitons is few
nm (10-9 m), of the solitons observed on the
surfaces of water bodies is few cm to few
meters or even few hundred kilometers, and
of the GRS solitons is thousands of kilome-
ters. Solitons associated with BE conden-
sates are observed at ultra-low temperatures
of 10-7 K or so, the hydrodynamic solitons
occur at around 300 K, the temperature over
the GRS is about 1600 K, and core tempera-
ture of the sun is about 107 K.

The distinctive behaviour of Josephson
junctions including magnetic flux quanti-
zation, superfluidity of helium, and Bose-
Einstein condensation (discussed under
condensed matter physics in Section 6) are
manifestations of quantum effects at macro-
scopic level. All of these have their origin
in the collective coherent behaviour of con-
stituent quantum particles with nonlinear
interactions, which balance the dispersive
effect of kinetic energy. As mentioned ear-
lier also different species of solitons (which
are coherent structures created by perfect
balance between effects of nonlinearity and
dispersion) have not only been predicted in
these systems using relevant NLPDEs (like
NLSE, etc.) but have also been observed
experimentally. Thus, the above-mentioned
systems are nonlinear quantum phenom-
ena where the Hamiltonian is a nonlinear
function of the wavefunction of the micro-
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scopic entities involved. It has been argued
(see, e.g. [4]) that nonlinear quantum the-
ory based on NLPDEs with solitons as in-
tegral part be developed in proper perspec-
tive to describe such systems and to investi-
gate related features in detail. It can be said
without any exaggeration that this develop-
ment will act as stimulant for a new surge
of soliton-oriented activities in condensed
matter physics, polymer science, and bio-
physics.

Lastly, to conclude the article, we quote
Kasman [9] “solitons have become (vital)
tools of scientists and engineers for under-
standing the universe”.
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