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Abstract

At the first face-off with Tensors, they appear to

be scary and formidable. Even Einstein had to

struggle a lot to master it. But once well versed

with the subject Einstein used it aptly in the

formulation of his masterpiece General Theory

of Relativity (GTR), whose fame in due time

made the subject of tensors synonymous with

GTR in Physics. Earlier, however, with their

little use in other areas of physics, students not

opting for GTR could turn a blind eye to them.

But since GTR much water has flown down the

tensor pipeline, and the subject has evolved a lot

with numerous applications not only in Physics

and Mathematics but in fields as varied as

Computer Science, Chemistry, Geology, Statis-

tics, Medicine, Engineering, etc. In Physics,

it is now regarded as an indispensable tool

for the description of all the four fundamental

interactions. Further, an operation on tensors

called tensor product is a pre-requisite for the

description of quantum states when two or more

quantum systems get together, and also, the

entangled states in their joint vector space need

tensors for their expression. Very significantly,

the fifth aspect of tensors, apart from its ability

to represent invariance, anisotropicity, many

quantum systems states and entanglement, is

the capacity for large data storage, which is an

artifact of the fact that high-rank tensors can

be effectively represented by multi-dimensional

hyper matrices. This feature of tensors has

come to great advantage in Computer Science,

where it is utilised for organising or storing large

data and data mining with bearing on machine

learning, deep learning, tensor imaging, face

recognition, computer vision, etc. This article

is a modest attempt (as the subject is deep and

profound and cannot be justified in an article

of over a dozen pages) to make accessible the

features of tensors and their significance to the

undergraduate students. The goal here is not

to provide the students a working knowledge of

tensors but to entice them by showing them the

wonderful world of tensors so that they learn it

on their own.
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1 Tensors: Etymology, Origin and

Development

It appears that the English word Tensor,
which owes its origin to the Latin word Ten-
sus meaning Tension, has an influence on
its import. Box 1 quotes a few tensor anec-
dotes that testify to tensor’s reputation or
notoriety for being daunting. Incidentally,
the first tensor used in physics has a close
connotation with its meaning, as it is none
other than the famous stress tensor. A ten-
sorial expression, represented by some sym-
bols adorned with multiple indices in sub-
script and superscript fashion, projects a
frightening sight to anyone who wants to
comprehend its meaning. In case the sym-
bol appears pleasing to some gutsy person
and emboldens him/her to read the mod-
ern highly abstract definition ‘A tensor is a
binary covariant functor [1] that represents a so-
lution for a co-universal mapping problem on the
category [2] of vector spaces over a field,’ will
certainly spin his/her head. This no doubt
looks quite intractable at the first sight. But
a little familiarity with tensors makes one re-
gardful of how important a tool it is to ex-
press equations of physics, notwithstanding
the other important applications which the
tensors lend themselves to.

The word ‘tensor’ was introduced by
William Rowan Hamilton (1805–1865), ini-
tially to describe something different from
what is now meant by a tensor (namely,
the norm operation in a certain type of al-
gebraic system now known as Clifford alge-

Figure 1: Few Tensor Progenitors Photographs
with their names.

bra). The contemporary usage was intro-
duced by Woldemar Voigt around 1898. The
concept of tensors has its origin in the devel-
opment of differential geometry by mathe-
matical stalwarts no less than Carl Friedrich
Gauss (1777-1855) and Bernhard Riemann
(1826-1866). Later, Elwin Bruno Christof-
fel’s (1829-1900) work in differential geome-
try, particularly the connection formulae ob-
tained by him to express covariant deriva-
tives, paved the way for tensor calculus.
Gregorio Ricci-Curbastro (1853-1925) and
his Student Tullio Levi-Civita (1873–1941)
generalized Christoffel’s ideas and devel-
oped them further to institute the concept
of tensors and absolute differential calculus.
Figure 1 contains photographs with names
printed below each of a few of the progen-
itors of the subject of tensors. The abso-
lute differential calculus, later known as ten-
sor calculus, forms the mathematical basis of
the general theory of relativity, which pop-
ularized the subject by leaps and bounds.
From 1920 onwards, tensor concepts pro-
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gressed to newer, more abstract areas that is
from differential geometry to topological al-
gebra, Topological algebra [3] and more re-
cently, to category theory. It won’t be an
exaggeration to say that the study of ten-
sors is a study in the progress of mathemati-
cal thought. The stated tensor definitions in
Box 2 allude to this evolution of mathemati-
cal ideas.

BOX 1. Tensor Anecdotes.

2 Tensor Applications

These days abundance of literature on ten-
sors being copiously produced by mathe-
maticians, physicists, computer scientists,
statisticians and engineers as well as experts
in other scientific fields signify to the im-
portance that tensors hold in Science and
Engineering. As mentioned above, few
decades before tensors were almost synony-
mous with General Relativity- except for a

minor use in all other branches of Physics.
The realization that gauge fields are geo-
metrical objects has made the geometrical
(coordinate-independent) aspect of tensors
become more and more significant in the
study of all interactions as all fundamental
interactions including gravity are deemed to
be different manifestations of the same su-
per force.
In recent decades, relativistic quantum field
theories, gauge field theories, and various
unified field theories have all used tensor
algebra analysis exhaustively. Also tensor
products naturally arise in quantum me-
chanics as a description of many particle
state space because they can take into ac-
count the superposition aspect of quantum
states when separate quantum systems are
brought together. Further the fast burgeon-
ing field of quantum computation hinges on
the concept of entangled states which need
tensors for their formulation. In mathemat-
ics tensors are used in Differential Geom-
etry, Differential Equations, Spectral The-
ory, Continuum Mechanics, Fluid Dynam-
ics, Multilinear systems in Numerical Alge-
bra, Tensor complementarity problems, Op-
timization, etc.
One of the most important applications of
tensors is to tensor decomposition that is
presently used for applications in numer-
ous varying fields. Though tensor decom-
position methods have appeared as early
as 1927, but they remained unused in com-
puter science field as late as the end of 20th
century. An early use of tensor decompo-
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sition was sought in the area of psychomet-
rics which deals with intelligence evaluation
and other personality characteristics. But
in the last two decades, a growing comput-
ing capacity and an increasing familiarity
with multilinear algebra have led tensors to
emerge in a big way in the earlier untouched
areas of statistics, data science and machine
learning. In data science, real data are often
in high dimensions with multiple aspects
and tensors provide elegant theory and al-
gorithms for web data mining, face recogni-
tion softwares, higher order diffusion tensor
imaging in medical imaging, psychometrics,
chemometrics, neuroscience, graph analy-
sis, fluorescence spectroscopy, geophysics,
etc. In each case, data is compiled into a
multi-way array or a hyper matrix and the
essential features of the data are isolated by
decomposing the corresponding tensor into
sum of rank one tensors.

BOX 2. Qualitative definitions of Tensors.

3 Approaching Tensors

In physics any quantity that has both magni-
tude and direction is a vector. Displacement,
velocity, acceleration, and force are few ex-
amples of mechanical vectors. In three di-
mensional Cartesian space, a vector is rep-
resented by its x, y, z components. If we
multiply this vector by a scalar quantity, all
the three components of the vector scale up
proportionately or, in other words, the vec-
tor changes its magnitude without changing
its direction.
What if we want to create a new vector
with a different magnitude as well as di-
rection than the initial vector? Multiplica-
tion by a scalar only changes the magni-
tude. Taking the inner product with an-
other vector turns it into a scalar, and in
this way, the direction too is lost. Form-
ing the cross product with another vector,
though it changes the direction, always does
so in the normal direction. So, for chang-
ing direction in an arbitrary way, we either
take the outer product of a vector with an-
other vector and obtain a second-rank ten-
sor having a magnitude and two directions,
or multiply the initial vector by a new math-
ematical entity called a tensor and obtain a
tensor of higher rank, having a magnitude
and multiple directions. Table 1 presents the
resultant quantities obtained from various
multiplicative products of scalars and vec-
tors, along with their examples in physics in
three-dimensional Cartesian space.
A physical example of a tensor of rank two
is force acting on a plane surface area. In
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this case, both the magnitude and direc-
tion of the force, and the size and orien-
tation of the area, will determine the to-
tal effect. The size of the area and its ori-
entation can be represented uniquely by a
vector whose magnitude is proportional to
the area size and whose direction is nor-
mal to the surface. Therefore, the effect of
the force upon the surface depends on two
vectors, the force vector and the area vec-
tor, and hence is described by a tensor of
second rank. Second-rank tensors appear
in physics when physical quantities exhibit
anisotropic behaviour in the system, often in
a “stimulus-response” mode, as discussed
in the next section. In general, a second-
order tensor, which takes in a vector of some
magnitude and direction, returns another
vector of a different magnitude and direc-
tion. If we take into consideration the com-
ponents of force, each of the components
acting on each component of the area vector,
then there are nine terms altogether, which
can succinctly be arranged in matrix of or-
der 3 representing the total stress. So ten-
sors can thus be represented by arrays, and
manipulated in a manner reminiscent of ma-
trix manipulation. The Figure 2 shows ten-
sors of zero, first, second and third rank as
dimensional arrays or matrices. The single
and multi-dimensional different stress com-
ponents and Figure 3 exhibits the distress
tensor of a point in 3D space.

Figure 2: Tensors as multi-dimensional (Hyper-
matrix) array of numbers.

3.1 Tensor Definition

Tensors have been defined in several equiv-
alent ways. These definitions can be broadly
classified into two main types. The first type
is traditional and defines tensors using co-
ordinate transformation properties of com-
ponents of tensors, whereas the second type
is more modern and abstract and defines
tensors in their component free formulation.
We will briefly discuss only the first defini-
tion, due to constraints of the article size, but
encourage the reader to learn about the sec-
ond type in the suggested readings.

As remarked, tensors are usually intro-

Figure 3: Stress tensor components in 3D space.

duced in terms of tensor components trans-
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formation rule. A tensor consists of tensor
components and an underlying basis vec-
tors of the coordinate system in which it
is referred to. For the ease of understand-
ing we consider the simplest case of or-
thonormal Cartesian coordinate system in
Euclidean space. In this system the basis
unit vectors are constant and so it suffices
to give the components of a tensor. An-
other thing is that the transformations be-
tween Euclidean bases are always orthogo-
nal. An orthogonal transformation of ten-
sors from one Euclidean space to another
preserves the length, and also makes no
distinction between covariant [4] and con-
travariant [5] tensors. If T(x) = Mx is an
orthogonal transformation, we say that M is
an orthogonal matrix. And from matrix the-
ory we know that a matrix is orthogonal iff
its inverse and transpose are the same, i.e.,
M−1 = MT.

We shall now examine the behaviour of a
low order tensor of rank one that is a vec-
tor if we move from a two dimensional (2D)
Cartesian coordinate system S to another 2D
Cartesian system S’. The case of transforma-
tion rule of scalars which are tensors of the
lowest rank is trivial because scalars are in-
dependent of the choice of coordinate sys-
tem and does not require basis vector for
their description. The 2D Cartesian S′ coor-
dinate system in consideration is rotated by
an angle ϕ with respect to the S system, as
shown in the Figure 4. Let E be an electric
field vector lying on a 2D plane, the vector
making an angle θ with the x-axis in the S

system. Then the components of E in the S
system are Ex = |E| cos θ and Ey = |E| sin θ.
The coordinates of the electric field vector in
the rotated system S′ will be,

E′
x = |E| cos(θ − ϕ) (1)

= |E| cos θ cos ϕ + |E| sin θ sin ϕ (2)

E′
y = |E| sin(θ − ϕ) (3)

= |E| sin θ cos ϕ − |E| cos θ sin ϕ (4)

Using Ex = |E| cos θ and Ey = |E| sin θ, the
above Eqs. (1) and (2) become,

E′
x = Ex cos ϕ + Ey sin ϕ (5)

E′
y = Ey cos ϕ − Ex sin ϕ (6)

These transformation equations can be writ-
ten in matrix form as,[

E′
x

E′
y

]
=

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

] [
Ex

Ey

]

The matrix form of Eq. (5) can simply be
written as E′ = ME, where

M =

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]

is a 2 × 2 matrix and E′ and E are 2 × 1 col-
umn matrices. Since the elements in the ma-
trix are identified by their row and column
positions, the transformation Eqs. (3) and (4)
can also be put as

E′
i = ∑

j
aijEj (7)

Where the indices i and j take the variables
x and y, and the direction cosine coefficients
aij are: axx = cos ϕ, axy = sin ϕ, ayx =
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TABLE 1. Resultant tensor quantity from various multiplicative products of scalars and vectors and

their examples in Physics.

− sin ϕ, ayy = cos ϕ.
Taking partial differential of Eq. (7) with re-
spect to each of the components, and putting
them into a matrix yields the following:[

E′
x

E′
y

]
=

axx = ∂E′
x

∂Ex
axy = ∂E′

x
∂Ey

ayx =
∂E′

y
∂Ex

ayy =
∂E′

y
∂Ey

 [
Ex

Ey

]

Thus, the vector (tensor of rank 1) transfor-
mation rule can also be succinctly cast as:

E′
i = ∑

j

∂E′
i

∂Ej
Ej (8)

Now, by just noting that the transformations
in Euclidean space are orthogonal, we can

write the inverse transformation equation
by inverting the matrix M, which amounts
to just transposing the row elements with
column elements, that is, replacing aij with
aji.

M−1 =

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]

One can easily check that |M| = |M−1| =
1 and that |M||M−1| = I, meaning that
the tensor remains invariant under rotation
transformation. Using this fact, the inverse
transformation equations E = M−1E′ can be
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Figure 4: Electric field vector E and their com-
ponents in 2D Cartesian coordinate system .

written as:

Ei = ∑
j

ajiE′
j = ∑

j

∂Ei

∂E′
j
E′

j (9)

Thus, we infer that a Cartesian vector is an
invariant physical quantity that transforms
from the S coordinate system to the S′ co-
ordinate system according to the Cartesian
tensor transformation law given by Eq. (9),
and by Eq. (11) for vice-versa. If we gen-
eralise this definition, then we have the fol-
lowing definition of a rank n tensor:
A Cartesian tensor of rank n is a set of Nn

quantities Tij...m, which transform under ro-
tations according to the rule:

Tij...m = ∑
p

∑
q
· · ·∑

t
Tpq...taipajq . . . amt (10)

where, aipajq . . . amt are the cosines of the an-
gles between the new and old coordinates.

4 Tensor Features

Though the ability to express invariance[6]
is a fundamental property of tensors, be-
sides this main property, four other innate
potentialities possessed by tensors come in

handy to express various aspects of physi-
cal reality in science. These aspects/features
or characteristics are namely: Anisotropic-
ity, Many-particle quantum states, Entangle-
ment, and Big data storage capacity.

4.1 Invariance (Covariance of Physical

Laws)

The main characteristic of a tensor is that its
representations in different coordinate sys-
tems depend only on the relative orienta-
tions and scales of the coordinate axes at that
point, and not on the absolute values of the
coordinates. Tensors serve to seclude the
intrinsic geometric and physical properties
from the coordinate dependent ones. So if
two tensors of the same type are equal in one
coordinate system, then they are equal in all
coordinate systems. Therefore it can be said
that the central principle of tensor analysis
amounts to the simple fact that tensors re-
main invariant with coordinate transforma-
tions. This implies that equations written in
tensor form are valid in any coordinate sys-
tem as tensor equations look the same in all
coordinate systems. This is why the absolute
position vector pointing from the origin to a
particular object in space is not a tensor be-
cause the components of its representation
depend on the absolute values of the coordi-
nates.
The physical reality encoded in the laws of
physics is universal that is independent of
reference frames under appropriate symme-
try transformations. So this means it de-
pends on what laws one is talking about,
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as for instance Newton’s laws are invari-
ant with respect to the Galilean transfor-
mations and Standard model is invariant
with respect to Lorentz transformations. In
both these theories there is a preferred set of
frames called inertial frames. The theories
or the laws are invariant only with respect
to which inertial frame one is using. In con-
trast, general relativity is invariant with re-
spect to general coordinate transformations.
And as remarked above, the main charac-
teristics of objects called tensors is that they
remain invariant under certain coordinate
transformations. So it should be clear that
invariance of tensors is subject to transfor-
mation rules. One should first talk about the
transformations under which one is asking
for invariance. Only then, logically speak-
ing, can one talk about tensors. The same
object could have different transformation
properties with respect to different transfor-
mations. For example, Higgs boson (before
electroweak symmetry breaking) is an SU(2)
doublet while Lorentz scalar. So, as a ten-
sor it will have only one SU(2) index and no
Lorentz index.

This entails that if laws of physics are ex-
pressed using tensors they become form in-
variant under appropriate transformations
and hence tensors provide the best means
to objectively represent the physical reality
independent of coordinate systems or ob-
servers. In the language of physics if the
equations of physics possess the same form
in different coordinate systems they are said
to be covariant, though the word covariant

BOX 3. Illustration of the invariance of Tensor

equation.

in tensor analysis has different meaning too.
The Box 3 illustrates with an example the co-
variant nature of a tensor equation. This de-
mand of covariance, that all physical laws
should be invariant under transformation
between inertial systems led Einstein to the
formulation of his theory of special relativ-
ity. Also, the need that the Maxwell’s equa-
tions should be invariant under transforma-
tions, and the failure of Galilean transforma-
tions to do it, led to the Lorentz transfor-
mations. In Table 2 we present few famil-
iar equations (Newton’s 2nd law, Maxwell’s
equations and Dirac equation) in their usual
scalar/vector form and the same in tensorial
form.

4.2 Anisotropy (in properties of

Material, Fields and Manifolds)

When materials are subjected to some stim-
ulus like mechanical force, electric field,
magnetic field, temperature field, etc., they
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subsequently respond, which respectively
may be reflected in some property change
such as elongation/deformation, electric
current or polarization in dielectrics, mag-
netization, heat flow, etc. But these re-
sponses may also be associated with some
other cause/stimulus. For instance, the ap-
plication of pressure may lead to the polar-
ization of the crystal (Piezo-electric effect)
or the influence of a magnetic field may
lead to strain in the material (magnetostric-
tion), or the presence of temperature differ-
ence can cause electrical potential difference
(pyroelectricity). In all such cases, a mate-
rial/physical property connects the stimu-
lus to the response, like, P = p · ∆T, M =

χ · H, σ = c · ε, etc., where the symbols are
defined in Table 3. These material properties
can be measured in experiments or can be
calculated from more fundamental proper-
ties.
In reality, the stimulus and response are usu-
ally direction dependent or anisotropic and
hence are tensors, and therefore the material
properties are also tensors of some rank. The
equations mentioned above take the follow-
ing look in tensorial notation:

Pα = pα∆T, Mα = χαβHβ, σαβ = cαβγδεγδ

The physical property connecting a stimulus
of rank-m to a response of rank-n will be of
rank (m + n). In the first equation listed, the
stimulus ∆T is of rank zero and the response
Pα is of rank one; hence the property pα is of
rank one, in the second equation, the stim-
ulus Hβ is of rank one and the response Mα

is also of rank one; hence the property ten-

sor χαβ is of rank two, in the last equation,
the stimulus εαβ is also of rank two and the
response σαβ is also of rank two; hence the
property tensor cαβγδ is of rank four. Few
of These material properties in tensorial and
usual representations, along with their cor-
responding stimulus, response, and ranks,
are tabulated in Table 3.
As mentioned above, apart from the mate-
rial properties, tensors are also used to de-
scribe fields and manifolds. Similar to prop-
erty tensors, these tensors can be of various
ranks. For example, the temperature field
T(x, y, z) is a scalar field, where each point
in space is described by one number at that
point. Hence, scalar fields are tensor fields
of rank zero. On the other hand, electric and
magnetic fields are vector fields or tensor
fields of rank one, and their specification re-
quires three numbers at each point in three-
dimensional space. These three numbers are
the components along the coordinate axes
and give the direction and magnitude of
the vector. The electromagnetic field ten-
sor, introduced after the four-dimensional
tensor formulation of special relativity in
Minkowski space-time, is a second-rank ten-
sor, and the electric and magnetic fields can
be obtained from the components of the
electromagnetic tensor.

Another example of a tensor field is the
Riemann curvature of a manifold. A mani-
fold is a topological space that locally resem-
bles Euclidean space near each point. When
distances and angles can be measured on
the manifold, then it is called Riemannian.
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TABLE 2. Few familiar undergraduate

scalar/vector equations in Physics in their

tensorial attire.

More distinctly, a Riemannian manifold is a
differentiable manifold in which each tan-
gent space is equipped with an inner prod-
uct in a manner which varies smoothly from
point to point. In tensor analysis, the Rie-
mann curvature tensor is the most common
way to express the curvature of Riemannian
manifolds. It assigns a tensor to each point
of a Riemannian manifold (i.e., it is a tensor
field) that measures the extent to which the
metric tensor is not locally isometric to that
of Euclidean space. It is the sophistication
or elegance of tensor analysis that it is able
to capture the invariance aspect as well as
the spatial peculiarities in one go. This, at
once, can be seen from the general formula
for the invariant line element in any space,
ds2 = gij dxi dxj, where gij is the metric ten-
sor encoding the properties of the space.

4.3 Many System Quantum States

In quantum mechanics, a tensor product is
used to describe a system that is made up
of multiple quantum subsystems. The sim-
ple reason that tensor product is required
to build the joint space is because the di-
mension of joint vector space of two sepa-
rate quantum systems magnifies multiplica-
tively and not additively, and is equa to the
product of dimensions of the two separate
system vector spaces, i.e., dim(V ⊗ V) =

(dim V)(dim V). If V is the vector space of
one system and V is the vector space of an-
other system then the quantum state of both
the systems is V ⊗V, where the symbol rep-
resents tensor product.
Now it is well known in tensor analysis
that the rank of a tensor can be increased
through the outer or tensor product. If
we take Cartesian product of the two vec-
tor spaces V × V then the resultant dimen-
sion is just the direct sum of V and V i.e.,
dim(V × V) = dim V + dim V, because the
vectors are ordered pairs of vectors (V, V) ∈
V × V. The cartesian product space V × V
is a space whose states are the states of sys-
tem V or system V or both, whereas V ⊗ V
is the vector space whose basic states are
pairs of states, one from V and one from
V. So the Cartesian product cannot account
for a large Hilbert space constructed from
the smaller sub Hilbert spaces but this large
Hilbert space is accounted by tensor prod-
uct space which is a much larger space than
Cartesian space. Hence the tensor prod-
uct is the fundamental building operation
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of quantum systems that occupies a central
place in the subject of many body quantum
mechanics.

TABLE 3. Few material property tensor

coefficients with their stimulus and response

relation.

4.4 Entanglement

A major concept setting quantum reality
apart from the classical one is the notion of
entanglement. The fact that physical sys-
tems can be correlated in ways that exceed
shared randomness of classically correlated
systems is an important asset in the field of
quantum computation. Quantum computa-
tion is a fast developing field, at the interface
of Quantum mechanics, Computer science
and Information theory, that tries to har-
ness this weird aspect of quantum reality for
technological purposes. Quantum comput-
ers are not limited to two states like present
day computers which work by manipulat-
ing bits that exist in one of two states, |0⟩ or
|1⟩. Quantum computers encode informa-
tion as quantum bits or qubits that can ex-

ist in superposition of both |0⟩ and |1⟩ states
at the same time. The tensor product suc-
cinctly captures this same distinct quantum
behavior as has been discussed in the above
section.
But if the states of two distinct quantum sys-
tems cannot be factorised as a tensor prod-
uct of a wave function from one space with
that from the other then the state is said to
be ”entangled”. Thus the tensor product for-
malism comes into picture whenever entan-
glement is in consideration. The essence of
quantum entanglement lies in the fact that
there exist states in the tensor product space
of physically separate systems that cannot
be decomposed as tensor product of states
from separate systems. In other words there
exist states of the combined system that can-
not be expressed in terms of definite states
of the individual systems.
For example, suppose both VA and VB are
two dimensional Hilbert spaces describing
spin-1/2 degrees of freedom of two quan-
tum particles. Each space can be spanned
by an orthonormal basis of couple of states
|vAi⟩ ≡ |vBi⟩ = {|0⟩ , |1⟩}, representing
spin-up and spin-down states. Then the ten-
sor product space V = VA ⊗ VB is a four
dimensional space spanned by pairwise ba-
sis of vectors drawn from VA and VB bases,
that is {|vAi⟩ ⊗ |vBi⟩} = {|0⟩ ⊗ |0⟩ , |0⟩ ⊗
|1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩}. That is any state
of the combined system is completely spec-
ified by |vAi⟩ ⊗ |vBi⟩ ∈ VA ⊗ VB. But as
remarked above the opposite is not always
true, that there exist states of the combined
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states which cannot be expressed as the ten-
sor product of individual systems. For ex-
ample consider the following quantum state
of two spin 1/2 systems, |Φ⟩ = 1√

2
(|0⟩ ⊗

|1⟩ − |1⟩ ⊗ |0⟩). There is no choice of ba-
sis that allows this state to be expressed in
terms of separate individual particle states,
i.e., |Φ⟩ ̸= 1√

2
(|Φ⟩ ⊗ |Φ⟩). In such a case the

two particles are in entangled state.

4.5 Data Storage and Mining

A big reason as to why tensors have now
become ubiquitous in pure and applied sci-
ences is because of the fact that they pro-
vide a means to organize multi-dimensional
data, as tensors of higher rank can be rep-
resented as multi-dimensional arrays or ma-
trices. Matrices are versatile objects that can
be used for storing and accessing informa-
tion in a systematic way. So in context of ma-
chine and deep learning tensors can be re-
garded as huge multi-dimensional contain-
ers having natural representation for data
storage and data mining. It should be noted
that though a tensor is often construed as a
generalized matrix but every matrix is not
a tensor. For instance any tensor of rank 2
can be cast in a matrix of order 2× 2, but the
converse that every matrix of 2× 2 order is a
rank-2 tensor is not true. The numerical val-
ues of the components of a tensor in its ma-
trix representation depend on the transfor-
mation rules employed. The numerical val-
ues change when a transformation is made.
Though the tensor remains invariant on co-
ordinate transformation but its component

do not and hence tensor despite appearing
as an static entity are dynamical objects in
essence. This dynamical aspect of tensors is
what that distinguishes it from a mere ma-
trix.
The Figure 2 shows tensors of zero, first,
second and third rank as single and multi-
dimensional arrays or matrices. The avail-
ability of cheap and high computational
power and storage devices has enabled ex-
tensive computations on vast amounts of
data. Data mining is the process of ex-
tracting valuable knowledge or information
from a large set of data. If tensor product is
a useful operation for building large quan-
tum states from sub quantum systems then
tensor decomposition is a highly important
tool for summarization and analysis of data.
Much of the literature on data mining deals
with tensor decomposition methods which
are outside the scope of this article.

4.6 Non-Tensors

Finally, a brief note on non-tensors will be
in order. Not every physical/mathematical
quantity represented in symbols adorned
with indices is a tensor. A trivial example
is the components of a vector which is co-
ordinate dependent. The individual compo-
nents are not tensors because under vector
transformation the components of the vector
vary from system to system but in a way that
the vector itself remains intact. Sometimes
an entity is called a qualified tensor because it
behaves as a tensor under a certain subclass
of coordinate transformations. For instance,
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the differential element dxi containing spa-
tial components is a tensor in all the three
dimensional Euclidean spaces but not in the
four dimensional Minkowski space. Simi-
larly the coordinates {xi} are not tensors as
it makes no sense to add coordinates, for in-
stance, adding the spherical coordinates of
two points. In contrast to coordinates, the
differentials dxi are tensors. Also the Ja-
cobian, Ji

j =
{

dxi

dxj

}
, used to quantify the

changes in the infinitesimal lengths, areas,
volumes, etc., that occur when changing the
basis of a coordinate system, is also a non-
tensor. This is because the Jacobian matrix is
not defined per se, but is only defined with
reference to two chosen coordinate systems.
A tensor is an abstract entity which exists
even if no basis has been referred to. The
other obvious examples of non-tensors are
the partial derivatives and also the Christof-
fel symbols. The partial/ordinary deriva-
tive does not in general yield a tensor be-
cause the derivative has no meaning out-
side the reference frame in which it is dif-
ferentiated. For instance, if the derivative
of a tensor in a coordinate system is zero,
then it is not necessarily zero in other coor-
dinate systems too. But the same does not
hold for covariant derivatives, as the covari-
ant derivatives are tensors, and if the covari-
ant derivative vanishes in one frame, then
it necessarily vanishes in all frames. Com-
plete differentiation or covariant differenti-
ation requires taking not only the compo-
nent term but also the base vectors which
are also spatially dependent, except in the

case of orthonormal Cartesian coordinate
system. The additional term that is added
to the usual partial derivatives to make it
covariant are called the Christoffel symbols.
Not to mention the Christoffel symbols van-
ish in Cartesian coordinates.

5 Conclusions

Tensors are in essence abstract mathemati-
cal objects with deep and profound impli-
cations. Soon after the formulation of gen-
eral theory of relativity the subject became
popular and developed further rapidly in as
much that it now appears in all branches of
science and engineering. The key attribute
of tensors is the facility to express invari-
ance under appropriate transformation laws
in either mathematical or physical proper-
ties/laws. But besides this fundamental
property of invariance four other innate po-
tentialities possessed by tensors comes in
handy to express various aspects of phys-
ical reality in science namely anisotropic-
ity, many particle quantum states, entangle-
ment and big data storage capacity. Two
extremely useful operations on tensors are
tensor product and tensor decomposition.
While tensor products are immensely rele-
vant in quantum mechanics and quantum
computation, tensor decomposition meth-
ods are highly needed in machine learning
and deep learning. Therefore the bottom
line is tensor is an incredibly important sub-
ject with fascinatingly significant features
and amazingly wide implications.
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[2] Sadri Hassani (1999).
Mathematical Physics – A Modern Intro-
duction to Its Foundations, (Springer).

[3] Robert E. Newnham (2005).
Properties of Materials: Anisotropy, Sym-
metry, Structure (Oxford University
Press).

[4] Zafar Ahsan (2005).
Tensors: Mathematics of Differential Ge-

ometry and Relativity (Prentice Hall of
India).

[5] Albert Tarantola.
Tensors for Beginners,
http://www.ipgp.fr/~tarantola/

Files/Professional/Teaching/

Diverse/TensorsForBeginners/Text/

Tensors.pdf

[6] Landsberg, J. M.
Tensors: Geometry and Applications,
American Mathematical Society, Prov-
idence, Rhode Island.

[7] L. Cammoun et al. (2009).
Tensors in Image Processing and Computer
Vision (Springer-Verlag London).

[8] Joseph C. Kolecki.
An Introduction to Tensors for Students of
Physics and Engineering, National Aero-
nautics and Space Administration.
https://www.grc.nasa.gov/www/k-2/

Numbers/Math/documents/Tensors_

TM2002211716.pdf

38/3/2 15 www.physedn.in

http://www.ipgp.fr/~tarantola/Files/Professional/Teaching/Diverse/TensorsForBeginners/Text/Tensors.pdf
http://www.ipgp.fr/~tarantola/Files/Professional/Teaching/Diverse/TensorsForBeginners/Text/Tensors.pdf
http://www.ipgp.fr/~tarantola/Files/Professional/Teaching/Diverse/TensorsForBeginners/Text/Tensors.pdf
http://www.ipgp.fr/~tarantola/Files/Professional/Teaching/Diverse/TensorsForBeginners/Text/Tensors.pdf
https://www.grc.nasa.gov/www/k-2/Numbers/Math/documents/Tensors_TM2002211716.pdf
https://www.grc.nasa.gov/www/k-2/Numbers/Math/documents/Tensors_TM2002211716.pdf
https://www.grc.nasa.gov/www/k-2/Numbers/Math/documents/Tensors_TM2002211716.pdf

	Tensors: Etymology, Origin and Development
	Tensor Applications
	Approaching Tensors
	Tensor Definition

	Tensor Features
	Invariance (Covariance of Physical Laws)
	Anisotropy (in properties of Material, Fields and Manifolds)
	Many System Quantum States
	Entanglement
	Data Storage and Mining
	Non-Tensors

	Conclusions

