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Abstract

The magic numbers associated with shell
closures at the β-stability line are a well-
established concept. The experimental
observation of highly neutron-rich nuclei,
such as 24O, 42Si, and 54Ca, exhibiting re-
markable stability has inspired a search for
new magic and semi-magic numbers based
on sub-shell closures. The purpose of this
work is to guide graduate-level students in
analyzing possible sub-shell closures that
could result in magic and semi-magic num-
bers [1], based on the single-particle energy
states of the nuclear shell model. The analy-
sis focuses on doubly magic nuclei near the
β-stability line, ranging from 16

8 O to 310
126X,

by classifying them into various categories-
light, medium, heavy, and super-heavy
nuclei; to deduce potential magic and
semi-magic numbers for neutron number
(N) and proton number (Z) [2]. The stability
of nuclei with N = 14, 34, 40 and Z = 14, 34

has been confirmed, while nuclei with
N = 6, 16, 18, 32, 58, 64, 92, 100, 136, 164,
and 172, as well as Z = 18, 58, and 76, are
predicted to exhibit stability. This analysis
is particularly helpful for undergraduate
(UG) students to understand why gaps
exist between energy levels according to the
single-particle shell model scheme.

Keywords: Magic and Semi-magic num-
bers, Doubly magic nuclei, Shell model,
Central Divided Difference (CDD) Method,
Gnumeric.

1 Introduction

It is a well-known fact that the atomic nu-
clei exhibit similar shell structure as that
of atomic shells with neutrons and protons
forming the shells. These discrete shells are
the quantum states of neutrons and protons
which are most important in understand-
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ing the structure of a nucleus. The large
gaps between these single particle energy
states exists when there is a shell closure
at N or Z equal to 2, 8, 20, 28, 50, 82, 126
and 184 (for neutrons only) i.e the so called
‘magic numbers’. The nuclei which have ei-
ther proton or neutron equal to magic num-
ber are known as ‘magic nuclei’ and the nu-
clei which have both proton and neutron
equal to magic number are known as ‘dou-
bly magic nuclei’. Due to the shell gaps
in energy states for filled shells at differ-
ent magic numbers, the nucleons are more
tightly bound to the nucleus causing extra
stability to the nucleus as compared to the
adjacent nuclei [3]. Also magic nuclei are
less deformed as compared to their neigh-
bouring nuclei. This results in abundance of
elements with neutron number (N) = magic
number. But in recent years, the studies
have revealed that in some cases the usual
shell closures disappear and the new shell
closures appear [4], [5]. The appearance
and disappearance of these Magic numbers
may depend on different mass regions un-
der consideration. The discovery of new
magic numbers [6] may help in deciding
the existence limit of Superheavy nuclei [7].
Many Magic and Semi-Magic numbers are
predicted theoretically [ptu] and experimen-
tally e.g 24

8 O, 42
16Si, 54

20Ca etc. [8, 9, 10] by many
groups using separation energy plots, pair-
ing energy plots, binding energy investiga-
tions and by using different methods such
as Hartree-Fock-Bogoliubov methods [11].
The syllabus of graduate level [12, 13, 14] in-

cludes Nuclear Shell model and magic num-
bers, but it will be easy for students to grasp
the essence of how energy levels of different
nuclei are formed and how are magic num-
bers obtained from them. In this work, we
are trying to deduce magic and semi-magic
numbers using single particle energy states
of neutron and proton [1] for doubly magic
nuclei from 16

8 O to 310
126X in quite an easy man-

ner which is within the approach of gradu-
ate level students. This will provide a better
understanding for graduate level students
about how the single particle energy lev-
els are formed within a nucleus according
to nuclear Shell model and also how the
magic numbers can be realised from them.
Neutron and proton single-particle energy
states were determined by solving the time-
independent Schrödinger equation, with the
Woods-Saxon potential [15] serving as the
mean-field. The obtained energy states for
neutrons and protons are used to predict the
Magic and Semi-Magic numbers by calculat-
ing the gaps between the states. The Shell
model [3] is very effective model to obtain
the ground state energies for all nuclei. The
motivation behind this work is how many
Magic and Semi-Magic numbers can be de-
duced by using the single particle energy
states for various neutron number (N) and
proton number (Z).
In the following section, we present a brief
overview of the simulation methodology
proposed by D. Hestenes [16], which utilizes
the numerical matrix diagonalization tech-
nique [17] to determine the single-particle

39/1/1 2 www.physedn.in



Physics Education January-March 2025

energy states of neutrons and protons in
doubly magic nuclei [18]. Section 3 provides
the simulation results along with a detailed
discussion. Finally, Section 4 summarizes
our conclusions.

2 Simulation Methodology

2.1 Modeling the interaction using

Woods-Saxon (WS)potential:

The interaction between nucleons is mod-
elled using a mean field potential i.e Woods-
Saxon potential or a simple rounded square
well potential. The Woods-Saxon potential
is able to predict some magic numbers, but
inclusion of Spin-orbit potential is necessary
to obtain the entire magic numbers. The
Spin-orbit potential is proportional to the
derivative of the mean field potential.
The modeling aids in the reduction of the
two-body problem to a one-body problem,
with the reduced mass of the system ac-
quired as a bound state of the central po-
tential, which is best expressed in spheri-
cal polar co-ordinates. The central equation
governing the dynamics at the microscopic
domain is the Time-Dependent Schrödinger
Equation (TDSE) which through separa-
tion of variables in and t results in Time-
Independent Schrödinger Equation (TISE)
[18]. The radial equation governing the sys-
tem for ℓ = 0 is given by

− h̄2

2µ

d2u(r)
dr2 + Ve f f (r)u(r) = Eu(r) (1)

Now the effective potential experienced by
a neutron or a proton is given by:

Ve f f (r)u(r) = Vc f (r) + Vi(r) (2)

Where, Vc f (r) is the centrifugal potential
given by:

Vc f (r) =
ℓ(ℓ+ 1)h̄2c2

2µc2r2 (3)

Here, µ denotes the reduced mass [1], which
varies between the neutron and the proton.
The constant h̄c has a value of 197.327 MeV-
fm.

µ =


mn×(Z×mp+(N−1)×mn)

(Z×mp+N×mn)
, for neutron

mp×((Z−1)×mp+N×mn)

(Z×mp+N×mn)
, for proton

(4)

Here, mp = 938.272 and mn = 939.565 are
masses of proton and neutron respectively,
in units of MeV/c2. Vi(r) is the net inter-
action potential; for a neutron, Vn(r) and a
proton, Vp(r) respectively given as:

Vn(r) = VWS(r) + Vℓs(r) (5)

Vp(r) = VWS(r) + Vℓs(r) + VC(r) (6)

The mean-field potential is modeled as [1]:

• Woods-Saxon potential (rounded
square-well potential) given by

VWS(r) =
V0

1 + exp
( r−R

a
) (7)

where V0 is the depth of the well.

V0 =


−51 + 33((N − Z)/A) MeV,

for neutrons

−51 − 33((N − Z)/A) MeV,

for protons

(8)
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Where, R = R0A1/3 (R0 = 1.28) is the
radius of the nucleus, a is surface dif-
fuseness parameter (taken = 0.66) [19]

• The Spin-orbit potential is given by

Vls(r) = V1

( r0

h̄

)2 1
r

d
dr

[
1

1 + exp
(

r−R
a

)](L.S)

(9)

Here, the spin-orbit coupling term is
given by L · S = [j(j + 1) − ℓ(ℓ + 1) −
3/4], h̄2, where ℓ is the orbital angular
momentum quantum number, j = ℓ+ s
represents the total angular momentum
quantum number and s is spin angular
momentum quantum number (= 1/2
for nucleons). V1 and r0 (V1 = −0.44V0

and r0 = 0.90 [1]) are the proportional-
ity constants.
For protons, the Coulomb interaction is
included given by:

Vc(r) =


(Z−1)e2

4πϵ0r , for r ≥ Rc
(Z−1)e2

4πϵ0Rc

[
3
2 −

r2

2R2
c

]
, for r ≤ Rc

(10)
Here, Rc denotes the nuclear charge ra-
dius, which is assumed to be ≈ radius
of the nucleus. This potential is multi-
plied and divided by electron rest mass
energy, mec2 = 0.511 MeV to rephrase it
in MeV units. The rephrased potential
is given by:

Vc(r) =



(Z−1)∗2.839∗0.511
r ,

for r ≥ Rc

(Z−1)∗2.839∗0.511
Rc

[
3
2 −

r2

2R2
c

]
,

for r ≤ Rc

(11)

Equation 1 represents the Time-
Independent Schrödinger Equation in
the form of an eigenvalue problem,
Hu(r) = Eu(r), where H denotes the
Hamiltonian operator. The radial wave
function u(r) must satisfy the boundary
condition u(0) = 0 and decay to zero as
r → ∞ to ensure it is properly normalized.

2.2 Numerical Technique used :

When deciding to choose a numerical tech-
nique for implementaion, there are three
crucial factors to consider i.e stability, ac-
curacy, and efficiency. The choice of these
techniques also depends on computational
efforts and computational time required.
In current work, we chose to work with
Central divided difference technique (CDD).
Due to the truncation of Taylor series to two
terms, the accuracy of CDD method is of
order O(h4). CDD method is the simplest
and most appealing matrix diagonalisation
method which can be easily implemented by
students in computer.
So, the main idea behind choosing CDD
technique is that we want these calculations
accessible to UG level students. Working in
free open source software (FOSS) like Gnu-
meric worksheets is a best way to make stu-
dents understand the problem easily [20].
Also Gnumeric has an additional advantage
as compared to other worksheet environ-
ments, to obtain eigen values by giving a
simple formula ‘eigen()’.
Unlike other numerical techniques like Ma-
trix Methods (MM) [17] using Sine basis
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which can not be solved in Gnumeric wor-
sheets due to inabilty to solve complex inte-
grals and Numerov Matrix Method (NMM)
[21], which requires more computational
time and effort, CDD is simple method with
three easy steps and can be easily imple-
mented in spreadsheets. Also, since the
steps to obtain eigenvalues for both MM and
NMM methods are more, therefore these
methods have a slightly lengthier algorithm
as compared to CDD method. Hence ob-
taining solution through CDD method re-
quires less computational time and effort,
and therefore is a good choice for implemen-
tation in UG lab projects.

2.2.1 Central Divided Difference (CDD)

Method for second order

derivative:

The Taylor series expansion of a function
U(x) about the point xj is expressed as fol-
lows:

f (x) = f (xj) + f ′(xj)(x − xj)+

1
2!

f ′′(xj)(x − xj)
2 + . . . (12)

If the point x lies sufficiently close to xj, the
Taylor series converges rapidly, allowing us
to retain only the leading terms. By setting
x = xj + h, where h is a small step size, the
series can be re-expressed in terms of h as:

f (xj + h) = f (xj) + f ′(xj)h +
1
2!

f ′′(xj)h2

+ O(h3) + . . . (13)

Similarly, the Taylor Series for a point x =

xj − h would be

f (xj − h) = f (xj)− f ′(xj)h +
1
2!

f ′′(xj)h2

− O(h3) + . . . (14)

Adding Eqns.(13) and (14), we get

f (xj + h) + f (xj − h) = 2 f (xj) + f ′′(xj)h2

+ O(h4) + . . . (15)

So, expressing xj + h as xj+1 and xj − h as
xj−1, second derivative for the function at
point xj is obtained as

f ′′(xj) =
f (xj−1)− 2 f (xj) + f (xj+1)

h2 (16)

accurate to O(h2).
Substituting Eq.(16) in Eq.(12) and rearrang-
ing, the wave function ψ can be determined
at points xj+1 in au as:

ψ(j + 1) = 2ψ(j)− ψ(j − 1)

− 2h2(E − V(j))ψ(j), j = 2, 3, ...N.
(17)

The wavefunction ψ(j) at all values of xj (j =
3, 4, . . . , N) can be determined by choosing
appropriate values for ψ(1) and ψ(2), for a
particular value of energy E.

2.2.2 CDD Method by taking TISE as

Matrix equation:

TISE can also be expressed as a tridiagonal
matrix equation by writing N − 2 simulta-
neous equations that are the result of ap-
plying Eq. (16) to all N − 2 intermediate
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points, j = 2, 3, ..., N − 1, within the poten-
tial well. Expressing the second derivative
of the wave function for intermediate points
xj, as

d2

dx2 ψ(xj) =
ψ(xj−1)− 2ψ(xj) + ψ(xj+1)

h2
(18)

and substituting into Time Independent
Schrödinger Equation written as eigen-
value equation

Hψ(x) = − h̄2

2m
d2ψ(x)

dx2 +V(x)ψ(x) = Eψ(x)
(19)

We obtain,

− h̄2

2mh2 ψ(xj−1) +

(
h̄2

mh2 + V(xj)

)
ψ(xj)

− h̄2

2mh2 ψ(xj+1) = Eψ(xj).

(20)

where E denotes the eigenvalues and ψ(x)
represents the corresponding eigenfunc-
tions. By letting V(xj) = Vj, ψ(xj) = ψj,
and introducing

f j =
h̄2

mh2 + Vj = f + Vj,

g = − h̄2

2mh2 = − f /2, (21)

the equation simplifies to:

gψj−1 + f jψj + gψj+1 = Eψj,

j = 2, 3, . . . , N − 1. (22)

Also, ψ1 = 0 and ψN = 0, the following
equations result for j = 2, 3, . . . , N − 1 as:

f2ψ2 + gψ3 + 0ψ4 + . . . + 0ψN−3 + 0ψN−2+

0ψN−1 = Eψ2, j = 2,

gψ2 + f3ψ3 + gψ4 + . . . + 0ψN−3 + 0ψN−2+

0ψN−1 = Eψ3, j = 3,

...
...

0ψ2 + 0ψ3 + 0ψ4 + . . . + gψN−3 + fN−2ψN−2+

gψN−1 = EψN−2, j = N − 2,

0ψ2 + 0ψ3 + 0ψ4 + . . . + 0ψN−3 + gψN−2+

fN−1ψN−1 = EψN−1, j = N − 1.

Rewriting these equations in matrix form :
f2 g 0 . . . 0 0 0
g f3 g . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . g fN−2 g
0 0 0 . . . 0 g fN−1




ψ2

ψ3
...

ψN−2

ψN−1



= E


ψ2

ψ3
...

ψN−2

ψN−1


which may be concisely expressed as

H(N−2)×(N−2)ψ(N−2)×1 = Eψ(N−2)×1 (23)

In Eq. (23), the Hamiltonian matrix is a tridi-
agonal symmetric matrix and is solved to
obtain (N − 2) eigen functions and their cor-
responding eigen functions.
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2.3 Implementation in Gnumeric

worksheet :

While implementing in Gnumeric work-
sheet, the step by step procedure to solve
Woods-Saxon potential using CDD method
is required. An algorithm which will help
students to understand the procedure, how
to obtain single particle energy states is
given below in Fig.(1). In supplementary
material (Appendix 1), the procedure to
solve the given Algorithm for proton states
of doubly magic nucleus 56

28Ni is given in
Gnumeric worksheet, which can be easily
reproduced. The energy level sequence for
all doubly magic nuclei starting from 16

8 O to
310
126X can be obtained by following the pro-
cedure given in Appendix 1.

3 Computational Results and

Interpretation

The model parameters have been obtained
earlier by our group [1] by using Varia-
tional Monte Carlo (VMC) technique in tan-
dem with Matrix method [17] and are uni-
versally applicable to all the nuclei from
lighter to heavy region. The energy level se-
quence for all the doubly magic nuclei have
been obtained by solving TISE using CDD
method and is in very good agreement with
our previous results using matrix Numerov
method [21] and also with experimentally
available data [22]. To validate our process,
the comparison of numerical results (using
CDD method) with our previuos results [23]
along with experimental results of doubly

magic nucleus 40
20Ca are given in Table (2).

3.1 Categorizing the nuclei

The gap between energy levels varies de-
pending on the mass region under consid-
eration. For lighter nuclei, the lower magic
numbers exhibit larger energy gaps. As we
move toward heavier nuclei, the energy gap
between the same energy levels decreases,
as demonstrated in the plot of energy dif-
ferences between neutron states of various
doubly magic nuclei for a specific magic
number (Fig. 2). This trend occurs because,
in heavier nuclei, the lower energy levels be-
come inert and are thus suppressed, reduc-
ing the gap between filled shells.
To determine the magic and semi-magic
numbers from the individual single-particle
energy states of protons and neutrons, the
doubly magic nuclei have been categorized
into distinct mass ranges: light, medium,
heavy, and super-heavy. This categorization
ensures that the magic numbers are derived
appropriately according to the specific mass
region under investigation.

A key observation from Fig. 2 is the pres-
ence of pronounced energy gaps between
consecutive single-particle states, which are
crucial for identifying magic numbers. Ac-
cording to the nuclear shell model frame-
work [19], such gaps, typically exceed-
ing approximately 1 MeV; indicate shell
closures that correspond to magic num-
bers. These significant energy separations
reflect enhanced nuclear stability arising
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Initialisation of Parameters

Physical System Parameters Algorithm Parameters

Defining Potential 
V(r) = VWS + VC + VCF + VLS

using above parameters

Solve TISE using numerical 
method

Obtain Eigen value for TISE 
HѰ = EѰ

Change step size hNo

Generate the 
energies for different 

values of l & j

Obtain the single particle 
energy sequence for a 

particular nucleus

Yes

Matching  with 
experimental data for 

ground state 
configuration

Object variables
Interaction variables

Input variables
Other Variables

Parameters used to 
proceed algorithm.

e.g. limiting the region of 
interest and step size h

Figure 1: Algorithm to obtain single particle energy states

from filled nucleon shells, as nucleons in
closed shells require a substantial amount of
energy to be excited to higher states.
The energy differences between states have
been calculated for both neutron and pro-
ton levels and are presented in Appendix

2. The plots of energy differences (in MeV)
with respect to the energy level sequence for
various doubly magic nuclei clearly demon-
strate that at magic and semi-magic num-
bers, the gap between filled shells is sig-
nificantly larger compared to adjacent lev-
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Table 1: Comparison of single-particle energy levels (in MeV) for protons and neutrons in
the doubly magic nucleus 40

20Ca, as obtained in the present study (via the CDD method), with
corresponding experimental data [22] and previously reported numerical results from our
group [23] (using the Matrix Numerov method)

States Proton states (MeV) States Neutron states (MeV)
Exp. Numerical values Exp. Numerical values

Ref[22] NMM[21] Present work Ref[22] NMM[21] Present work
1d5/2 −15.07 −12.19 −12.19 1d5/2 −22.39 −19.54 −19.52
2s1/2 −10.92 −8.14 −8.17 2s1/2 −18.19 −15.54 −15.54
1d3/2 −8.33 −6.85 −6.85 1d3/2 −15.64 −14.28 −14.26
1 f 7/2 −1.09 −2.33 −2.33 1 f 7/2 −8.36 −9.15 −9.12
2p3/2 0.69 1.00 0.98 2p3/2 −5.84 −5.42 −5.42
2p1/2 2.38 2.94 2.93 2p1/2 −4.20 −3.10 −3.09
1 f 5/2 4.96 5.37 5.37 1 f 5/2 −1.56 −1.20 −1.17

Figure 2: Energy difference vs number of neutrons for magic numbers
2, 8, 20, 28, 50, 82, 125, 184

els. This graphical representation helps stu-
dents develop a clearer understanding of
the structural gaps in the energy level se-
quence, offering critical insights into the
single-particle shell model framework.

3.2 Light nuclei : 16
8 O to 56

28Ni

Doubly magic nuclei i.e 16
8 O, 40

20Ca, 48
20Ca and

56
28Ni in lighter mass region are very effective
to study the magic numbers 2, 8, 20 and 28.
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3.2.1 16
8 O :

If we take the case of 16
8 O which is at N =

Z = 8 i.e the β-stability line, the magic num-
bers 2 and 8 are clearly visible for N and Z
as the states 1s1/2 and 1p1/2 show the filled
shells with neutron and proton equal to 2
and 8. Along with these, there is also a sig-
nificant energy gap (although smaller than
gap for 2 and 8) for state 1p3/2 showing 6
as the promising contender for semi-magic
number.

3.2.2 40
20Ca :

For 40
20Ca, along with magic numbers 2,8,20

for N and Z at energy states 1s1/2, 1p1/2

and 1d3/2 respectively the state 1d5/2 shows
14 as the candidate for magic number, since
the energy gap is comparable to the energy
gap for magic number 20. After extrapo-
lating our data, we can also observe magic
number 28 at energy level 1 f7/2 for neutron
states. Levels 1p3/2, 2p3/2 and 2p1/2 also
shows energy gap approximately half the
gap for magic numbers and predict 6 (inter-
polation), 32 and 34 (extrapolation) as semi-
magic numbers.

3.2.3 48
20Ca :

48
20Ca is another isotope of Ca having 28 neu-
trons and 20 protons. The magic numbers
2, 8, 20 and 28 are obtained at states 1s1/2,
1p1/2, 1d3/2 and 1 f7/2 respectively for both
N and Z. The state 1d5/2 shows the shell
gap comparable to the state 1 f7/2, again sup-
porting 14 to be the magic number. On ex-

trapolating the data for proton and neutron
states, we get 32 as the semi-magic number
with shell gap comparable to the state 1p3/2

showing 6 as the possible semi-magic num-
ber.

3.2.4 56
28Ni :

56
28Ni is at the β-stability line with N = Z =

28. The magic numbers obtained for both
neutrons N and protons Z states 1s1/2, 1p1/2,
1d3/2 and 1 f7/2 are respectively 2, 8, 20 and
28. 14 is again showing its magic charac-
ter at state 1 f7/2. On extrapolating our data
for neutron states, we get 32 as semi-magic
numbers and 40 and 50 as magic number.
Semi-magic behaviour of number 6 is again
visible here at state 1p3/2.

3.3 Medium range nuclei : 100
50 Sn to 132

50 Sn

3.3.1 100
50 Sn :

100
50 Sn is again at β-stability line with N =

Z = 50. On observing the energy gaps
between filled shells for neutrons and pro-
tons, we get different magic and semi-magic
numbers for N and Z. Magic numbers for Z
= 2, 8, 18, 20, 28 and 34 are observed at states
1s1/2, 1p1/2, 1d3/2, 2s1/2, 1 f7/2 and 1 f5/2 re-
spectively. For N, the magic numbers ob-
served are 2, 8, 14, 20, 28, 50 and after extrap-
olation 82 magic number was also observed.
Along with magic numbers, few semi-magic
numbers are also observed for N = 16, 38,40,
64 and 90 and for Z = 14.
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Figure 3: Separation in energy between consecutive single-particle states of 16
8 O

Figure 4: Separation in energy between consecutive single-particle states of (i) 40
20Ca and (ii)

48
20Ca

Figure 5: Separation in energy between consecutive single-particle states of 56
28Ni

3.3.2 132
50 Sn :

For 132
50 Sn, along with already existing magic

numbers 2.8. 20, 28, 50 and 82 (extrapola-
tion), Magic number for N = 40 is observed

at state 2p1/2. Semi-magic numbers for N
and Z equal to 14 and 64 are observed at
states 1d5/2 and 2d5/2 respectively. 18, 34
and 38 are observed semi-magic numbers
for Z at states 1d3/2, 1f5/2 and 2p3/2 respec-

39/1/1 11 www.physedn.in



Physics Education January-March 2025

tively.

3.4 Heavy and Super-heavy range nuclei
208
82 Pb and 310

126X :

3.4.1 208
82 Pb :

The single particle neutron and proton en-
ergy states for 208

82 Pb show some new magic
numbers. For heavy and super-heavy range,
the already observed magic and semi magic
numbers in the light and medium mass re-
gion are also observed for both N and Z.
But here, large energy gaps are observed for
magic numbers Z= 34 and 114 and N = 34,
40, 64, 100 and 126. Semi-magic numbers
are observed for Z= 18, 58 and N= 18, 58,
148 and 164 (extrapolation).

3.4.2 310
126X :

For 310
126Sn, Z= 18, 34, 58,92, 114 show large

energy gaps along with already existing
magic numbers. Some new magic numbers
are observed at filled shells 1h9/2, 1j15/2 and
3d3/2 and 1k17/2 for N= 92, 164, 184 and 228
along with 34, 58 and 126. Semi-magic num-
bers are observed for Z= 76 and N=100, 136
and 172.

4 Conclusions

In this paper, an effort have been made to
provide a simple procedure for students at
graduate level, to understand the concept of
magic and semi-magic number by analysing
the energy gap between consecutive states
of doubly magic nuclei (16

8 O to 310
126X). A step

wise procedure to calculate single particle
energy states have also been given. Study-
ing energy levels of doubly magic nuclei
in various mass regions within the Shell
model, enables to explain some of the ob-
served sub-shell closures leading to stabil-
ity in neutron rich nuclei. By calculating
the energy difference or energy gap between
consecutive energy states, we can deduce
magic and semi-magic numbers by consid-
ering that the energy difference between
two consecutive states must be greater than
1 MeV. It is observed that few numbers can
be considered as the magic numbers e.g. N
= 14, 34, 40, 164, 184 and 228, Z = 14, 34, 92
and 114 along with already defined magic
numbers and some new semi-magic num-
bers can also be deduced e.g. N = 6, 16, 18,
32, 40, 58, 64, 92, 100, 136, 164 and 172, Z=
18, 58 and 76 by analysing the energy gaps
between filled shells of the doubly magic
nuclei. The results presented here depends
only on the study done for doubly magic nu-
clei. The study can be further enhanced by
taking more nuclei in different mass region.
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Figure 6: Separation in energy between consecutive single-particle states of 100
50 Sn

Figure 7: Separation in energy between consecutive single-particle states of 132
50 Sn

Figure 8: Separation in energy between consecutive single-particle states of 208
82 Pb

5 Appendix 1

The various steps involved to implement
Central divided difference method (CDD)

in Gnumeric spreadsheets, to obtain sin-
gle particle energy states of 56

28Ni nucleusare
given below. The Woods-Saxon potential
have been taken as the as the interaction po-
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Figure 9: Separation in energy between consecutive single-particle states of 310
126X

tential along with spin-orbit coupling.

1. Initialisation of parameters: In order to
initialise, we will first describe two set
of parameters:
(a) Physical system parameters:
Object and interaction variables will be
the inputs and state variables are the
outputs, which we want to determine.
Figure (1) shows object variables, in-
teraction variables, algorithm variables,
input variables and other variables re-
quired for the calculations.
(b) Algorithm parameters The discretiza-

tion of continuous variables and the re-
duction of infinitely large amounts to fi-
nite values, such as region of interest,
provide algorithmic parameters. The
step size is chosen as h = 0.1 and is
given in cell F16, shown in Figure (10).

2. Potential Definition:
The values of ’r’ are generated from 0.1
to (3 ∗ R) with step-size h = 0.1 from
A21 to A167, and to get the expected
results, corresponding matrix size is
144 × 144. Then, four potentials are de-

termined using the following formulae
for a particular ℓ and j values. The sam-
ple sheet has been given in Figure (11)
(a) Centrifugal potential VCF, in cell B21
type the formula:

=($I$7*($I$7+1)*$I$13^2*

($A21^(-2)))/(2*$I$12)

(b) Woods-Saxon potential VWS, in cell
D21 by typing the formula:

=$F$8*(1+$C21)^(-1)

(c) L.S potential VLS, in cell F21 by typ-
ing formula:

=-$F$13*$F$12^2*$I$15*$C21*

$E21*($F$9*$A21)^(-1)

where, the L.S term in cell I15 is calcu-
lated by formula:

=$I$8*($I$8+1)-$I$7*($I$7+1)-3/4

(d) Coulomb potential, for proton, is
given by typing formula:

39/1/1 14 www.physedn.in
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Figure 10: Initializing the parameters for the system

Figure 11: Defining potentials:

=$B$13*0.511*2.839*

(3*$B$14^2-$A21^2)/(2*$B$14^3)

in cell G21 up-to radius ’R’ of the nu-
cleus. After that in cell G64, type the
formula:

=0.511*2.839*$A64^(-1)*$B$13

which gives the Coulomb potential out-
side the range of nuclear radius.
(e) In cell H21, the net potential is deter-
mined by typing the formula as:

=$B21+$D21+$F21+$G21

3. Obtaining Hamiltonian matrix:
To obtain Hamiltonian matrix, we will
first define two functions f j and g: (a)
The functions

f j =
h̄2

mh2 + Vj = f + Vj,

g = − h̄2

2mh2 = − f /2, (24)

are defined as

=$H21+(($I$13^2)/($I$12*$F$16^2))

and

=-(($I$13^2)/(2*$I$12*$F$16^2))
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Figure 12: Initializing the parameters for the system

in cell I21 and J21 respectively.
(b) Now in Sheet 2; named ’Matrix’,
generate index values for rows and
columns as 1 to 144 from A4:A147 and
B3:EO3.
(c) In cell B4, type:

=if($A4=B$3,Initialization!$J21,

if($A4=B$3-1,Initialization!$K21,

if($A4=B$3+1,Initialization!$K21,0)))

(d) After that drag the formula along the
row till EO3 and then downwards up-to
EO147 to obtain the tridiagonal Hamil-
tonian matrix as shown in Figure (12).

4. Obtaining Eigen values and Eigen vec-
tors:
(a) In Sheet 3, named ’Eigenvalues’,
generate index values for rows and
columns as 1 to 145 from A4:A148 and 1
to 144 from B3:EO3 to obtain matrix of
size 145 × 144. The extra row has been
incorporated for eigen values. Below
each of the eigen values in the first row,
a corresponding eigen vector of size 131
1 will be obtained.
(b) In cell B4, type formula

=eigen(‘Matrix’!B4:EO147)

After that, press three keys
Ctrl+Shift+Enter altogether to ob-
tain the required Eigen values. The
result for d3/2 state has been shown in
Figure (13). The eigen value obtained is
= −10.461.

5. Eigen values for different states:
The bound state energies (i.e. the en-
ergies for which eigen values are neg-
ative), are obtained for different values
of ℓ and j as:
(a) For s-state, ℓ = 0 and j = 0.5 corre-
sponds to 1s1/2 state.
(b) For p-state, ℓ = 1 and j = 0.5, 1.5
corresponds to states 1p1/2 and 1p3/2.
The same procedure is repeated for
d, f , g, h, i etc. states to obtain all energy
states till any bound state is available.
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Figure 13: Initializing the parameters for the system

6 Appendix 2

In this section, the energy difference corre-
sponding to neutron and proton states of
doubly magic nuclei from 16

8 O to 310
126X are

given in tabular form.

• 16
8 O, 40

20Ca :

• 48
20Ca, 56

28Ni :

• 100
50 Sn, 132

50 Sn :

• 208
82 Pb and 310

126X :
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Table 2: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 16

8 O and 40
20Ca

16
8 O 40

20Ca
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
. . . . . . . . . . . . . . . . . . 1 f 5/2 −1.20 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2p1/2 −3.10 1.90 . . . . . .
. . . . . . . . . . . . . . . . . . 2p3/2 −5.42 2.32 . . . . . .
. . . . . . . . . . . . . . . . . . 1 f 7/2 −9.15 3.73 1 f 7/2 −2.33 . . .
. . . . . . . . . . . . . . . . . . 1d3/2 −14.28 5.13 1d3/2 −6.85 4.52
2s1/2 −3.03 . . . 2s1/2 −0.21 . . . 2s1/2 −15.54 1.26 2s1/2 −8.17 1.30
1d5/2 −5.25 2.22 1d5/2 −2.11 1.90 1d5/2 −19.54 4.00 1d5/2 −12.19 4.04
1p1/2 −12.74 7.49 1p1/2 −9.14 7.04 1p1/2 −26.99 7.45 1p1/2 −19.04 6.86
1p3/2 −17.85 5.11 1p3/2 −14.23 5.09 1p3/2 −29.55 2.56 1p3/2 −21.68 2.64
1s1/2 −30.73 12.88 1s1/2 −26.68 12.45 1s1/2 −38.90 9.35 1s1/2 −30.49 8.81

Table 3: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 48

20Ca and 56
28Ni

48
20Ca 56

28Ni
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
. . . . . . . . . . . . . . . . . . 3s1/2 −0.94 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2d5/2 −1.70 0.76 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1g9/2 −5.25 3.55 . . . . . . . . .
1 f 5/2 −1.87 . . . 1 f 5/2 −1.71 . . . 2p1/2 −8.32 3.07 . . . . . . . . .
2p1/2 −3.00 1.12 2p1/2 −2.38 0.66 1 f 5/2 −8.41 0.09 . . . . . . . . .
2p3/2 −4.90 1.90 2p3/2 −4.98 2.60 2p3/2 −10.56 2.15 2p3/2 −1.56 . . .
1 f 7/2 −8.33 3.43 1 f 7/2 −9.75 4.77 1 f 7/2 −14.96 4.40 1 f 7/2 −5.89 4.33
1d3/2 −13.58 5.26 1d3/2 −14.55 4.80 1d3/2 −20.35 5.39 1d3/2 −10.60 4.70
2s1/2 −14.19 0.61 2s1/2 −15.18 0.63 2s1/2 −20.51 0.16 2s1/2 −10.71 0.11
1d5/2 −17.75 3.56 1d5/2 −19.57 4.39 1d5/2 −24.33 3.82 1d5/2 −14.72 4.01
1p1/2 −24.78 7.03 1p1/2 −26.48 6.90 1p1/2 −31.32 6.99 1p1/2 −21.06 6.34
1p3/2 −26.76 1.98 1p3/2 −28.85 2.37 1p3/2 −33.14 1.83 1p3/2 −22.99 1.93
1s1/2 −35.08 8.32 1s1/2 −37.31 8.46 1s1/2 −41.18 8.04 1s1/2 −30.42 7.43
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Table 4: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 100

50 Sn, 132
50 Sn

100
50 Sn 132

50 Sn
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
1h9/2 −0.21 . . . . . . . . . . . . 3p1/2 −0.57 . . . . . . . . . . . .
3p1/2 −0.31 0.10 . . . . . . . . . 1h9/2 −0.94 0.37 . . . . . . . . .
3p3/2 −1.36 1.05 . . . . . . . . . 3p3/2 −1.34 0.40 . . . . . . . . .
2 f 7/2 −3.08 1.72 . . . . . . . . . 2 f 7/2 −2.61 1.28 2 f 7/2 −1.18 . . .
1h11/2 −8.70 5.62 . . . . . . . . . 1h11/2 −6.83 4.22 2d3/2 −6.43 5.25
2d3/2 −8.72 0.02 . . . . . . . . . 2d3/2 −7.74 0.91 3s1/2 −6.56 0.13
3s1/2 −9.27 0.55 . . . . . . . . . 3s1/2 −7.99 0.24 1h11/2 −7.32 0.76
1g7/2 −11.08 1.81 . . . . . . . . . 2d5/2 −9.76 1.78 2d5/2 −9.10 1.78
2d5/2 −11.63 0.55 . . . . . . . . . 1g7/2 −9.79 0.02 1g7/2 −9.37 0.26
1g9/2 −17.13 5.50 1g9/2 −3.06 . . . 1g9/2 −14.01 4.22 1g9/2 −14.77 5.40
2p1/2 −18.87 1.74 2p1/2 −4.23 1.17 2p1/2 −16.06 2.05 2p1/2 −15.58 0.81
2p3/2 −20.44 1.57 2p3/2 −5.05 0.83 2p3/2 −17.15 1.09 2p3/2 −16.97 1.39
1 f 5/2 −21.22 0.79 1 f 5/2 −8.14 3.09 1 f 5/2 −18.07 0.93 1 f 5/2 −18.24 1.27
1 f 7/2 −25.09 3.87 1 f 7/2 −10.39 2.25 1 f 7/2 −20.78 2.71 1 f 7/2 −21.70 3.47
2s1/2 −29.17 4.08 2s1/2 −12.76 2.37 2s1/2 −24.46 3.68 2s1/2 −24.61 2.91
1d3/2 −30.36 1.19 1d3/2 −15.66 2.89 1d3/2 −25.57 1.11 1d3/2 −26.11 1.50
1d5/2 −32.48 2.11 1d5/2 −16.95 1.29 1d5/2 −27.06 1.49 1d5/2 −28.04 1.93
1p1/2 −38.29 5.81 1p1/2 −21.94 4.99 1p1/2 −32.10 5.04 1p1/2 −32.83 4.78
1p3/2 −39.16 0.88 1p3/2 −22.52 0.58 1p3/2 −32.72 0.62 1p3/2 −33.65 0.83
1s1/2 −44.97 5.81 1s1/2 −26.81 4.29 1s1/2 −37.63 4.90 1s1/2 −38.33 4.68
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Table 5: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 208

82 Pb and 310
126X

208
82 Pb 310

126X
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
. . . . . . . . . . . . . . . . . . 3 f 5/2 −1.40 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 4p1/2 −1.43 0.03 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 4p3/2 −2.00 0.58 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2h9/2 −2.43 0.42 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 3 f 7/2 −3.05 0.62 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1k17/2 −4.83 1.78 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2h11/2 −5.57 0.74 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1j13/2 −5.90 0.33 . . . . . . . . .
3d3/2 −0.82 . . . . . . . . . . . . 3d3/2 −7.83 1.93 . . . . . . . . .
2g7/2 −1.01 0.20 . . . . . . . . . 4s1/2 −7.88 0.05 . . . . . . . . .
4s1/2 −1.41 0.40 . . . . . . . . . 3d5/2 −9.07 1.19 . . . . . . . . .
3d5/2 −2.07 0.67 . . . . . . . . . 2g7/2 −9.21 0.14 . . . . . . . . .
1j15/2 −2.24 0.16 . . . . . . . . . 1j15/2 −10.76 1.55 . . . . . . . . .
1i11/2 −3.49 1.25 . . . . . . . . . 2g9/2 −11.59 0.83 . . . . . . . . .
2g9/2 −4.04 0.55 . . . . . . . . . 1i11/2 −12.75 1.16 . . . . . . . . .
3p1/2 −7.55 3.51 . . . . . . . . . 3p1/2 −14.64 1.89 . . . . . . . . .
2 f 5/2 −8.36 0.81 3p3/2 −0.28 . . . 3p3/2 −15.33 0.69 . . . . . . . . .
3p3/2 −8.45 0.09 2 f 5/2 −0.37 0.09 2 f 5/2 −15.85 0.51 2 f 5/2 −0.31 . . .
1i13/2 −8.90 0.45 1i13/2 −2.95 2.58 1i13/2 −16.40 0.55 2 f 7/2 −2.36 2.04
2 f 7/2 −10.64 1.74 2 f 7/2 −3.26 0.31 2 f 7/2 −17.48 1.08 1i13/2 −3.05 0.69
1h9/2 −11.28 0.64 1h9/2 −4.26 1.00 1h9/2 −19.10 1.62 1h9/2 −4.68 1.63
1h11/2 −15.24 3.96 3s1/2 −7.57 3.32 3s1/2 −21.61 2.51 3s1/2 −5.63 0.95
3s1/2 −15.44 0.21 2d3/2 −8.09 0.52 1h11 −21.70 0.09 ih11/2 −6.52 0.88
2d3/2 −15.76 0.32 1h11/2 −9.29 1.20 2d3/2 −22.16 0.46 2d3/2 −7.75 1.24
2d5/2 −17.20 1.44 2d5/2 −9.89 0.61 2d5/2 −23.14 0.98 2d5/2 −8.13 0.37
1g7/2 −18.50 1.30 1g7/2 −11.71 1.81 1g7/2 −24.91 1.76 1g7/2 −10.41 2.28
1g9/2 −21.20 2.70 1g9/2 −15.18 3.47 1g9/2 −26.63 1.73 2p1/2 −12.21 1.80
2p1/2 −22.87 1.67 2p1/2 −15.36 0.18 2p1/2 −28.05 1.41 1g9/2 −12.77 0.57
2p3/2 −23.59 0.72 2p3/2 −16.25 0.89 2p3/2 −28.52 0.47 2p3/2 −12.81 0.03
1 f 5/2 −25.07 1.49 1 f 5/2 −18.37 2.12 1 f 5/2 −30.12 1.61 1 f 5/2 −15.45 2.64
1 f 7/2 −26.74 1.66 1 f 7/2 −20.56 2.19 1 f 7/2 −31.16 1.04 1 f 7/2 −16.95 1.50
2s1/2 −29.67 2.94 2s1/2 −22.26 1.70 2s1/2 −33.54 2.37 2s1/2 −17.47 0.53
1d3/2 −30.90 1.22 1d3/2 −24.16 1.89 1d3/2 −34.70 1.16 1d3/2 −19.73 2.26
1d5/2 −31.78 0.88 1d5/2 −25.37 1.21 1d5/2 −35.24 0.54 1d5/2 −20.57 0.84
1p1/2 −35.89 4.11 1p1/2 −28.95 3.59 1p1/2 −38.59 3.35 1p1/2 −23.17 2.60
1p3/2 −36.25 0.36 1p3/2 −29.47 0.52 1p3/2 −38.80 0.21 1p3/2 −23.55 0.37
1s1/2 −40.03 3.78 1s1/2 −32.70 3.23 1s1/2 −41.78 2.97 1s1/2 −25.70 2.15
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L. T. Baby, D. Bazin, B. A. Brown, C. M.
Campbell et al. “Magic’nucleus 42Si.”
Nature 435, no. 7044 (2005): 922-924.

[9] Steppenbeck, David, Satoshi Takeuchi,
Nori Aoi, P. Doornenbal, Masafumi
Matsushita, H. Wang, Hidetada Baba
et al. “Evidence for a new nuclear
‘magic number’from the level structure
of 54Ca.” Nature 502, no. 7470 (2013):
207-210.

[10] Janssens, Robert VF. “Unexpected dou-
bly magic nucleus.” Nature 459, no.
7250 (2009): 1069-1070.

[11] Alzubadi, Ali A., and Redhab
A. Allawi. ”Investigation of the
magicity in some even–even Ca
isotopes by using shell model and
Hartree–Fock–Bogoliubov method.”
Indian Journal of Physics 96, no. 4
(2022): 1205-1216.

[12] https://www.ugc.ac.in/pdfnews/

7870779_B.SC.PROGRAM-PHYSICS.pdf.

[13] Krane, S.Kenneth, Introductory Nuclear
Physics(Jon Wiley & Sons, New York,
1988).

[14] Samuel S.M. Wong, Introductory nu-
clear physics(New Jersey: Prentice Hall,
1990).

[15] R. D. Woods and D. S. Saxon, ”Diffuse
Surface Optical Model for Nucleon-
Nuclei Scattering”. Physical Review. 95
(2): 577–578(1954).

39/1/1 21 www.physedn.in

https://www.ugc.ac.in/pdfnews/7870779_B.SC.PROGRAM-PHYSICS.pdf
https://www.ugc.ac.in/pdfnews/7870779_B.SC.PROGRAM-PHYSICS.pdf


Physics Education January-March 2025

[16] David Hestenes. “Toward a modeling
theory of physics instruction.” Amer-
ican journal of physics 55, 5, 440-454
(1987).

[17] Jugdutt, B. A., & Marsiglio, F. (2013).
Solving for three-dimensional central
potentials using numerical matrix
methods. American Journal of Physics,
81(5), 343-350.

[18] O. S. K. S. Sastri, Aditi Sharma, Swapna
Gora, and Richa Sharma. “Compar-
ative Analysis of Woods-Saxon and
Yukawa Model Nuclear Potentials.”
Journal of Nuclear Physics, Material
Sciences, Radiation and Applications 9,
1, 73-79 (2021).

[19] Aage Bohr and Ben R. Mottelson,
Nuclear Structure (World Scien-
tific,Singapore, 1998).

[20] Aditi Sharma and O. S. K. S. Sastri,
“Numerical simulation of quantum an-

harmonic oscillator, embedded within
an infinite square well potential, by ma-
trix methods using gnumeric spread-
sheet”, European Journal of Physics
(2020):1-20.

[21] Mohandas Pillai, Joshua Goglio, and
Thad G. Walker, ”Matrix Numerov
Method for Solving Schrödinger’s
Equation”, American Journal of
Physics. 80, 1017 (2012).

[22] N. Schwierz, I. Wiedenhover, and A.
Volya, “Parameterization of the Woods-
Saxon potential for shell-model calcula-
tions,” preprint arXiv:0709.3525 (2007).

[23] Awasthi, Shikha, Aditi Sharma,
Swapna Gora, and O. S. K. S. Sas-
tri. ”Numerical Simulation of Shell
Model Single Particle Energy States
using Matrix Numerov Method in
Gnumeric Worksheet.” arXiv preprint
arXiv:2205.10335 (2022).

39/1/1 22 www.physedn.in


	Introduction
	Simulation Methodology
	Modeling the interaction using Woods-Saxon (WS)potential:
	Numerical Technique used :
	Central Divided Difference (CDD) Method for second order derivative:
	CDD Method by taking TISE as Matrix equation:

	Implementation in Gnumeric worksheet :

	Computational Results and Interpretation
	Categorizing the nuclei
	Light nuclei : 168O to 5628Ni
	168O :
	4020Ca :
	4820Ca :
	5628Ni :

	Medium range nuclei : 10050Sn to 13250Sn
	10050Sn :
	13250Sn :

	Heavy and Super-heavy range nuclei 20882Pb and 310126X :
	20882Pb :
	310126X :


	Conclusions
	Appendix 1
	Appendix 2
	References

