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Abstract

The magic numbers associated with shell
closures at the B-stability line are a well-
established concept.  The experimental
observation of highly neutron-rich nuclei,
such as 2*O, 2Si, and °*Ca, exhibiting re-
markable stability has inspired a search for
new magic and semi-magic numbers based
on sub-shell closures. The purpose of this
work is to guide graduate-level students in
analyzing possible sub-shell closures that
could result in magic and semi-magic num-
bers [1]], based on the single-particle energy
states of the nuclear shell model. The analy-
sis focuses on doubly magic nuclei near the
B-stability line, ranging from 21360 to %2X,
by classifying them into various categories-
light, medium, heavy, and super-heavy
nuclei; to deduce potential magic and
semi-magic numbers for neutron number
(N) and proton number (Z) [2]. The stability

of nuclei with N = 14,34,40 and Z = 14,34

has been confirmed, while nuclei with
N = 6,16,18,32,58,64,92,100,136,164,
and 172, as well as Z = 18,58, and 76, are
predicted to exhibit stability. This analysis
is particularly helpful for undergraduate
(UG) students to understand why gaps
exist between energy levels according to the
single-particle shell model scheme.

Keywords: Magic and Semi-magic num-
bers, Doubly magic nuclei, Shell model,
Central Divided Difference (CDD) Method,

Gnumeric.

1 Introduction

It is a well-known fact that the atomic nu-
clei exhibit similar shell structure as that
of atomic shells with neutrons and protons
forming the shells. These discrete shells are
the quantum states of neutrons and protons
which are most important in understand-
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ing the structure of a nucleus. The large
gaps between these single particle energy
states exists when there is a shell closure
at N or Z equal to 2, 8, 20, 28, 50, 82, 126
and 184 (for neutrons only) i.e the so called
‘magic numbers’. The nuclei which have ei-
ther proton or neutron equal to magic num-
ber are known as ‘magic nuclei” and the nu-
clei which have both proton and neutron
equal to magic number are known as ‘dou-
bly magic nuclei’. Due to the shell gaps
in energy states for filled shells at differ-
ent magic numbers, the nucleons are more
tightly bound to the nucleus causing extra
stability to the nucleus as compared to the
adjacent nuclei [3]. Also magic nuclei are
less deformed as compared to their neigh-
bouring nuclei. This results in abundance of
elements with neutron number (N) = magic
number. But in recent years, the studies
have revealed that in some cases the usual
shell closures disappear and the new shell
closures appear [4], [5]. The appearance
and disappearance of these Magic numbers
may depend on different mass regions un-
der consideration. The discovery of new
magic numbers [6] may help in deciding
the existence limit of Superheavy nuclei [7].
Many Magic and Semi-Magic numbers are
predicted theoretically [ptu] and experimen-
tally e.g 3O, 12Si, 55Ca etc. [8,09,[10] by many
groups using separation energy plots, pair-
ing energy plots, binding energy investiga-
tions and by using different methods such
as Hartree-Fock-Bogoliubov methods [11].

The syllabus of graduate level [12, 13} 14] in-

cludes Nuclear Shell model and magic num-
bers, but it will be easy for students to grasp
the essence of how energy levels of different
nuclei are formed and how are magic num-
bers obtained from them. In this work, we
are trying to deduce magic and semi-magic
numbers using single particle energy states
of neutron and proton [1] for doubly magic
nuclei from (20 to 310X in quite an easy man-
ner which is within the approach of gradu-
ate level students. This will provide a better
understanding for graduate level students
about how the single particle energy lev-
els are formed within a nucleus according
to nuclear Shell model and also how the
magic numbers can be realised from them.
Neutron and proton single-particle energy
states were determined by solving the time-
independent Schrodinger equation, with the
Woods-Saxon potential [15] serving as the
mean-field. The obtained energy states for
neutrons and protons are used to predict the
Magic and Semi-Magic numbers by calculat-
ing the gaps between the states. The Shell
model [3] is very effective model to obtain
the ground state energies for all nuclei. The
motivation behind this work is how many
Magic and Semi-Magic numbers can be de-
duced by using the single particle energy
states for various neutron number (N) and
proton number (Z).

In the following section, we present a brief
overview of the simulation methodology
proposed by D. Hestenes [16], which utilizes
the numerical matrix diagonalization tech-

nique [17] to determine the single-particle
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energy states of neutrons and protons in
doubly magic nuclei [18]. Section 3 provides
the simulation results along with a detailed
discussion. Finally, Section 4 summarizes

our conclusions.

2 Simulation Methodology

2.1 Modeling the interaction using
Woods-Saxon (WS)potential:

The interaction between nucleons is mod-
elled using a mean field potential i.e Woods-
Saxon potential or a simple rounded square
well potential. The Woods-Saxon potential
is able to predict some magic numbers, but
inclusion of Spin-orbit potential is necessary
The
Spin-orbit potential is proportional to the

to obtain the entire magic numbers.

derivative of the mean field potential.

The modeling aids in the reduction of the
two-body problem to a one-body problem,
with the reduced mass of the system ac-
quired as a bound state of the central po-
tential, which is best expressed in spheri-
cal polar co-ordinates. The central equation
governing the dynamics at the microscopic
domain is the Time-Dependent Schrédinger
Equation (TDSE) which through separa-
tion of variables in and t results in Time-
Independent Schrodinger Equation (TISE)
[18]. The radial equation governing the sys-
tem for ¢ = 0 is given by

Now the effective potential experienced by
a neutron or a proton is given by:

Verp(r)u(r) = Veg(r) + Vi(r) )
Where, Vif(r) is the centrifugal potential
given by:

0(0 4 1)H2c2
2uc2r?

ch(i’) = 3)

Here, u denotes the reduced mass [1], which
varies between the neutron and the proton.
The constant 7ic has a value of 197.327 MeV-
fm.

My X (Zxmp+(N—1)xmy)
§= (Zxmp+Nxmy)
(

for neutron

mp X ((Z—=1)xmp+Nxmy)
Zxmp+Nximy) 4

for proton

(4)
Here, m, = 938.272 and m, = 939.565 are
masses of proton and neutron respectively,
in units of MeV/c?. Vj(r) is the net inter-
action potential; for a neutron, V,,(r) and a
proton, V() respectively given as:

Va(r) = Viws(r) + Vis(r) (5)
Vp(r) = Viws(r) + Vis(r) + Ve(r) - (6)

The mean-field potential is modeled as [1]:
¢ Woods-Saxon

potential  (rounded

square-well potential) given by

Vo
Vi —
"0 = T e (5

where V) is the depth of the well.

(7)

(—514+33((N—2)/A) MeV,
for neutrons

4
—51—33((N—2)/A) MeV,

12 d2u(r) \ for protons
_Z dr? + Veff(”)”(”) = Eu(r) (1) (8)
39/1/1 www.physedn.in
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Where, R = RgA'/3 (Rg = 1.28) is the
radius of the nucleus, a is surface dif-
fuseness parameter (taken = 0.66) [19]

* The Spin-orbit potential is given by

1

a1
1+exp (155)

»
Vis(r) = V1 (EO) rdr

] (L.S)
©)

Here, the spin-orbit coupling term is
givenby L-S = [j(j+1) —(({+1) —
3/ 4],h2, where / is the orbital angular
momentum quantum number, j = £+
represents the total angular momentum
quantum number and s is spin angular
momentum quantum number (= 1/2
for nucleons). V; and rg (V7 = —0.44V)
and rp = 0.90 [1]]) are the proportional-
ity constants.

For protons, the Coulomb interaction is

included given by:
(Z—1)e?
Vc(?") = ﬁ, 2 for ' 2 RC
—1)e 3
—47T€ORC |:§ - ;T%], fOl‘ 7’ S RC
(10)

Here, R, denotes the nuclear charge ra-
dius, which is assumed to be ~ radius
of the nucleus. This potential is multi-
plied and divided by electron rest mass
energy, m.c> = 0.511 MeV to rephrase it
in MeV units. The rephrased potential
is given by:

the
Equation in

Equation Time-

Independent

represents
Schrodinger
the form of an eigenvalue problem,
Hu(r) = Eu(r), where H denotes the
Hamiltonian operator. The radial wave
function u(r) must satisfy the boundary
condition u(0) = 0 and decay to zero as

r — oo to ensure it is properly normalized.

2.2 Numerical Technique used :

When deciding to choose a numerical tech-
nique for implementaion, there are three
crucial factors to consider i.e stability, ac-
curacy, and efficiency. The choice of these
techniques also depends on computational
efforts and computational time required.
In current work, we chose to work with
Central divided difference technique (CDD).
Due to the truncation of Taylor series to two
terms, the accuracy of CDD method is of
order O(h*). CDD method is the simplest
and most appealing matrix diagonalisation
method which can be easily implemented by
students in computer.

So, the main idea behind choosing CDD
technique is that we want these calculations
accessible to UG level students. Working in
free open source software (FOSS) like Gnu-
meric worksheets is a best way to make stu-
dents understand the problem easily [20].

( (Z—l)*z.r839*0.511, Also Gnumeric has an additional advantage
forr > R, as compared to other worksheet environ-
Ve(r) = (Z—1)%2.83940.511 [3 2 ] ments, to obtain eigen values by giving a
R 2 2R:) simple formula ‘eigen()’.
forr < R, Unlike other numerical techniques like Ma-
) (11)  trix Methods (MM) [17] using Sine basis
39/1/1 4 www.physedn.in
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which can not be solved in Gnumeric wor-
sheets due to inabilty to solve complex inte-
grals and Numerov Matrix Method (NMM)
[21], which requires more computational
time and effort, CDD is simple method with
three easy steps and can be easily imple-
mented in spreadsheets. Also, since the
steps to obtain eigenvalues for both MM and
NMM methods are more, therefore these
methods have a slightly lengthier algorithm
as compared to CDD method. Hence ob-
taining solution through CDD method re-
quires less computational time and effort,
and therefore is a good choice for implemen-
tation in UG lab projects.

2.2.1 Central Divided Difference (CDD)
Method for second order
derivative:

The Taylor series expansion of a function
U(x) about the point x; is expressed as fol-
lows:

flx) = fx) + f(x) (x — xj)+

L) (x— x> + ..

o (12)

If the point x lies sufficiently close to x;, the
Taylor series converges rapidly, allowing us
to retain only the leading terms. By setting
X = xj+ h, where h is a small step size, the

series can be re-expressed in terms of / as:

Fx 1) = Fxp) + F () o ()2
+O0(h) + ... (13)

Similarly, the Taylor Series for a point x =
xj — h would be

Fxi— 1) = £05) = £ () + 5 f" ()12
—0O(h3) +... (14)

Adding Eqns.(13) and (14), we get

flxj+h)+ f(xj—h) =2f(xj) + f(x;)h*
+O(h*) + ... (15)

So, expressing x; + h as xjy1 and x; — I as
xj_1, second derivative for the function at
point x; is obtained as

flxj—1) —2f(xj) + f(xj41)

f//(xj) - 12 (16)

accurate to O(h?).

Substituting Eq.(16) in Eq.(12) and rearrang-
ing, the wave function ¢ can be determined
at points xj,1 in au as:

Y(+1) =2¢(j) —p(j—1)
— 2l (E-V(ji)v(j), j=2,3,..N.
(17)

The wavefunction ¥ (j) at all values of x; (j =
3,4,...,N) can be determined by choosing
appropriate values for (1) and ¢(2), for a
particular value of energy E.

2.2.2 CDD Method by taking TISE as
Matrix equation:

TISE can also be expressed as a tridiagonal
matrix equation by writing N — 2 simulta-
neous equations that are the result of ap-
plying Eq. to all N — 2 intermediate
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points, j = 2,3,..., N — 1, within the poten-
tial well. Expressing the second derivative
of the wave function for intermediate points

x]-, as
dz 1) =2 )+ .
@’P(xj) _ p(xj1) ’ubh(zxj) P(xj+1)

(18)
and substituting into Time Independent
Schrodinger Equation written as eigen-
value equation

n d?
Hy() = — 1 P v ) = Ey(y)
(19)
We obtain,
h? h?
— 5 P xi-1) + (W + V(xj)> P(x))
hZ
- WIP(XJ'H) = E¢(xj).
(20)

where E denotes the eigenvalues and ¢(x)
represents the corresponding eigenfunc-
tions. By letting V(x;) = V;, ¥(x;) = ¢;,
and introducing

hZ
fi= g tVi=f+Vvp
hz
g:—mz—f/l (21)
the equation simplifies to:
8¢j-1+ figj + 8¥j+1 = Evpy,
j=23,...,N=-1. (22)

Also, 1 = 0 and ¥y = 0, the following
equations result for j =2,3,...,N — 1 as:

fopo + g3 + 0Py + ... + 0Ny _3 + Oypy_2+

OYyn—_1=Ep, j=2,

Yo+ f33 4+ s + ... + 0n_3 + OPN_o+

Oyn—_1=Ey3, j=3,

0 + 093 +09Ps + ... + gPYN-—3 + fN2PN-_—2+
SYn—1=E¢pn_2, j=N-2,

0y +0y3 + 0y + ... +0PN_3 + gPN_—2+
fN-1YN—1 =EyYn_1, j=N-1

Rewriting these equations in matrix form :

£, ¢ 0...0 0 0 ¥
g f538 -0 0 0 Y3
0 00 g fn—2 g PYN-2
0 00 0 ¢ fn-1] [¥N-1]

T

U3
YN
[ PN-1]

which may be concisely expressed as

Hn—o)x(N—2)P(N-2)x1 = EP(n—2)x1 (23)
In Eq. (23), the Hamiltonian matrix is a tridi-

agonal symmetric matrix and is solved to
obtain (N — 2) eigen functions and their cor-
responding eigen functions.
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2.3 Implementation in Gnumeric
worksheet :

While implementing in Gnumeric work-
sheet, the step by step procedure to solve
Woods-Saxon potential using CDD method
is required. An algorithm which will help
students to understand the procedure, how
to obtain single particle energy states is
given below in Fig.(I). In supplementary
material (Appendix 1), the procedure to
solve the given Algorithm for proton states
of doubly magic nucleus 3$Ni is given in
Gnumeric worksheet, which can be easily
reproduced. The energy level sequence for
all doubly magic nuclei starting from ;O to
19X can be obtained by following the pro-
cedure given in Appendix 1.

3 Computational Results and

Interpretation

The model parameters have been obtained
earlier by our group [1] by using Varia-
tional Monte Carlo (VMC) technique in tan-
dem with Matrix method [17] and are uni-
versally applicable to all the nuclei from
lighter to heavy region. The energy level se-
quence for all the doubly magic nuclei have
been obtained by solving TISE using CDD
method and is in very good agreement with
our previous results using matrix Numerov
method [21] and also with experimentally
available data [22]. To validate our process,
the comparison of numerical results (using
CDD method) with our previuos results [23]
along with experimental results of doubly

magic nucleus 30Ca are given in Table .

3.1 Categorizing the nuclei

The gap between energy levels varies de-
pending on the mass region under consid-
eration. For lighter nuclei, the lower magic
numbers exhibit larger energy gaps. As we
move toward heavier nuclei, the energy gap
between the same energy levels decreases,
as demonstrated in the plot of energy dif-
ferences between neutron states of various
doubly magic nuclei for a specific magic
number (Fig. . This trend occurs because,
in heavier nuclei, the lower energy levels be-
come inert and are thus suppressed, reduc-
ing the gap between filled shells.

To determine the magic and semi-magic
numbers from the individual single-particle
energy states of protons and neutrons, the
doubly magic nuclei have been categorized
into distinct mass ranges: light, medium,
heavy, and super-heavy. This categorization
ensures that the magic numbers are derived
appropriately according to the specific mass
region under investigation.

A key observation from Fig. 2| is the pres-
ence of pronounced energy gaps between
consecutive single-particle states, which are
crucial for identifying magic numbers. Ac-
cording to the nuclear shell model frame-
work [19], such gaps, typically exceed-
ing approximately 1 MeV; indicate shell
closures that correspond to magic num-
bers. These significant energy separations
reflect enhanced nuclear stability arising

39/1/1
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Algorithm to Obtain Single Particle Energy State

@itialisation of Parametera

|

‘ Physical System Parameters }—‘

l

’—{ Algorithm Parameters }1—

Object variables
Interaction variables
Input variables
Other Variables

Parameters used to
proceed algorithm.
e.g. limiting the region of
interest and step size h

!

Defining Potential
V(r) = Vws + Vc + Ve + Vis
using above parameters

I

Solve TISE using numerical
method

I

Obtain Eigen value for TISE
HW = EW

Matching with
experimental data for
ground state
configuration

Yes

Change step size h

Generate the
energies for different
values of / &

Obtain the single particle
energy sequence for a
particular nucleus

Figure 1: Algorithm to obtain single particle energy states

from filled nucleon shells, as nucleons in
closed shells require a substantial amount of
energy to be excited to higher states.

The energy differences between states have
been calculated for both neutron and pro-
ton levels and are presented in Appendix

2. The plots of energy differences (in MeV)
with respect to the energy level sequence for
various doubly magic nuclei clearly demon-
strate that at magic and semi-magic num-
bers, the gap between filled shells is sig-
nificantly larger compared to adjacent lev-
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Table 1: Comparison of single-particle energy levels (in MeV) for protons and neutrons in
the doubly magic nucleus 3)Ca, as obtained in the present study (via the CDD method), with
corresponding experimental data [22] and previously reported numerical results from our
group [23] (using the Matrix Numerov method)

States Proton states (MeV) States Neutron states (MeV)
Exp. Numerical values Exp. Numerical values
Ref[22] NMM]J21] Present work Ref[22] NMM][21] Present work
1d5/2 —15.07 —12.19 —12.19 1d5/2 —22.39 —19.54 —19.52
2s1/2 —10.92 —8.14 —-8.17 2s1/2 —18.19 —15.54 —15.54
1d3/2  —8.33 —6.85 —6.85 1d3/2 —15.64 —14.28 —14.26
1f7/2  —1.09 —2.33 —2.33 1f7/2  —8.36 -9.15 —9.12
2p3/2 0.69 1.00 0.98 2p3/2  —5.84 —5.42 —5.42
2pl/2 2.38 294 293 2p1/2 —4.20 —3.10 —3.09
1/5/2 4.96 5.37 5.37 1f5/2 —1.56 —1.20 -1.17
14
] —_—— magl:c 2
3 e megie20
a 101 —o—— magic 28
o — ma91:c 50
v
% 6_ —=—— magic 184
5 4
0:'|'\'|'|'|‘|'|'\'|'|‘|‘|'|'|'|'|‘|‘|'
0 20 40 60 80 100 120 140 160 180
Neutron number (N)
Figure 2: Energy difference vs number of neutrons for magic numbers

2,8,20,28,50,82,125,184

els. This graphical representation helps stu- 3.2  Light nuclei : [°0 to 3$Ni

dents develop a clearer understanding of

the structural gaps in the energy level se-

quence, offering critical insights into the

single-particle shell model framework. Doubly magic nuclei i.e ;°0, 39Ca, 53Ca and
50 Ni in lighter mass region are very effective
to study the magic numbers 2, 8, 20 and 28.

39/1/1 9 www.physedn.in



Physics Education

January-March 2025

32.1 10

If we take the case of 0 which is at N =
Z = 8i.e the B-stability line, the magic num-
bers 2 and 8 are clearly visible for N and Z
as the states 1s1,, and 1p;/, show the filled
shells with neutron and proton equal to 2
and 8. Along with these, there is also a sig-
nificant energy gap (although smaller than
gap for 2 and 8) for state 1p3,, showing 6
as the promising contender for semi-magic
number.

3.2.2 3Ca:

For ‘218Ca, along with magic numbers 2,8,20
for N and Z at energy states 1s1,5, 1py,»
and 1ds, respectively the state 1d5,, shows
14 as the candidate for magic number, since
the energy gap is comparable to the energy
gap for magic number 20. After extrapo-
lating our data, we can also observe magic
number 28 at energy level 1f;/, for neutron
states. Levels 1p3/», 2p3/2 and 2pq/, also
shows energy gap approximately half the
gap for magic numbers and predict 6 (inter-
polation), 32 and 34 (extrapolation) as semi-
magic numbers.

3.2.3 8Ca:

38Ca is another isotope of Ca having 28 neu-
trons and 20 protons. The magic numbers
2, 8, 20 and 28 are obtained at states 1sq,;,
1p1 /2, 1d3 /5 and 1f7,, respectively for both
N and Z. The state 1d5,, shows the shell
gap comparable to the state 17,5, again sup-
porting 14 to be the magic number. On ex-

trapolating the data for proton and neutron
states, we get 32 as the semi-magic number
with shell gap comparable to the state 1p3/,
showing 6 as the possible semi-magic num-
ber.

3.2.4 ggNi :

0Ni is at the B-stability line with N = Z =
28. The magic numbers obtained for both
neutrons N and protons Z states 1sq /5, 1p1 /2,
1ds /5 and 1f7,, are respectively 2, 8, 20 and
28. 14 is again showing its magic charac-
ter at state 1f7,,. On extrapolating our data
for neutron states, we get 32 as semi-magic
numbers and 40 and 50 as magic number.
Semi-magic behaviour of number 6 is again
visible here at state 1p3 /5.

3.3 Medium range nuclei : égOSn to %82571

3.3.1 1006n :

190Sn is again at B-stability line with N =

/ =
between filled shells for neutrons and pro-

50. On observing the energy gaps

tons, we get different magic and semi-magic
numbers for N and Z. Magic numbers for Z
=2,8,18,20, 28 and 34 are observed at states
1s1/2, 1p1/2, 1ds3 2, 25172, 1f7/2 and 1f5,, re-
spectively. For N, the magic numbers ob-
served are 2, 8, 14, 20, 28, 50 and after extrap-
olation 82 magic number was also observed.
Along with magic numbers, few semi-magic
numbers are also observed for N = 16, 38,40,
64 and 90 and for Z = 14.

39/1/1
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Energy Difference (MeV)

2
8 8
6 | I I
151/2 1p3/2 1p1/2

m 0-16 Proton
M 0-16 Neutron

1d5/2

Energy States

Figure 3: Separation in energy between consecutive single-particle states of °0

Energy Difference (MeV)
S e s oo e e

1512 1p3/2 1p172 1d5/2 172

Energy States

17/2

1 Ca-40Proton

1 Ca-40 Neutron

1,
8
8
n,
u 1 28
66
II II I I i M

%72

12

1 Ca-48 Proton M Ca-48 Neutron

8g
0, »
14
14 28
32
¢ I I 32
II T II Is

15172 1p32 112 1d5/2 25172 1d3/2 1712 2p3/2 12

Energy Difference (MeV)
. T

Energy States

Figure 4: Separation in energy between consecutive single-particle states of (i) 59Ca and (ii)

48
50Ca

Energy Difference (MeV)
© m M ow A ;oo N e e

151/2 1p3/2

2
2 8
| Il I‘

1p1/2

14
14

1d5/2

21/2

m Ni-56 Proton
o Ni-56 Neutron

28 5
50
40
32 I
1d3/2 17/2 2p3/2 FS/Z 2p1/2 1g9/2 2d5/2

Energy States

Figure 5: Separation in energy between consecutive single-particle states of 53Ni

3.3.2 B2gu:

For 13251, along with already existing magic

at state 2p;». Semi-magic numbers for N
and Z equal to 14 and 64 are observed at
states 1ds/, and 2ds,, respectively. 18, 34

numbers 2.8. 20, 28, 50 and 82 (extrapola- and 38 are observed semi-magic numbers

tion), Magic number for N = 40 is observed

for Z at states 1d5 /5, 1f5/2 and 2p3 /2 respec-

39/1/1
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tively.

3.4 Heavy and Super-heavy range nuclei
208 310y .
g Pband 5, X :

3.4.1 2P

The single particle neutron and proton en-
ergy states for 39°Pb show some new magic
numbers. For heavy and super-heavy range,
the already observed magic and semi magic
numbers in the light and medium mass re-
gion are also observed for both N and Z.
But here, large energy gaps are observed for
magic numbers Z= 34 and 114 and N = 34,
40, 64, 100 and 126. Semi-magic numbers
are observed for Z= 18, 58 and N= 18, 58,

148 and 164 (extrapolation).

3.42 30X :

For 310Sn, Z= 18, 34, 58,92, 114 show large
energy gaps along with already existing
magic numbers. Some new magic numbers
are observed at filled shells 1hg 5, 1j15/2 and
3d3,, and 1kq7/, for N=92, 164, 184 and 228
along with 34, 58 and 126. Semi-magic num-
bers are observed for Z= 76 and N=100, 136
and 172.

4 Conclusions

In this paper, an effort have been made to
provide a simple procedure for students at
graduate level, to understand the concept of
magic and semi-magic number by analysing
the energy gap between consecutive states
of doubly magic nuclei ({20 to 332X). A step

wise procedure to calculate single particle
energy states have also been given. Study-
ing energy levels of doubly magic nuclei
in various mass regions within the Shell
model, enables to explain some of the ob-
served sub-shell closures leading to stabil-
ity in neutron rich nuclei. By calculating
the energy difference or energy gap between
consecutive energy states, we can deduce
magic and semi-magic numbers by consid-
ering that the energy difference between
two consecutive states must be greater than
1 MeV. It is observed that few numbers can
be considered as the magic numbers e.g. N
=14, 34, 40, 164, 184 and 228, Z = 14, 34, 92
and 114 along with already defined magic
numbers and some new semi-magic num-
bers can also be deduced e.g. N = 6, 16, 18,
32, 40, 58, 64, 92, 100, 136, 164 and 172, Z=
18, 58 and 76 by analysing the energy gaps
between filled shells of the doubly magic
nuclei. The results presented here depends
only on the study done for doubly magic nu-
clei. The study can be further enhanced by
taking more nuclei in different mass region.
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Figure 6: Separation in energy between consecutive single-particle states of 13°Sn
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Figure 7: Separation in energy between consecutive single-particle states of 1325n
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Figure 8: Separation in energy between consecutive single-particle states of 23° Pb

5 A |' ] . G . 1 ] ’ -I . .

given below. The Woods-Saxon potential
The various steps involved to implement

have been taken as the as the interaction po-
Central divided difference method (CDD)
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Figure 9: Separation in energy between consecutive single-particle states of 339X

tential along with spin-orbit coupling.

1. Initialisation of parameters: In order to
initialise, we will first describe two set
of parameters:

(a) Physical system parameters:

Object and interaction variables will be
the inputs and state variables are the
outputs, which we want to determine.
Figure (1) shows object variables, in-
teraction variables, algorithm variables,
input variables and other variables re-
quired for the calculations.

(b) Algorithm parameters The discretiza-
tion of continuous variables and the re-
duction of infinitely large amounts to fi-
nite values, such as region of interest,
provide algorithmic parameters. The
step size is chosen as h = 0.1 and is
given in cell F16, shown in Figure (10).

2. Potential Definition:
The values of 't are generated from 0.1
to (3 * R) with step-size h = 0.1 from
A21 to Al167, and to get the expected
results, corresponding matrix size is
144 x 144. Then, four potentials are de-

termined using the following formulae
for a particular ¢ and j values. The sam-
ple sheet has been given in Figure
(a) Centrifugal potential V-, in cell B21
type the formula:

=($I$7*($I$7+1)*$I$137 2%
($A217(=2)))/(2%$1%12)

(b) Woods-Saxon potential Viyg, in cell
D21 by typing the formula:

=$F$8* (1+$C21) ~(-1)

(c) LS potential Vi, in cell F21 by typ-
ing formula:

=-$F$13xPF$12"2%$T$15%$C21
$E21x ($F$9*$A21) ~(-1)

where, the L.S term in cell I15 is calcu-
lated by formula:

=3I$8* ($I$8+1)-$I$7*($I$7+1)-3/4

(d) Coulomb potential, for proton, is
given by typing formula:

39/1/1 14
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A B C

D E

F G

(Ni®6 proton)

Initialzing the Parameters |

Interaction variables

Solving Woods-Saxon potential with Spin-orbit coupling (using CDD method)

Input variables

1
2
3
4
5 Object variables
6
7
8

Mass of neutron (m,))
Mass of proton (mp]

939.565 MeV/c?
938.272  MeV/c?

Woods-Saxon potential

Radius prop. Constant (Rg) 1.28 fm Surface diffuseness (a)
Mass of nucleus (A) 56 Range (R)
Charge of nucleus (Z) 28 Spin-orbit potential
Number of neutrons (N) 28 Dimensionality of distance (ry)
Z-1 (Zp) 27 Dimensionality of energy (V)
Radius of nucleus (R) 4897104 fm

Algorithm parameter
Step size (h)

Potential well depth (Vo) -51.00

To be varied for various energy states

Orbital angular momentum qtm.no. (I)  2.00
MeV | Total angular momentum gtm no. (j) 1.50
0.66
4.897 fm Other variables
0.90 fm Reduced mass () 914.831 MeV/c2
2244 MeV fr¥c 197.329  MeV-fm
function f (=-h?*c? / 2pc?) -21.282 | MeV-fm?
LS term -3.00
0.10 fm Cut off distance (ay=3*R) 14.691 fm

Figure 10: Initializing the parameters for the system

A B C D E F G H
18 [Total interaction potential
19
20 r | Ver | f Vs | £ | Vis ‘ Ve V=Vert Vs tVistVe
21 0.1 12760.1517  0.0006073 —50.064464 0.9986 = 0.5753 11.0061430 12730.7586420
22 0.2 3192.2879  0.0008113 -50.958655 0.9984 = 0.3346 11.9911401 3153.6550267
23 0.3 1418.7946  0.0009441 -50.951898 0.9981 @ 0.2595 11.9828019 1380.0850426
24 0.4 708.0720 | 0.0010985 —50.944037 0.9978 @ 0.2264 11.9711284 759.3254726
25 05 510.7661 | 0.0012782 —-50.934893 0.0074 = 0.2107 11.9561197 471.9979604
26 0.6 354.6087 | 0.0014873 -50.924258 0.9970 = 0.2042 11.9377756 315.9163748
27 0.7 260.5949 | 0.0017307 -50.911888 0.9965 = 0.2036 11.9160963 221.8027032
28 0.8 1995180 | 0.0020138 —50.897503 0.9960 = 0.2071 11.8910817 160.7187139
29 0.9 157.6438 | 0.0023432 -50.880774 0.9953 = 0.2141 11.8627319 118.8390115
30 1.0 127.6915 | 0.0027266 —50.861322 0.9946 = 0.2240 11.8310467 88.8852892

Figure 11: Defining potentials:

=$B$13%0.511%2.839% 3.

(3%$B$14°2-$A21°2) / (2*$B$14"3)

in cell G21 up-to radius 'R” of the nu-
cleus. After that in cell G64, type the

formula:

=0.511%2.839*$A64" (-1)*$B$13

which gives the Coulomb potential out-

side the range of nuclear radius.
(e) In cell H21, the net potential is deter-
mined by typing the formula as:

=$B21+$D21+$F21+$G21

Obtaining Hamiltonian matrix:

To obtain Hamiltonian matrix, we will
first define two functions f; and g: (a)
The functions

hZ
fj:mhz_'_VJ':f"‘V"
hz
8= gz = /2 Y

are defined as

=$H21+(($I1$13°2)/($I$12%$F$16°2))

and

=-(($I$137°2)/(2x$I$12*x$F$16°2))

39/1/1

15

www.physedn.in



Physics Education

January-March 2025

A B C D E F
1 | Hamiltonian Matrix
2
3 1 2 3 4 5
4 1 16987.1425 -2128.1919 0.0000 0.0000 0.0000
5 2 -2128.1919 7410.0389 -2128.1919 0.0000 0.0000
6 3 0.0000 -2128.1919 5636.4689 -2128.1919  0.0000
1 4 0.0000 0.0000 -2128.1919 5015.7094 -2128.1919
8 5 0.0000 0.0000 0.0000 -2128.1919 4728.3819

Figure 12: Initializing the parameters for the system

in cell 121 and J21 respectively.

(b) Now in Sheet 2; named "Matrix’,
generate index values for rows and
columns as 1 to 144 from A4:A147 and
B3:EO3.

(c) In cell B4, type:

=if ($A4=B$3,Initialization!$J21

b

=eigen(‘Matrix’ !B4:E0147)

After  that,  press three keys
Ctrl+Shift+Enter altogether to ob-
tain the required Eigen values. The

result for d3/, state has been shown in
Figure (13). The eigen value obtained is
= —10.461.

if ($A4=B$3-1,Initialization!$K21,

if($A4=B$3+1,Initialization!$K21,0§))

(d) After that drag the formula along the
row till EO3 and then downwards up-to
EQO147 to obtain the tridiagonal Hamil-
tonian matrix as shown in Figure (12).

Obtaining Eigen values and Eigen vec-
tors:

(@) In Sheet 3, named ’'Eigenvalues’,
generate index values for rows and
columns as 1 to 145 from A4:A148 and 1
to 144 from B3:EO3 to obtain matrix of
size 145 x 144. The extra row has been
incorporated for eigen values. Below
each of the eigen values in the first row,
a corresponding eigen vector of size 131
1 will be obtained.

(b) In cell B4, type formula

Eigen values for different states:

The bound state energies (i.e. the en-
ergies for which eigen values are neg-
ative), are obtained for different values
of / and j as:

(a) For s-state, ¢ = 0 and j = 0.5 corre-
sponds to 1s; /, state.

(b) For p-state, / = 1 and j = 0.5,1.5
corresponds to states 1p; /, and 1p3 5.
The same procedure is repeated for
d, f, g, h,ietc. states to obtain all energy
states till any bound state is available.

39/1/1
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A B C D E F EL EM EN EO
1 Eigen Values (MeV) and eigen vectors
2
3 1 2 3 4 5 141 142 143 144
g 1 17456.457 9202.933 8530.565 8516.251 8509.845 17.953 10.616 -10.461 6.931
5 2 0.976 -0.143  0.037 0.000 0.001 0.000 0.000 0.000 0.000
6 3 -0.215  -0.522  0.149 0.001 0.003 0.000 0.000 0.000 0.000
7 4 0.040 0583 -0116 -0.001 -0.002 -0.000 -0.001  0.000 0.000
8 5 -0.007 _ -0.454  0.009 0.000 0.000  -0.002 -0.001 0.001 -0.001

Figure 13: Initializing the parameters for the system

6 Appendix 2

In this section, the energy difference corre-
sponding to neutron and proton states of
doubly magic nuclei from °O to 330X are

given in tabular form.
e 160,49Ca
. $5Cq, BN
. 105y, 12,

208 310y .
* &oPband 5. X :
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Table 2: Single particle energies (in MeV) and Energy difference (Ep) in MeV for neutron
and proton states of doubly magic ;°0 and 59Ca

16 O 40 Ca
8 20
Neutron states Proton states Neutron states Proton states
States Energy (MeV) Ep States Energy (MeV) Ep States Energy Ep States Energy (MeV) Ep (MeV)
1f5/2  -1.20

2p1/2 =310 1.90
2p3/2 542 232 ...
1f7/2  —9.15 373 1f7/2 -233

... 1d3/2 —-1428 513 1d3/2 —6.85 4.52
2s51/2 -3.03 ... 2s1/2 —-0.21 ... 2s1/2 —1554 126 2s1/2 —-8.17 1.30
1d5/2 -5.25 222 1d5/2 -2.11 190 1d5/2 —19.54 4.00 1d5/2 -12.19 4.04
1p1/2 —12.74 749 1p1/2 —-9.14 7.04 1p1/2 —-2699 745 1pl/2 —19.04 6.86
1p3/2 —17.85 511 1p3/2 —14.23 509 1p3/2 —29.55 256 1p3/2 —21.68 2.64
1s1/2 —30.73 12.88 1s1/2 —26.68 1245 1s1/2 —3890 9.35 1s1/2 —30.49 8.81

Table 3: Single particle energies (in MeV) and Energy difference (Ep) in MeV for neutron
and proton states of doubly magic 55Ca and 3$Ni

5 Y
Neutron states Proton states Neutron states Proton states
States Energy (MeV) Ep States Energy (MeV) Ep States Energy Ep States Energy (MeV) Ep (MeV)
3s1/2 —0.94

245/2  —1.70 0.76
... 1¢9/2 —525 355
1f5/2 ~1.87 1£5/2 ~1.71 2p1/2 832 3.07

2p1/2 —3.00 112 2p1/2 —2.38 0.66 1f5/2 —8.41 0.09

2p3/2 —4.90 190 2p3/2 —4.98 2.60 2p3/2 —-1056 215 2p3/2 —1.56 ..
1f7/2 —8.33 343 1f7/2 —9.75 477 1f7/2 —1496 440 1f7/2 -5.89 4.33
1d3/2 —13.58 526 1d3/2 —14.55 480 1d43/2 —20.35 5.39 143/2 —10.60 4.70
2s1/2 —14.19 0.61 2s1/2 —15.18 0.63 2s1/2 —2051 0.16 2s1/2 —-10.71 0.11
1d5/2 —17.75 3.56 1d5/2 —19.57 439 1d5/2 —24.33 3.82 1d5/2 —14.72 4.01
1p1/2 —24.78 7.03 1pl1/2 —26.48 6.90 1pl/2 —-31.32 699 1pl1/2 —21.06 6.34
1p3/2 —26.76 198 1p3/2 —28.85 237 1p3/2 —-33.14 183 1p3/2 —22.99 1.93
1s1/2 —35.08 832 1s1/2 —-37.31 8.46 1s1/2 —41.18 8.04 1s1/2 —30.42 7.43
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Table 4: Single particle energies (in MeV) and Energy difference (Ep) in MeV for neutron

and proton states of doubly magic 19°Sn, 1325n

1005, 1326y
50 50
Neutron states Proton states Neutron states Proton states
States  Energy (MeV) Ep States Energy (MeV) Ep States Energy Ep  States Energy (MeV) Ep (MeV)
1h9/2 —0.21 ... 3pl/2 -0.57 ...
3p1/2 —0.31 0.10 1h9/2 —-094 0.37
3p3/2 —1.36 1.05 3p3/2 —1.34 040 . .
2f7/2 —3.08 1.72 2f7/2 —-2.61 128 2f7/2 —-1.18
1h11/2 —8.70 5.62 1h11/2  —6.83 4.22 243/2 —6.43 525
2d3/2 —8.72 0.02 2d3/2 —-7.74 091 3s1/2 —6.56 0.13
3s1/2 -9.27 0.55 3s1/2 —-799 024 1h11/2 —7.32 0.76
1¢7/2 —11.08 1.81 2d5/2 —-9.76 178 2d5/2 -9.10 1.78
2d5/2 —11.63 0.55 e ... 1g7/2 -9.79 0.02 1g7/2 —9.37 0.26
1¢9/2 —-17.13 550 1g9/2 —3.06 ... 1¢9/2  —14.01 422 1g9/2 —14.77 5.40
2p1/2 —18.87 1.74 2p1/2 —4.23 117 2p1/2 —-16.06 2.05 2pl/2 —15.58 0.81
2p3/2 —20.44 157 2p3/2 —5.05 0.83 2p3/2 —1715 1.09 2p3/2 —16.97 1.39
1f5/2 —21.22 0.79 1f5/2 —8.14 3.09 1f5/2 —18.07 093 1f5/2 —18.24 1.27
1f7/2 —25.09 3.87 1f7/2 —10.39 225 1f7/2 —-2078 271 1f7/2 —21.70 3.47
2s1/2 —29.17 4.08 2s1/2 —12.76 237 2s1/2  —2446 368 2s1/2 —24.61 291
1d3/2 —30.36 119 1d3/2 —15.66 289 143/2 —2557 1.11 143/2 —26.11 1.50
1d5/2 —32.48 211 1d5/2 —16.95 1.29 1d5/2 —-27.06 149 1d5/2 —28.04 1.93
1p1/2 —38.29 581 1p1/2 —21.94 499 1p1/2 —=3210 5.04 1pl/2 —32.83 4.78
1p3/2 —-39.16 0.88 1p3/2 —22.52 0.58 1p3/2 —=32.72 0.62 1p3/2 —33.65 0.83
1s1/2 —4497 581 1s1/2 —26.81 429 1s1/2  —37.63 490 1s1/2 —38.33 4.68
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Table 5: Single particle energies (in MeV) and Energy difference (Ep) in MeV for neutron

and proton states of doubly magic 2°Pb and 339X

208 pp, 310y
82 126
Neutron states Proton states Neutron states Proton states

States  Energy (MeV) Ep  States Energy (MeV) Ep States Energy Ep States Energy (MeV) Ep (MeV)

3f5/2 —-140 ...

4p1/2 —1.43 0.03

4p3/2 —2.00 0.58

2h9/2 —2.43 042

3f7/2 —-3.05 0.62

1k17/2 —4.83 1.78

2h11/2  —557 0.74
. ... 1j13/2 =590 0.33
3d3/2 —0.82 3d3/2 —7.83 193
297/2 —1.01 0.20 4s1/2 —-7.88 0.05
451/2 —1.41 0.40 3d5/2 -9.07 1.19
3d5/2 —2.07 0.67 297/2 -9.21 0.14
1j15/2 —2.24 0.16 1j15/2 —10.76 1.55
1i11/2 —3.49 1.25 2¢9/2  —11.59 0.83
299/2 —4.04 0.55 1i11/2  —-12.75 1.16
3pl/2 —7.55 3.51 3p1/2 —14.64 1.89
2f5/2 —8.36 0.81 3p3/2 —0.28 ... 3p3/2 —1533 0.69 . .
3p3/2 —8.45 0.09 2f5/2 —0.37 0.09 2f5/2 —1585 0.51 2f5/2 —0.31
1i13/2 —8.90 045 1i13/2 —2.95 258 1i13/2 —16.40 0.55 2f7/2 —2.36 2.04
2f7/2 —10.64 174  2f7/2 —3.26 031 2f7/2 —17.48 1.08 1i13/2 —3.05 0.69
1h9/2 —11.28 0.64 1h9/2 —4.26 1.00 1k9/2 —19.10 1.62 1h9/2 —4.68 1.63
1h11/2 —15.24 396  3s1/2 —7.57 3.32 3s1/2 —21.61 251 3s1/2 —5.63 0.95
3s1/2 —15.44 021 243/2 —8.09 052 1h11 —21.70 0.09 ihl11/2 —6.52 0.88
2d3/2 —15.76 0.32 1hl11/2 —9.29 1.20 2d43/2 —22.16 046 243/2 —7.75 1.24
2d5/2 —-17.20 144 2d5/2 —-9.89 0.61 2d45/2 —23.14 098 245/2 —8.13 0.37
1g7/2 —18.50 130 1g7/2 —-11.71 1.81 1g7/2 —2491 176 1g7/2 —10.41 2.28
1¢9/2 —21.20 270  1g9/2 —15.18 347 1g9/2 —26.63 173 2pl/2 —12.21 1.80
2p1/2 —22.87 1.67 2pl/2 —15.36 0.18 2p1/2 —28.05 141 1g9/2 —-12.77 0.57
2p3/2 —23.59 0.72  2p3/2 —16.25 0.89 2p3/2 —2852 047 2p3/2 —12.81 0.03
1f5/2 —25.07 149 1f5/2 —18.37 212 1f5/2 -30.12 1.61 1f5/2 —15.45 2.64
1f7/2 —26.74 1.66 1f7/2 —20.56 219 1f7/2 3116 1.04 1f7/2 —-16.95 1.50
2s1/2 —29.67 294  2s1/2 —22.26 1.70 2s1/2  —33.54 237 2s1/2 —17.47 0.53
1d3/2 —30.90 122 1d3/2 —24.16 1.89 143/2 —-34.70 116 1d43/2 —-19.73 2.26
1d5/2 —31.78 0.88 1d5/2 —25.37 1.21 145/2 —35.24 0.54 1d5/2 —20.57 0.84
1p1/2 —35.89 411 1p1/2 —28.95 359 1p1/2 —3859 335 1pl/2 —23.17 2.60
1p3/2 —36.25 036 1p3/2 —29.47 052 1p3/2 —38.80 0.21 1p3/2 —23.55 0.37
1s1/2 —40.03 3.78 1s1/2 —32.70 3.23 1s1/2 —41.78 297 1s1/2 —25.70 2.15
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