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Abstract 

This article is devoted to the description of the 
Lorentz oscillator model, which refers to the 
classical concept that electrons in an atom behave 
as forced damped harmonic oscillators under the 
influence of an oscillating electric field. This idea 
has been used to derive expressions for complex 
dielectric function, complex refractive index and 
normal incidence reflectivity and their detailed 
analysis. These quantities have also been discussed 
for the Drude model for metals, which can be 
considered as a special case of the Lorentz model. 
Some typical applications of these models and 
their combination have also been dealt with. The 
fascinating thing about these models is that despite 
being classical in nature they lead to reasonably 
reliable results for otherwise quantum mechanical 
systems. An effort has been made to present the 
material in a pedagogical manner so that it can be 
easily followed by undergraduate students. 

 

  
1  Introduction   
 
The 1902 physics Nobel laureate Lorentz (July 
18,1853 – Feb. 4, 1928) became a cynosure in the  
 

 
 
history of physics by ‘completing what was left 
unfinished by his predecessors and preparing the 
ground for the fruitful reception of new ideas based 
on the quantum theory’ [1]. His outstanding 
contributions are refinement of Maxwell’s 
electromagnetic theory including works in optics; 
general theory of electrical and optical phenomena 
of moving bodies; derivation of Lorentz force law 
which describes dynamics of a charged particle in 
the presence of electric and magnetic fields; 
insightful conceptualization of electron, its 
mathematical theory and use to explain Zeeman 
effect (the splitting of atomic spectral lines in the 
presence of magnetic field); and ingenious idea of 
local time and derivation of Lorentz 
transformations (which can be used to calculate the 
earlier proposed 
Lorentz-Fitzgerald length contraction) that 
constitute the natural outcome of Einstein’s special 
theory of relativity. Even before the discovery of 
electron in 1897, he argued that atoms are 
composed of charged particles and that the light 
originated from their oscillations in an atom. Later, 
he proposed the so-called Lorentz oscillator model 
(LOM) to account for the anomalous dispersion in 
dielectric substances in the framework of classical 
physics. Besides, he published research papers on 
general theory of relativity and delivered lectures 
on Schrödinger’s wave mechanics. Interestingly, 
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he spent nearly eight years in developing 
mathematical models for flood control dams in his 
country, the Netherlands, and his findings have 
been recognized  
as one of the greatest works in hydraulic 
engineering. In fact, the dictum ‘talent hits a target 
that others miss, and genius hits a target that others 
do not even see’ by the celebrated 19th century 
German philosopher Schopenhauer appropriately 
describes spectacular creative work carried out by 
the legendary Lorentz. 
   In the end of 1905, when the structure of atoms 
was not yet established, Lorentz in his paper 
entitled ‘The absorption and emission lines of 
gaseous bodies’, put forward the idea that in the 
presence of an oscillating electric field, electrons in 
an atom behave as driven velocity-dependent-
damped harmonic oscillators – the LOM [2]. The 
formulae derived by using the time-dependent 
position vector of these electrons quite well 
describe the electric polarization and, hence, 
dielectric function and optical properties of various 
types of materials [3-12]. In other words, the LOM 
provides a classical theory for understanding 
interaction between electromagnetic (e.m.) 
radiation and matter. It is indeed amazing that 
despite being a completely classical concept, in 
later works, this model fitted adequately in the 
realm of quantum mechanics and has been 
fruitfully used in analyzing various electrical and 
optical properties of insulators, undoped as well as 
doped semiconductors, and ionic crystals 
[3,6,9,10,12]. In fact, strictly speaking all these 
features of solids are properly explained in terms 
of band structure, which is an outcome of their 
quantum mechanical description.  
   Recently, with a view to incorporating some 
quantum mechanical aspects in the formalism of 
this model, the oscillator has been quantized using 
the Bohr and the Bohr-Sommerfeld theories and 
quantum mechanical selection rules, establishing 
relationship between the oscillator impedance and 
the energy eigenvalues of hydrogen-like atoms 
[13,14]. Model so obtained has been named 
quantum impedance Lorentz oscillator by the 
authors - Zhao and coworkers. They have shown 

that their modified model can be used to analyze 
linear and nonlinear properties of many dielectric 
materials containing hydrogen-like atoms.    
However, prior to introduction of LOM, Drude 
(1900, just 3 years after the discovery of electron), 
in his publication on ‘electron theory of metals’, 
assumed that a metal is composed of positively 
charged immobile particles submerged in a sea of 
mobile negatively charged electrons. He treated the 
motion of electron gas as classical entities under 
the influence of constant uniform electric field in 
the framework of kinetic theory, with positive 
particles as scattering centers and obtained an 
expression for DC conductivity of metals. In fact, 
the Drude model (DM) can be treated as a special 
case of LOM and has been found to be very useful 
in getting insight into the optical properties of 
metals. 
   It is interesting to note that despite their 
numerous shortcomings, a combination of DM and 
LOM is quite commonly used to analyze 
experimental data for optical properties of 
conducting materials. It is usually referred to as 
Drude-Lorentz Oscillator Model (DLOM). 
Besides, some improved versions making use of 
the concepts of these models and even including 
confining potentials have also been developed. 
These are applicable not only to bulk materials but 
also to nanoparticles and systems falling under the 
purview of nonlinear optics. Of course, these have 
their own merits and demerits. Some of the 
relevant references have been well summarized in 
[15]. It may also be mentioned that some softwares 
based on the LOM and DLOM are available for 
analysis of optical spectra of solids.   
   The principal purpose of this article is to 
delineate upon LOM and derivation of expressions 
for different electric and optical quantities, and to 
discuss the DM for metals (as a special case of 
LOM). In fact, both these models provide fairly 
good qualitative results for some solids and are, 
therefore, quite useful in making preliminary 
predictions. Some illustrative examples of these 
models and DLOM have also been included.    
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2  The Lorentz Oscillator and its Solution 
 
Following Lorentz, we take an atom to be 
composed of an electron of electric charge −𝑞 and 
mass 𝑚 bound to an infinitely massive stationary 
nucleus / positive ion core by a hypothetical spring 
characterized by force constant 𝑘 . On being 
slightly displaced from its equilibrium position, the 
classically treated electron executes simple 
harmonic motion of natural or free angular 

frequency 𝜔଴ = ඥ𝑘 𝑚⁄  . Sometimes, the 
characteristic frequency 𝜔଴ is referred to as 
fundamental or resonant frequency. This 
oscillatory motion experiences a velocity-
dependent viscous resistance or damping, with 
coefficient 𝛾, caused by collisions, radiative losses, 
etc. In the presence of an external harmonic 
electric field of angular frequency Ω , 𝑬(𝑡) =
𝑬𝟎𝑒ି௜ஐ௧(as it occurs in the description of travelling 
e.m. waves), the electron becomes a driven 
damped harmonic oscillator described by the 
following equation of motion, 
 
     �̈�(𝑡) +  𝛾�̇�(𝑡) + 𝜔଴

ଶ𝒓(𝑡) = −
௤

௠
𝑬𝟎𝑒ି௜ஐ௧.     (1) 

 
Here,  𝒓(𝑡) is the instantaneous displacement of the 
electron from its equilibrium position. Note that 𝛾 
has dimension of inverse time and is, therefore, 
also called damping rate. It may be pointed out that 
the Lorentz force arising from the interaction of 
electronic charge with the magnetic field of an e.m. 
wave has been omitted because the electron 
velocity is very small as compared to the speed of 
light.  
As demonstrated in the Appendix, for sufficiently 
large times the complementary solution of Eq. (1) 
giving rise to transients will vanish and only the 
particular integral, is left. Thus, the steady state 
solution can be written as   
 

       𝒓(𝑡) =  −
௤

௠

ଵ

൫ఠబ
మିஐమ൯ି௜ఊஐ

𝑬𝟎𝑒ି௜ஐ௧ 

               = −
௤

௠
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝑬𝟎𝑒ି௜ஐ௧.         (2)  

 

We have not used any subscript with 𝒓(𝑡)  to 
indicate steady state, for convenience. Note that in 
this state the electron oscillates with the angular 
frequency Ω  of the field. In fact, explicit 
dependence of 𝒓(𝑡)  on Ω is quite clear from Eq. 
(2). Furthermore, it is implicitly assumed that the 
motion of the electron is such that it is always 
associated with the same nucleus / ion core. 
   Writing (𝜔଴

ଶ − Ωଶ) = 𝐴 cos 𝜃  and 𝛾Ω = A sin  𝜃 
so that 𝐴 = {(𝜔଴

ଶ − Ωଶ)ଶ + (𝛾Ω)ଶ}ଵ/ଶ  and 
𝜃 = 𝑡𝑎𝑛ିଵ{𝛾Ω (𝜔଴

ଶ − Ωଶ)⁄ }, Eq. (2) becomes 
 

  𝒓(𝑡) = −
௤

௠

ଵ

ቄ൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మቅ

భ/మ 𝑬𝟎𝑒ି௜(ஐ௧ିఏ).   (3) 

 
It may be noted that the complex nature of the 
amplitude in Eq. (2) has been taken care of by 
introducing the phase angle 𝜃 . Furthermore, Eq. 
(3) shows that at any time 𝑡, the displacement of 
the oscillating electron lags behind the driving 
electric field 𝑬(𝑡) by an angle 𝜃. In other words, 
there is a time delay between the applied field and 
the resulting motion of the electron. Obviously, the 
phase difference 𝜃  is quite small when Ω ≪
𝜔଴ (Ω → 0) , rises to 𝜋 2⁄  for Ω  close to 𝜔଴  and 
further increases to 𝜋  when Ω ≫ 𝜔଴(Ω → ∞) . 
Also, for a specific value of 𝛾 , the denominator in 
the expression in Eq. (3) is minimum and the 
amplitude is maximum when Ω = 𝜔଴ . This 
justifies 𝜔଴ being called the resonant frequency. 
 
3     Dielectric Materials in the Framework of 

LOM  
 

Recall that an electric dipole is an arrangement of 
two equal and opposite charges (±𝑄) separated by 
a distance 𝑟. It has dipole moment   𝒑 = 𝑄𝒓, where 
𝒓 and, hence, 𝒑 is a vector directed from negative 
charge to the positive one. When an atom is 
subjected to an external static uniform electric 
field, the electron orbits (particularly those of the 
valence electrons) get distorted and the otherwise 
coincident centers of positive and negative charges 
(the nucleus and the electron cloud, respectively) 
get shifted relative to each other because these 
experience forces in opposite direction. These so 
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displaced charges create an electric dipole whose 
moment is aligned along the field and the atom is 
said to be polarized. In other words, the applied 
electric field induces a dipole moment in the atom. 
If the applied electric field is oscillatory in nature, 
then the separation between the centres of positive 
and negative charges will also be oscillatory and 
this will lead to an electric dipole with oscillatory 
moment. In the LOM, since the electron is taken as 
a classical particle it can be assumed to be located 
at the position of maximum probability of the 
electron cloud. Furthermore, as the nucleus has 
been assumed to be infinitely heavy, the applied 
electric field 𝑬(𝑡)  causes a shift only in the 
electron (which now behaves as a forced 
oscillator). In the present discussion, 𝒓(𝑡) has been 
assumed to be directed from the stationary positive 
nucleus / ion core to the negatively charged 
electron, which is opposite to the sign convention 
for the electric dipole. Accordingly, the 
instantaneous electric dipole moment induced by 
the displaced electron in the associated atom (in 
the framework of LOM) will be given by − 𝒑(𝑡) =
𝑞𝒓(𝑡). Substituting for 𝒓(𝑡) from Eq. (2) and using 
𝑬(𝑡) in place of 𝑬𝟎𝑒ି௜ஐ௧ there, we have  
 

                  𝒑(𝑡) =
௤మ

௠
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝑬(𝑡).       (4)     

  
Note that 𝒑(𝑡) is also given by 𝜀଴𝛼(Ω)𝑬(𝑡), where 
𝜀଴ = 8.85 × 10ିଵଶ F m-1 is electric permittivity of 
vacuum and 𝛼(Ω)  is atomic polarizability 
determined by the exact structure of the atom. 
Equating these two expressions for 𝒑(𝑡) , we get 
Lorentz polarizability for an atom as  
 

                  𝛼(Ω) =
௤మ

௠ఌబ
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ.          (5) 

 
Thus, both 𝒑(𝑡) and 𝛼(Ω) are complex quantities. 
   If the number of such electrons per unit volume 
(in some material) is 𝑁 , then instantaneous 
complex electric polarization (which is dipole 
moment per unit volume) of the collection will be   
 

   𝑷(𝑡) = 𝑁𝒑(𝑡) =
ே௤మ

௠
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝑬(𝑡).   (6) 

 
Here, we have assumed that response of all the 
electrons in the solid is identical so that all of these 
have the same 𝒑(𝑡). Once again, 𝑷(𝑡) , which is 
macroscopic property of the substance, also 
depends upon Ω and is out of phase with respect to 
𝑬(𝑡) as discussed at the end of section 2. Now, 
polarization is related to electric susceptibility 
𝜒(Ω) , sometimes referred to as first-order 
susceptibility, through 𝑷(𝑡) = 𝜀଴𝜒(Ω) 𝑬(𝑡) so that   
 

        𝜒(Ω) = 𝑁𝛼(Ω) =
ே௤మ

௠ఌబ
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ.    (7) 

 
While writing the preceding expression for 𝑷(𝑡), it 
is presumed that the material is isotropic in nature. 

Note that ඥ𝑁𝑞ଶ 𝑚𝜀଴⁄  has dimensions of angular 
frequency and is called plasma frequency, which is 
characteristic of the material. Denoting this by 𝜔௣ , 
we have    
     

                 𝜒(Ω) = 𝜔௣
ଶ ൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ,             (8)   

                                                               
which too is complex.  
   Next, electric permittivity of a dielectric material 
is given by 𝜀 = 𝜀଴𝜀௥, where 𝜀௥  (= 1 + 𝜒) is known 
as relative electric permittivity of the medium. 
Thus, 
 

              𝜀௥(Ω) = 1 + 𝜔௣
ଶ ൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ.        (9) 

 
Obviously, 𝜀௥(Ω) too is a complex quantity and is 
also referred to as dielectric function. For Ω → 0, 
the so-called DC limit or static value of the 
external electric field, Eq. (9) gives 𝜀௥(0) ≡

𝜀௥(Ω → 0) = 1 + (
ఠ೛

ఠబ
)ଶ . Similarly, at the other 

extreme, when Ω → ∞, we have 𝜀௥(∞) ≡ 𝜀௥(Ω →
∞ = 1. Note that both 𝜀𝑟0 and 𝜀𝑟∞ are real and 
independent of damping coefficient 𝛾. Combining 
these two results, we get  
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                      𝜔௣
ଶ = 𝜔଴

ଶ{𝜀௥(0) − 𝜀௥(∞)}.         (10) 
 
Hence, Eq. (9) can also be written as  
 

𝜀௥(Ω) = 𝜀௥(∞) + ൤
ఠబ

మ{ఌೝ(଴)ିఌೝ(ஶ)}൛൫ఠబ
మିஐమ൯ା௜ ఊஐൟ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

൨.  

                                                                         (11) 
 
   Now, writing 𝜀௥(Ω) = 𝜀௥

ᇱ (Ω) + 𝑖𝜀௥
ᇱᇱ(Ω), and thus  

separating the real and imaginary parts in Eq. (9), 
we have  
 

             𝜀௥
ᇱ (Ω) = 1 +

ఠ೛
మ൫ఠబ

మିஐమ൯

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

                (12)   

    
and 
 

             𝜀௥
ᇱᇱ(Ω) =

ఠ೛
మఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

 .                    (13) 

 
We can also use Eq. (10) to eliminate 𝜔௣

ଶ in these 
expressions. Note that for a particular value of 
other parameters, both 𝜀௥

ᇱ (Ω)  and 𝜀௥
ᇱᇱ(Ω)  will 

decrease with increase in the value of 𝛾 . It may 
also be pointed out that 𝜀௥

ᇱᇱ(Ω)  vanishes when 
either Ω = 0  or 𝛾 = 0 . This implies that the 
imaginary part of dielectric function is intimately 
associated with oscillatory nature of applied 
electric field and damping. Thus, it is an outcome 
of dissipation of energy of the oscillatory external 
field in the medium.  
   It may be noted that the sign of the term added to 
unity in Eq. (12) will be positive or negative 
depending on whether Ω is smaller or larger than 
𝜔଴. Thus, this term is antisymmetric with respect 
to 𝜔଴ . It must be emphasized that 𝜀௥

ᇱ (Ω)  will 
certainly be positive for Ω < 𝜔଴, while its sign for 
Ω > 𝜔଴  will be determined by the relative 
magnitudes of the second term and unity. On the 
other hand, Eq. (13) is always positive whether 
Ω < 𝜔଴  or Ω > 𝜔଴  implying that 𝜀௥

ᇱᇱ(Ω)  is 
symmetric about 𝜔଴  and it will never become 
negative. 
   As a follow up of the statement made after Eq. 

(9), we note that 𝜀௥
ᇱ (0) = 1 + (

ఠ೛

ఠబ
)ଶ , 𝜀௥

ᇱ (∞) = 1 , 

and 𝜀௥
ᇱᇱ(0) = 𝜀௥

ᇱᇱ(∞) = 0 . We now look at the 
physical aspects of the result pertaining to the 
imaginary part of the dielectric function in the light 
of the statements made after Eq. (13). In the DC 
limit, all the dipoles are essentially aligned along 
the applied electric field (which is basically static), 
and these do not undergo any movement as there is 
no change in the field. Therefore, there is no 
energy loss at all and 𝜀௥

ᇱᇱ(0) = 0 . On the other 
hand, when the electric field frequency Ω  is 
extremely large, the oscillations of the induced 
dipoles fail to keep pace with this because their 
natural frequency is quite small as compared to Ω 
and again there is no movement. The consequent 
absence of energy dissipation results in 𝜀௥

ᇱᇱ(∞) =
0.        
   However, if Ω has a nonzero finite value then we 
consider the following cases. 
(i) If interaction of the oscillating electrons with 
their surroundings is negligible so that damping 
can be taken as zero for all values of Ω , then 
substituting 𝛾 = 0 into Eqs. (12) and (13), we get  
 

                     𝜀௥
ᇱ (Ω) = 1 +

ఠ೛
మ

൫ఠబ
మିஐమ൯

                   (14) 

 
and 
 
                            𝜀௥

ᇱᇱ(Ω) = 0.                           (15) 
 
Clearly, 𝜀௥

ᇱ (Ω)  will tend to + ∞ when Ω  
approaches 𝜔଴ from below and it will be − ∞ for 
Ω  approaching 𝜔଴  from above, with a 
discontinuity at Ω = 𝜔଴ (the resonance frequency). 
Furthermore, 𝜀௥

ᇱᇱ(Ω) = 0  implies no energy loss, 
which is a consequence of 𝛾 being zero. 
(ii) From Eq. (12), it is clear that 𝜀௥

ᇱ (Ω) will be 
zero, if 𝜔௣

ଶ(𝜔଴
ଶ − Ωଶ) = −{(𝜔଴

ଶ − Ωଶ)ଶ + (𝛾Ω)ଶ} . 
Solving this quartic equation in Ω , we find that 

𝜀௥
ᇱ (Ω) = 0 , when Ω଴ = ට

ଵ

ଶ
{𝐴 ± √𝐵}  , where 

𝐴 = 𝜔௣
ଶ + 2𝜔଴

ଶ − 𝛾  and 𝐵 = 𝜔௣
ସ − 𝛾ଶ(2𝜔௣

ଶ +

4𝜔଴
ଶ − 𝛾ଶ) . Since angular frequency cannot be 

negative, we have considered only the positive root 
for Ω଴ . Thus, 𝜀௥

ᇱ (Ω)  versus Ω plot will cross the 
Ω −axis twice. However, if  
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 𝛾 > ൜2𝜔଴
ଶ + 𝜔௣

ଶ − 2𝜔଴ට𝜔଴
ଶ + 𝜔௣

ଶ ൠ

ଵ/ଶ

, then 𝐵 

becomes negative making Ω଴  a complex quantity 
meaning thereby that 𝜀௥

ᇱ (Ω)  never becomes zero 
and remains positive for all values of Ω . 
Furthermore, for negligibly small values of 𝛾 , 
𝐴 ≈ 𝜔௣

ଶ + 2𝜔଴
ଶ  and 𝐵 ≈ 𝜔௣

ସ  so that  Ω଴ ≈ 𝜔଴  and 

ට𝜔଴
ଶ + 𝜔௣

ଶ . In fact, these cross overs of 𝜀௥
ᇱ (Ω) can 

be used to guess values of 𝜔଴ and 𝜔௣ for fitting the 
experimental data to this model. 
(iii) If the applied field frequency Ω  is 
reasonably smaller than 𝜔଴ and 𝛾 is also such that 
(𝛾Ω)ଶ can be neglected as compared to  (𝜔଴

ଶ −
Ω22, then Eqs. (12) and (13) become 

𝜀௥
ᇱ (Ω ≪ 𝜔଴) ≈ 1 +

ఠ೛
మ

൫ఠబ
మିஐమ൯

  and 𝜀௥
ᇱᇱ(Ω ≪ 𝜔଴) ≈ 0. 

To look at, these are the same expressions as 
obtained in Eqs. (14) and (15) but here Ω ≪ 𝜔଴ 
(very low applied-field frequency limit). Also, 𝛾 
and 𝜀௥

ᇱᇱ have nonzero but extremely small values. 
(iv) For Ω = 𝜔଴ , 𝜀௥

ᇱ (𝜔଴) = 1  and 𝜀௥
ᇱᇱ(𝜔଴) =

𝜔௣
ଶ 𝛾𝜔଴⁄ . Thus, the former is unity for all 𝛾, while 

the latter varies inversely as 𝛾. 
(v)  When the driving field frequency Ω  is 
significantly larger than 𝜔଴ so that (𝜔଴

ଶ − Ωଶ) ≈
−Ωଶ  and 𝛾  is nonzero but small enough that 
(𝛾Ω)ଶ ≪ (𝜔଴

ଶ − Ωଶ)ଶ,  then from Eqs. (12) and 
(13), we have  
 

                   𝜀௥
ᇱ (Ω ≫ 𝜔଴) ≈ 1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
             (16) 

 
and  
 
                      𝜀௥

ᇱᇱ(Ω ≫ 𝜔଴) ≈ 0.                       (17)  
 
Thus, for sufficiently large Ω,  𝜀௥

ᇱ < 0 for Ω < 𝜔௣ 
and it becomes positive when Ω > 𝜔௣.  
   The preceding considerations reveal that for Ω 
away from 𝜔଴, 𝜀௥

ᇱᇱ(Ω) is quite small as compared 
to 𝜀௥

ᇱ (Ω) and it becomes more important when the 
value of Ω  is close to that of 𝜔଴ . Thus, the 
dielectric function will behave as a complex 
quantity (implying energy losses) mainly for 

applied field frequencies near the natural 
frequency. 
   Next, extrema in 𝜀௥

ᇱ  as function of Ω occur when 
ௗఌೝ

ᇲ (ஐ)

ௗஐ
= 0. Simplifying the expression so obtained, 

we finally get the relevant physically meaningful 

values of Ω  as Ωଵ
ᇱ = 𝜔଴ඥ1 − (𝛾 𝜔଴⁄ )  and 

Ωଶ
ᇱ = 𝜔଴ඥ1 + (𝛾 𝜔଴⁄ )   with the restriction that 

𝛾 < 𝜔଴ . Thus, in the presence of damping, 
Ωଵ

ᇱ < 𝜔଴  and Ωଶ
ᇱ > 𝜔଴. The corresponding values 

of 𝜀௥
ᇱ (Ω) are found to be  

                     𝜀௥
ᇱ (Ωଵ

ᇱ ) = 1 +
ఠ೛

మ

ఊ(ଶఠబିఊ)
                (18) 

 
and 
 

                     𝜀௥
ᇱ (Ωଶ

ᇱ ) = 1 −
ఠ೛

మ

ఊ(ଶఠబାఊ)
 .              (19) 

 
Obviously, the former is local maximum (peak) 
while the latter is local minimum (dip). Also, since 
𝛾 < 𝜔଴ , 𝜀௥

ᇱ (Ωଵ
ᇱ )  will always be positive 

irrespective of the value of 𝛾. On the other hand, 

𝜀௥
ᇱ (Ωଶ

ᇱ ) will be negative if 
ఠ೛

మ

ఊ(ଶఠబାఊ)
> 1, which is 

so if  𝛾 < 𝜔଴ ቆට1 + ቀ
ఠ೛

ఠబ
ቁ

ଶ
− 1ቇ . For higher 

values of 𝛾, 𝜀௥
ᇱ (Ωଶ

ᇱ ) will be positive.  
   To make the above-mentioned aspects visually 
clear, we have plotted 𝜀௥

ᇱ (Ω) vs Ω for Eq. (12) in 
Figs. 1 and 2. Note that the parameters 𝜔଴, 𝜔௣, and 
𝛾 appearing in this equation have units rad s-1 and 
their magnitudes are ~10ଵହ  or so. However, we 
shall express these in energy units, eV, by 
multiplying with ℏ = 6.58 × 10ିଵ଺  eV s-1. Thus, 
strictly speaking 𝜔଴ , 𝜔௣,  and 𝛾  as used hereafter 
are ℏ𝜔଴ , ℏ𝜔௣, and ℏ𝛾 , respectively. Accordingly, 
Ω too is taken in eV and refers to photon energy. It 
may be mentioned that Ω  lies between 1.65 and 
3.26 eV for the visible region. 
   Guided by the fact that for a good number of 
dielectric materials 𝜔௣ and 𝜔଴ lie between 10 and 
15 eV, and between 8 and 13 eV, respectively, we 
have taken 𝜔௣ = 13.5 eV and 𝜔଴ = 10 eV. In fact, 
these are the values we have later used for fitting 
the experimental data for silica in Section 5. Note 
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that both the chosen values are in the extreme 
ultraviolet region. The 𝛾 values used in Fig. 1 are 
0, 0.05 and 0.2 eV while these are 1.0, 4.0 and 7.0 
eV for Fig. 2. In Fig.1, the Ω  values have been 
taken from 9 eV to 11 eV and 𝜀௥

ᇱ (
−300 to 300 rather than the actual values obtained, 
to make the plots for non-zero 𝛾
noticeable. Consequently, the Ω values higher than 
𝜔଴ , for which 𝜀௥

ᇱ (Ω)  undergoes change from 
negative values to positive ones are not visible. In 
all the cases depicted in Fig. 1, 𝜀௥

ᇱ (Ω
at Ω ≈ 16.8 eV, which is 
 

 
Fig. 1. Plots showing angular frequency 
dependence of 𝜀௥

ᇱ (Ω)  for 𝜔௣ = 13

10 eV, and 𝛾 = 0 (black dash-dot line), 
eV (red dashed line), and 
𝛾 = 0.2 eV (blue solid line).  
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that both the chosen values are in the extreme 
values used in Fig. 1 are 

eV while these are 1.0, 4.0 and 7.0 
values have been 

(Ω) values from 
rather than the actual values obtained, 

𝛾  to be clearly 
values higher than 

undergoes change from 
negative values to positive ones are not visible. In 

(Ω) changes sign 

 

Fig. 1. Plots showing angular frequency 
13.5 eV,  𝜔଴ =

dot line), 𝛾 = 0.05 
eV (red dashed line), and 

 
 Fig. 2. 𝜀௥

ᇱ (Ω)  vs Ω

𝜔଴ = 10 𝑒𝑉 , and 𝛾 =
𝛾 = 4.0  eV (red dash
7.0 eV (blue dash-dash line). 
 
 
consistent with the value determined from 

ට𝜔଴
ଶ + 𝜔௣

ଶ  found earlier.

of 𝛾 are concerned, in Fig. 2 
at Ω଴ = 16.61 eV for 𝛾
eV for 𝛾 = 4.0 eV. However, sign does not change 
for 𝛾 = 7.0 eV.  
   Coming to the expression for 
the condition for occurrence of 
which is always positive, as function of 
local maximum (peak) at
 

    Ωᇱᇱ = ൤
ଶఠబ

మିఊమ

଺
൜1 + ට

 
For very small value of 
close to 𝜔଴ and decreases slightly with increase in 
𝛾; in fact, Ωᇱᇱ= 0.97 𝜔଴

   The above consideration shows that the peak in 
𝜀௥

ᇱᇱ(Ω) essentially occurs for 
Now, for Ω ≈ 𝜔଴ , 𝜔଴

ଶ

≈ 2𝜔଴(𝜔଴ − Ω). Accordingly, Eq. (13) for 
can be written as 

March 2025 
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Ω  plots for 𝜔௣ = 13.5 𝑒𝑉,  
= 1.0  eV (black solid line), 

eV (red dash-dot line), and 𝛾 =
dash line).  

consistent with the value determined from Ω଴ = 

found earlier. As far as higher values 

are concerned, in Fig. 2 the crossover occurs 
𝛾 = 1.0 eV, and at Ω଴ =16.0 

. However, sign does not change 

the expression for 𝜀௥
ᇱᇱ(Ω), Eq. (13), 

the condition for occurrence of extrema in 𝜀௥
ᇱᇱ , 

which is always positive, as function of Ω leads to 
local maximum (peak) at 

൜ ට1 +
ଵଶఠబ

ర

൫ଶఠబ
మିఊమ൯

మ ൠ൨
ଵ/ଶ

.   (20) 

For very small value of 𝛾 (≪ 𝜔଴) , Ωᇱᇱ  is quite 
and decreases slightly with increase in 

଴ when 𝛾 = 0.5 𝜔଴. 
The above consideration shows that the peak in 

essentially occurs for Ω reasonably near 𝜔଴. 

଴
ଶ − Ωଶ = (𝜔଴ + Ω)(𝜔଴ − Ω) 

Accordingly, Eq. (13) for 𝜀௥
ᇱᇱ(Ω) 
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      𝜀௥
ᇱᇱ(Ω ≈ 𝜔଴) ≈

ఠ೛
మ

ଶఠబ
ቊ

ം

మ

(ఠబିஐ)మାቀ
ം

మ
ቁ

         
Here, the expression in {… }  is 
Lorentzian function with peak at Ω
full width at half maximum. Therefore, 
plot (which is clearly symmetric with respect to 
𝜔଴) is usually said to have Lorentzian 
clear from Eq. (21) that the location
the 𝜀௥

ᇱᇱ(Ω)  graph is given by 𝜔଴

height is determined by 𝜔௣
ଶ/𝜔଴𝛾

represents dissipation of energy of the oscillatory 
field, its peak position 𝜔଴ is sometime
absorption angular frequency. Also, 
values for which magnitude of 𝜀௥

ᇱᇱ

referred to as region of resonant absorption. In 
contrast, if we substitute the preceding expression 
for 𝜔଴

ଶ − Ωଶ into Eq. (12), we get    
       

         𝜀௥
ᇱ (Ω) ≈ 1 +

ఠ೛
మ

ଶఠబ
 

(ఠబିஐ)

(ఠబିஐ)మା(ఊ/ଶ)

 

 
Fig. 3. Variation of 𝜀௥

ᇱᇱ(Ω)  with 
parameters and legends as used in Fig. 2.
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ቀ ቁ
మ ቋ .          (21)  

is 𝜋  times the 
Ω = 𝜔଴ and 𝛾 as 

Therefore, 𝜀௥
ᇱᇱ(Ω) vs Ω 

plot (which is clearly symmetric with respect to 
) is usually said to have Lorentzian shape. It is 

the location of the peak in 
 and the peak 
. Since 𝜀௥

ᇱᇱ(Ω) 
represents dissipation of energy of the oscillatory 

is sometimes called the 
frequency. Also, the range of Ω 

ᇱᇱ(Ω) is large is 
region of resonant absorption. In 

if we substitute the preceding expression 
     

)

( )మ .           (22)  

 

with Ω  for the 
parameters and legends as used in Fig. 2. 

This too brings out the fact that the second term in 
this expression is an odd function of 
hence, antisymmetric about 
   The variation of 𝜀௥

ᇱᇱ

frequency Ω has been projected in Fig. 
parameters used in Fig. 2 and it corroborates the 
observations made above
that the plots are peaked nearly around 
with little shift towards lower 
increases. Thus, energy absorption is maximum for 
Ω close to 𝜔଴. Also, from Fig
an increase in damping makes the peaks in 
and 𝜀௥

ᇱᇱ(Ω) vs Ω plots shorter and broader. 
in consonance with the fact that the
provides a measure of the width of these peaks.
   Having dwelt upon various aspects of 
come to some optical properties
Recall that if the phase velocity of
a medium is 𝑣௣௛, then its 

by 𝑛 = 𝑐 𝑣௣௛⁄ = ඥ𝜀𝜇

𝜇 (= 𝜇଴𝜇௥)  is magnetic permeability
substance and 𝜇௥  is its 
the paramagnetic and diamagnetic 
so-called non-magnetic materials),
unity by about 10-4 − 10

take 𝑛(Ω) = ඥ𝜀௥(Ω). Thus, the index of refraction 
of such a substance is a 
 

      𝑛(Ω) = ൤1 + 𝜔௣
ଶ ൜

൫

 
   Writing 𝑛(Ω) =  𝑛ᇱ(
fact that 𝑛ଶ(Ω) = 𝜀௥(
get 𝜀௥

ᇱ (Ω) = {𝑛ᇱ(Ω)}ଶ

2𝑛ᇱ(Ω)𝑛ᇱᇱ(Ω). Eliminating 
equations, and solving the resulting quadratic 
equation in {𝑛ᇱ(Ω)}ଶ, we 
 

     𝑛ᇱ(Ω) = ቐ
ට൛ఌೝ

ᇲ (ஐ)ൟ
మ

ା

 
Similarly, elimination of 
two equations yields  
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This too brings out the fact that the second term in 
this expression is an odd function of (𝜔଴ − Ω) and, 

antisymmetric about 𝜔଴.   
ᇱᇱ(Ω)  with the applied field 

has been projected in Fig. 3, for the 
parameters used in Fig. 2 and it corroborates the 

made above. It is pertinent to note 
that the plots are peaked nearly around Ω = 𝜔଴ 

towards lower Ω  values as 𝛾 
Thus, energy absorption is maximum for 

Also, from Figs. 1- 3, we note that 
an increase in damping makes the peaks in 𝜀௥

ᇱ (Ω) 
plots shorter and broader. This is 

in consonance with the fact that the value of 𝛾 
provides a measure of the width of these peaks. 

dwelt upon various aspects of 𝜀௥(Ω), we 
come to some optical properties of the material. 

phase velocity of an e.m. wave in 
then its refractive index is given 

ඥ𝜀𝜇 𝜀଴𝜇଴⁄ = √𝜀௥𝜇௥ , where 
is magnetic permeability of the 

is its relative permeability. For 
the paramagnetic and diamagnetic substances (the 

magnetic materials),  𝜇௥  differs from 
10-6 so that for these, we can 

( ). Thus, the index of refraction 
a complex quantity, given by 

൜
൫ఠబ

మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ൨
ଵ/ଶ

.        (23) 

(Ω) + 𝑖𝑛ᇱᇱ(Ω) and using the 
(Ω) = 𝜀௥

ᇱ (Ω) + 𝑖𝜀௥
ᇱᇱ(Ω) , we 

( ) ଶ − {𝑛ᇱᇱ(Ω)}ଶ  and 𝜀௥
ᇱᇱ(Ω) =

. Eliminating 𝑛ᇱᇱ(Ω) from these two 
and solving the resulting quadratic 

we finally get 

)ൟ ା൛ఌೝ
ᇲᇲ(ஐ)ൟ

మ
 ା ఌೝ

ᇲ (ஐ)

ଶ
ቑ

ଵ/ଶ

 .      (24) 

elimination of 𝑛ᇱ(Ω) from the preceding 
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     𝑛ᇱᇱ(Ω) = ቐ
ට൛ఌೝ

ᇲ (ஐ)ൟ
మ

ା൛ఌೝ
ᇲᇲ(ஐ)ൟ

మ
 ି ఌೝ

ᇲ (

ଶ

 
   These equations give exact relations for the real 
and imaginary parts of refractive index in terms of 
the real and imaginary parts of dielectric function.
From Eq. (25), we find that 𝑛ᇱᇱ(
nonzero depending on whether 𝜀௥

ᇱᇱ

not. Since Ω ≠ 0  for e.m. waves, in view of 
remarks made in the paragraph after
infer that imaginary part of the refractive index
has its origin in nonzero value of  
pertains to dissipation or absorption of energy of 
the e.m. radiation passing through the material.
Thus, 𝑛ᇱᇱ(Ω) is responsible for the attenuation of 
the incident beam. The real part
conventional refractive index we come across
while discussing transmission of light through a 
medium. The dependence of refractive index on 
the frequency of light indicates dispersion.
   It may be pointed out that for 𝛾 =
𝜀௥

ᇱᇱ(Ω)  are given by Eqs. (14) and (15), 
respectively, so that Eqs. (24) and (2
 

        𝑛ᇱ(Ω) = ඥ𝜀௥
ᇱ (Ω)  = ൜1 +

ఠ೛
మ

൫ఠబ
మିஐ

 
and 𝑛ᇱᇱ(Ω) = 0 . Thus, e.m. radiation passes 
through such an ideal medium without any 
absorption or attenuation.  
   However, if  𝛾  is nonzero but very small and 
Ω ≪ 
𝜔଴ , then, since  𝜀௥

ᇱᇱ(Ω ≪ 𝜔଴) ≈ 0
Eqs. (24) and (25), 𝑛ᇱᇱ(Ω ≪ 𝜔଴) ≈
𝜔0 ≈𝜀𝑟′Ω≪𝜔0 =1+𝜔𝑝2𝜔02−Ω

Ω ≪ 𝜔଴ , 
ଵ

൫ఠబ
మିஐమ൯

=
ଵ

ఠబ
మ ቄ1 −

ஐమ

ఠబ
మቅ

ିଵ

so that  

 

           𝑛ᇱ(Ω ≪ 𝜔଴) ≈ ቂ1 +
ఠ೛

మ

ఠబ
మ ቄ1 +
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ൟ (ஐ)
ቑ

ଵ/ଶ

.      (25) 

equations give exact relations for the real 
and imaginary parts of refractive index in terms of 
the real and imaginary parts of dielectric function. 

(Ω)  is zero or 
ᇱᇱ(Ω)  is zero or 

waves, in view of 
remarks made in the paragraph after Eq. (13), we 
infer that imaginary part of the refractive index too 
has its origin in nonzero value of  𝛾  . Hence, it 
pertains to dissipation or absorption of energy of 

radiation passing through the material. 
is responsible for the attenuation of 

The real part 𝑛ᇱ(Ω)  is the 
e come across 

while discussing transmission of light through a 
The dependence of refractive index on 

the frequency of light indicates dispersion. 
0, 𝜀௥

ᇱ (Ω) and 
are given by Eqs. (14) and (15), 

) and (25) yield 

൜
೛
మ

൫ ஐమ൯
ൠ

ଵ/ଶ

,     (26) 

radiation passes 
medium without any 

nonzero but very small and 

0 , we get from 
) ≈ 0 and  𝑛ᇱ(Ω ≪

Ω21/2. But for 

ቅ
ଵ

≈
ଵ

ఠబ
మ ቄ1 +

ஐమ

ఠబ
మቅ 

ஐమ

ఠబ
మቅቃ

ଵ/ଶ

.     (27)  

   Furthermore, for nonzero but very small 
Ω ≫ 𝜔଴ , which practically is the case for X
frequencies, we have on 
(17) into Eqs. (24) and (2
 

𝑛ᇱ(Ω ≫ 𝜔଴) ≈ ඥ𝜀௥
ᇱ (Ω

         
and 𝑛ᇱᇱ(Ω ≫ 𝜔଴) ≈ 0
𝑛ᇱ(Ω ≫ 𝜔଴). Note that, for 
imaginary implying that in the X
dielectric substances having small 
completely absorb radiation if 
for Ω > 𝜔௣ , the refractive index is 
than unity, which corresponds to the situation that 
phase velocity of the e.m. wave in the material is 
higher than the speed of light in vacuum.
Furthermore, it approaches unity when 
   The dependence of 
the parameters mentioned 
has been illustrated graphically
respectively. A look at
𝑛ᇱ(Ω) has peak close to 
value near Ω ≈ 𝜔௣  and then increase
relevant magnitudes depend on 
the flat part of the minimum decreases as 
increases. On 

 
Fig. 4. Spectral dependence of 
parameters and legends as described in Fig. 2.
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nonzero but very small 𝛾  and 
, which practically is the case for X-ray 

frequencies, we have on substituting Eqs. (16) and 
) and (25), 

ඥ ( ≫ 𝜔଴) = ට1 − ቀ
ఠ೛

ஐ
ቁ

ଶ
, (28)  

0 . Thus, 𝑛(Ω ≫ 𝜔଴) ≈
Note that, for 𝜔଴ ≪ Ω < 𝜔௣, 𝑛(Ω) is 

imaginary implying that in the X-ray region, the 
dielectric substances having small 𝜔଴  values 
completely absorb radiation if Ω < 𝜔௣ . However, 

, the refractive index is real but less 
corresponds to the situation that 

phase velocity of the e.m. wave in the material is 
than the speed of light in vacuum. 

Furthermore, it approaches unity when Ω ≫ 𝜔௣. 
dependence of 𝑛ᇱ(Ω)  and 𝑛ᇱᇱ(Ω)  on Ω  for 

mentioned in the caption for Fig. 2 
illustrated graphically in Figs. 4 and 5, 

look at these plots shows that 
peak close to 𝜔଴ and it attains minimum 

and then increases again. The 
magnitudes depend on 𝛾 and the width of 

the minimum decreases as 𝛾 

 

Fig. 4. Spectral dependence of 𝑛ᇱ(Ω)  for the 
parameters and legends as described in Fig. 2.    
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Fig. 5. Dependence of 𝑛ᇱᇱ(Ω)  
parameters and legends as listed in Fig. 2.
 
 
the other hand, 𝑛ᇱᇱ(Ω)  are maximum for 
between 𝜔଴  and 𝜔௣  and tend to zero for higher 
values of Ω. It may be mentioned that the rise in 
𝑛ᇱ(Ω) values with increase in Ω (i.e., decrease in 
incident wavelength of e.m. radiation)
normal dispersion because this is in accord with 
what we observe when white light passes through a 
prism. In contrast the sharp fall in 
increase in Ω is called anomalous dispersion. It is 
pertinent to note that anomalous dispersion occurs
over the range of Ω values for which 
peak (Fig. 5), i.e., the medium is highly absorbing.
Consequently, experimental observation of 
anomalous dispersion is not that easy.
   The fact that both 𝑛ᇱ(Ω)  and 𝑛
close to zero for small values of 𝛾 and 
Figs. 4 and 5 and Eq. (28)) needs special 
consideration. As mentioned earlier also
index is obtained by dividing speed of light in 
vacuum with the phase velocity 𝑣

where 𝜆 is wavelength of the relevant e.m. wave in 
the medium. Therefore, 𝑛(Ω) ≈ 0 implies 
and, hence, 𝜆 are infinitely large. The wavelength 
being infinite means that all the electrons in the 
solid are oscillating in phase. 
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( )  on Ω  for the 
parameters and legends as listed in Fig. 2. 

are maximum for Ω  lying 
and tend to zero for higher 

. It may be mentioned that the rise in 
(i.e., decrease in 

nt wavelength of e.m. radiation) is known as 
normal dispersion because this is in accord with 
what we observe when white light passes through a 
prism. In contrast the sharp fall in 𝑛ᇱ(Ω)  with 

is called anomalous dispersion. It is 
pertinent to note that anomalous dispersion occurs 

values for which 𝑛ᇱᇱ(Ω) has its 
peak (Fig. 5), i.e., the medium is highly absorbing. 
Consequently, experimental observation of 

is not that easy.  
𝑛ᇱᇱ(Ω)  are quite 
and Ω ≥ 𝜔௣ (see 

and Eq. (28)) needs special 
As mentioned earlier also, refractive 

index is obtained by dividing speed of light in 
𝑣௣௛ = 𝜆 Ω 2𝜋⁄ , 

is wavelength of the relevant e.m. wave in 
implies that 𝑣௣௛  

are infinitely large. The wavelength 
being infinite means that all the electrons in the 

   Another physically observable optical quantity of 
interest is the normal incidence reflection 
coefficient, reflectivity, or reflecta
medium. It gives the fraction of the power 
associated with the incident e.m. wave reflected 
from the surface of the material. For the air
boundary, it is defined as [3,5]
 

 𝑅(Ω) = ቚ
௡(ஐ)ିଵ

௡(ஐ)ାଵ
ቚ

ଶ

=
൛௡

{௡

  
As a special case, note that for 
for Ω ≫ 𝜔଴, 
 

                        𝑅(Ω) ≈

 
  With a view to bring out the dependence of 
on various parameters, we have shown 
function of Ω  in Fig. 6, for 
10 eV , and 𝛾 = 0 , 0.2
perusal of this figure reveals that the damping 
rounds out the corners of the plots and that an 
increase in 𝛾  decreases the maximum value of 
reflectance, which is unity or 100% for 
for a particular value of 
 

 
Fig. 6. Reflectivity 𝑅

13.5 eV,  𝜔଴ = 10 eV
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Another physically observable optical quantity of 
interest is the normal incidence reflection 
coefficient, reflectivity, or reflectance of the 
medium. It gives the fraction of the power 
associated with the incident e.m. wave reflected 
from the surface of the material. For the air-solid 
boundary, it is defined as [3,5] 

ቚ
൛௡ᇲ(ஐ)ିଵൟ

మ
ା൛௡ᇲᇲ(ஐ)ൟ

మ

{௡ᇲ(ஐ)ାଵ}మା{௡ᇲᇲ(ஐ)}మ .       (29)    

a special case, note that for Ω ≪ 𝜔଴ as well as 

) ≈
൛௡ᇲ(ஐ)ିଵൟ

మ

{௡ᇲ(ஐ)ାଵ}మ .                   (30) 

With a view to bring out the dependence of 𝑅(Ω) 
on various parameters, we have shown 𝑅(Ω)  as 

in Fig. 6, for 𝜔௣ = 13.5 eV,  𝜔଴ =

2 , 1.0 , 4.0 , and 7.0 eV . A 
perusal of this figure reveals that the damping 
rounds out the corners of the plots and that an 

decreases the maximum value of 
reflectance, which is unity or 100% for 𝛾 = 0. Also, 
for a particular value of 𝛾, 𝑅(Ω) is maximum when  

 

𝑅(Ω)  vs Ω  plots for 𝜔௣ =

, and 𝛾 = 0.0 (dark brown 
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dash-dot line), 𝛾 = 0.2 eV (green dash
𝛾 = 1.0  eV (black solid line), 𝛾
dash-dot line), and 𝛾 = 7.0 eV (blue dash
line). 
 
 
𝑛ᇱ(Ω) is minimum. This is understandable because 
for 𝑛ᇱ(Ω) → 0, Eq. (29) gives 𝑅(Ω)
its maximum possible value.    
   From a perusal of the plots in Figs. 4 
discussion of the expressions for 
and 𝑅(Ω), it can be inferred that for 
smaller than 𝜔଴  and significantly higher than 
the dielectric materials are transparent to the 
incident e.m. waves. However, for 
these show maximum absorption while they are 
strongly reflective when Ω values lie between 
and 𝜔௣  and are even somewhat higher than the 
latter. In order to make this conclusion clearer, we 
have shown in Fig. 7, dependence of 
𝑛ᇱᇱ(Ω) , and 𝑅(Ω)  on Ω  for an oscillator system 
with parameter values 𝜔௣ = 12 eV

and 𝛾 = 1 eV as a typical representative; here 
in the visible region and quite less than 
is at variance with the case depicted in Figs. 4 
 

 
Fig. 7. 𝑛ᇱ(Ω) (black solid line), 𝑛ᇱᇱ

dot line), and 𝑅(Ω)  (blue dash-
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(green dash-dash line)  
= 4.0  eV (red 

(blue dash-dash 

is minimum. This is understandable because 
( ) → 1, which is 

From a perusal of the plots in Figs. 4 – 6 and the 
discussion of the expressions for 𝑛ᇱ(Ω) , 𝑛ᇱᇱ(Ω) ,  

, it can be inferred that for Ω reasonably 
and significantly higher than 𝜔௣ , 

the dielectric materials are transparent to the 
incident e.m. waves. However, for Ω close to 𝜔଴, 
these show maximum absorption while they are 

values lie between 𝜔଴ 
are even somewhat higher than the 

. In order to make this conclusion clearer, we 
have shown in Fig. 7, dependence of 𝑛ᇱ(Ω) , 

for an oscillator system 
eV , 𝜔଴ = 2.5 eV, 

as a typical representative; here 𝜔଴ is 
in the visible region and quite less than 𝜔௣, which 
is at variance with the case depicted in Figs. 4 – 6.  

 

ᇱᇱ(Ω) (red dash-
-dash line), as 

functions of Ω  for an oscillator with parameter 
values 𝜔௣ = 12 eV, 𝜔଴

 
 
   So far, we have assumed that all the Lorentz 
oscillators in a collection 
However, a substance can have Lo
of different types because the electrons experience 
different binding and damping forces or the atoms / 
ion cores with which the electrons are associated 
have different nature. Suppose that
unit volume are of one type represented by 
subscript 𝑗 . Denoting
frequency, and damping coefficient by
 𝛾௝ , respectively, the electric susceptibility of this 
group of Lorentz oscillators will be given by 
 

                𝜒௝(Ω) =
 ேೕ௤

௠ఌబ

 
(see, Eq. (7)). Representing the plasma frequency 
of this category by 
 𝑁௝𝑞ଶ 𝑚𝜀଴⁄  so that   
 

                𝜒௝(Ω) = 𝜔௣,
ଶ

Also, total electric susceptibility of the system 
comprising different types of oscillators such that 
𝑁 = ∑  𝑁௝௝  will be given by 
   Taking the fraction of Lorentz oscillators of type 
𝑗  to be  𝑓௝ =  𝑁௝ 𝑁⁄

Accordingly, the relative electric permittivity of 
this system will be given by
 
   𝜀௥(Ω) = 1 + ∑ 𝜒௝(Ω௝

             = 1 + 𝜔௣
ଶ ∑  𝑓௝

 
It may be mentioned that 
as oscillator strength. Also, a quantum mechanical 
treatment of the problem leads to an expression 
which looks like Eq. (33) but has different 

March 2025 

w.physedn.in  

for an oscillator with parameter 

଴ = 2.5 eV, and 𝛾 = 1 eV.  

far, we have assumed that all the Lorentz 
oscillators in a collection are completely identical. 
However, a substance can have Lorentz oscillators 
of different types because the electrons experience 
different binding and damping forces or the atoms / 
ion cores with which the electrons are associated 
have different nature. Suppose that 𝑁௝  of these in 

are of one type represented by 
. Denoting their natural angular 

frequency, and damping coefficient by  𝜔଴,௝  and 
, respectively, the electric susceptibility of this 

group of Lorentz oscillators will be given by  

௤మ

బ
ቊ

ቀఠబ,ೕ
మ ିஐమቁା௜ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ൯

మ
ቋ;    (31)  

(see, Eq. (7)). Representing the plasma frequency 
of this category by 𝜔௣,௝ , we have 𝜔௣,௝

ଶ =

,௝ ቊ
ቀఠబ,ೕ

మ ିஐమቁା௜ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ൯

మ
ቋ.    (32)  

Also, total electric susceptibility of the system 
comprising different types of oscillators such that 

will be given by 𝜒(Ω) = ∑ 𝜒௝(Ω)௝ .  
fraction of Lorentz oscillators of type 

, we have 𝜔௣,௝
ଶ =  𝑓௝𝜔௣

ଶ . 
relative electric permittivity of 

this system will be given by 

(Ω) 

𝑓௝ ቊ
ቀఠబ,ೕ

మ ିஐమቁା௜ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ൯

మ
ቋ     (33) 

It may be mentioned that  𝑓௝  is usually referred to 
as oscillator strength. Also, a quantum mechanical 
treatment of the problem leads to an expression 
which looks like Eq. (33) but has different 
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meaning of 𝜔଴,௝ as well as  𝑓௝  . 
imaginary parts of Eq. (33) are 
 

     𝜀௥
ᇱ (Ω) = 1 + 𝜔௣

ଶ ∑
 ௙ೕቀఠబ,ೕ

మ ିஐమ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊ

௝

  
and 
 

     𝜀௥
ᇱᇱ(Ω) = 𝜔௣

ଶ ∑ ቊ
 ௙ೕ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ

௝

 
respectively. These have been depicted
for a system comprising two types of oscillators 
with 𝜔௣ = 13.5 eV , 𝜔଴,ଵ = 10 eV,
eV,  𝛾ଵ = 𝛾ଶ = 1.0 eV, and  𝑓ଵ = 𝑓ଶ

   While using Eq. (34) for real systems, sometimes 
the factor 1 on the right-hand side has to be 
replaced by a greater number corresponding to the 
value of 𝜀௥

ᇱ (∞) to take care of the contrib
oscillators with higher 𝜔଴,௝ which are not covered 
in the summation.   
  The expression for complex index of refraction is 
now modified to read 
 

𝑛(Ω) = ቈ1 + 𝜔௣
ଶ ∑  𝑓௝ ቊ

ቀఠబ,ೕ
మ ିஐమቁା௜

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫

௝
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. The real and 

మቁ

൫ ఊೕஐ൯
మ
         (34)  

൫ ൯
మ
ቋ ,          (35) 

depicted in Fig. 8 
for a system comprising two types of oscillators 

= 10 eV, 𝜔଴,ଶ = 12 

ଶ= 0.50. 
While using Eq. (34) for real systems, sometimes 

hand side has to be 
replaced by a greater number corresponding to the 

to take care of the contribution of 
which are not covered 

expression for complex index of refraction is 

ቁ ௜ ఊೕஐ

൫ ఊೕஐ൯
మ
ቋ቉

ଵ/ଶ

.(36)   

 

Fig. 8. Spectral dependence of 
line) and 𝜀௥

ᇱᇱ(Ω) (red dash
oscillator system with 
𝜔଴,ଶ= 12 eV,  𝛾ଵ = 𝛾ଶ

 
 
Similarly, Eqs. (24), (25), and (29) for 
𝑛ᇱᇱ(Ω), and 𝑅(Ω), respectively, too are recast for a 
many-oscillator system. Fig. 9 depicts dependence 
of these three quantities on 
system considered in Fig. 8. 
 
4 Drude Model for 

an Extension of LOM
 

According to the DM for
charged ion cores are fixed like those in the 
but the negatively charged electrons wander 
around like gas molecules without any constraint 
of being attached to a particular nucleus or ion 
core. As such, there is no restoring force acting on 
an electron and, thus, 
an electron is not 
hooked up to a specific core, we preferably 
describe its motion in terms of its instantaneous
velocity 𝒗(𝑡) . However, an electron in the 
conducting material does experience damping 
mainly due to its scattering caused by the 
interaction with the stationary cores, impurities, 
and crystal imperfections present and with other 
electrons. 

March 2025 
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Fig. 8. Spectral dependence of 𝜀௥
ᇱ (Ω) (black solid 

(red dash-dot line) for a two-
oscillator system with 𝜔௣ = 13.5 eV, 𝜔଴,ଵ= 10 eV, 

= 1.0 eV, and  𝑓ଵ = 𝑓ଶ= 0.5. 

Similarly, Eqs. (24), (25), and (29) for 𝑛ᇱ(Ω) , 
, respectively, too are recast for a 

oscillator system. Fig. 9 depicts dependence 
of these three quantities on Ω for the two-oscillator 
system considered in Fig. 8.  

Drude Model for Conducting Substances as 
an Extension of LOM 

the DM for a metal the positively 
are fixed like those in the LOM, 

but the negatively charged electrons wander 
around like gas molecules without any constraint 

to a particular nucleus or ion 
core. As such, there is no restoring force acting on 

thus, 𝜔଴ = 0. Furthermore, since 

hooked up to a specific core, we preferably 
describe its motion in terms of its instantaneous 

. However, an electron in the 
conducting material does experience damping 
mainly due to its scattering caused by the 

stationary cores, impurities, 
and crystal imperfections present and with other 
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Fig. 9.  Plots displaying 𝑛ᇱ(Ω) (black solid line), 
𝑛ᇱᇱ(Ω) (red dash-dot line), and 𝑅(Ω)  (blue dash-
dash line), as function of Ω for the two-oscillator 
system having parameter values mentioned in the 
caption of Fig. 8.  
 
  
Therefore, the differential equation governing the 
motion of such an electron under the influence of 
an applied harmonic electric field 𝑬(𝑡) = 𝑬𝟎𝑒ି௜ஐ௧, 
can be written as    
       
            �̇�(𝑡) +  𝛾𝒗(𝑡) = −

௤

௠
𝑬𝟎𝑒ି௜ஐ௧.             (37) 

 
   The homogeneous solution of this first-order 
nonhomogeneous linear differential equation 
contains 𝑒ିఊ௧  , which becomes zero for large 
values of 𝑡 . As in the case of LOM, this too 
represents transients. Finally, in this case also we 
are left with the nonhomogeneous solution, the so-
called steady state solution, which reads  
 

  𝒗(𝑡) =  −
௤

௠

ଵ

ఊି௜ஐ
𝑬𝟎𝑒ି௜ஐ௧ = −

௤

௠

ఊା௜ஐ

ఊమାஐమ 𝑬𝟎𝑒ି௜ஐ௧ .  

                                                                          (38) 
 
Proceeding as has been done in going from Eq. (2) 
to Eq. (3), it can be shown that 𝒗(𝑡), which also 
oscillates with angular frequency Ω, is out of phase 
with respect to the external electric field 𝑬(𝑡) by 
an angle 𝜑 = 𝑡𝑎𝑛ିଵ(Ω 𝛾⁄ ). Obviously, 𝜑 increases 
from 0 to 𝜋 2⁄  as Ω is varied from 0 to extremely 
large value. In fact, for DC electric field 𝑬𝟎 (Ω =
0), velocity is constant and from Eq. (38), it can be 

written as 𝐯(Ω = 0) = −
௤𝑬𝟎

௠ఊ
.  This is called the 

drift velocity of electrons.   
   The electric current density produced by all the 
free electrons with number density 𝑁 is given by 
 

          𝑱(𝑡) =  −𝑁𝑞𝐯(𝑡) =
ே௤మ

௠

ఊା௜ஐ

ఊమାஐమ 𝐄(𝑡).       (39) 

 
Since the current density is also given by  𝑱(𝑡) = 
𝜎 (Ω)𝐄(𝑡) , where 𝜎 (Ω)  is dynamic electrical 
conductivity of the material, we have  

 

           𝜎 (Ω) =
ே௤మ

௠

ఊା௜ஐ

ఊమାஐమ = 𝜀଴𝜔௣
ଶ ఊା௜ஐ

ఊమାஐమ .        (40) 

 
This is usually called Drude conductivity and is, 
obviously, frequency-dependent complex quantity. 
Here too the solid is taken to be isotropic. 
   If the applied electric field is constant 𝑬𝟎 (Ω =
0), then steady or DC electric current density and 
corresponding electric conductivity are, 

respectively, given by 𝑱 (Ω = 0) =
ே௤మ

௠ఊ
 𝑬𝟎  and 

𝜎 (Ω = 0) =
ே௤మ

௠ఊ
. Note that this is nothing but 

Ohm’s law with resistivity 𝜌 = 𝑚𝛾 𝑁𝑞ଶ⁄ . It may 
also be pointed out that in this model, all the free 
electrons contribute to 𝑱 . However, this is in 
violation of their quantum description, according 
to which under the influence of applied electric 
field only a small fraction of electrons in the 
occupied states below the Fermi level acquire 
sufficient energy to get excited to the empty energy 
levels above this to participate in electrical 
conduction.   
   Furthermore, the dielectric function 𝜀௥(Ω)  is 
related to electrical conductivity 𝜎 (Ω) 

through 𝜀௥ = 1 + 𝑖
ఙ (ஐ)

ఌబஐ
  so that the Drude complex 

dielectric function for a conducting material is 
given by    
            

                 𝜀௥,஽(Ω) = 1 −
ఠ೛

మ

ஐ
ቀ

ஐି୧ఊ

ஐమାఊమቁ.               (41)   

This is the same result as we obtain by putting 
𝜔଴ = 0 in Eq. (9) for 𝜀௥(Ω) in LOM implying that 
the DM can be considered as a special case of the 
Lorentz model. The real and imaginary parts of 
𝜀௥,஽(Ω) are 
  

𝜀௥,஽
ᇱ (Ω) = 1 −

ఠ೛
మ

ஐమାఊమ  and 𝜀௥,஽
ᇱᇱ (Ω) =

ఊ

ஐ

ఠ೛
మ

ஐమାఊమ,  (42) 

 
respectively. Note that like 𝜀௥

ᇱᇱ(Ω) ,  𝜀௥,஽
ᇱᇱ (Ω) = 0 

when 𝛾 = 0, meaning thereby that 𝜀௥,஽
ᇱᇱ (Ω)  too is 

related to damping and, hence, to absorption of 
energy associated with the applied electric field.  
   Next, the refractive index of a conducting 
nonmagnetic material will be given by  
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  𝑛஽(Ω) = ඥ𝜀௥,஽(Ω) = ቄ1 −
ఠ೛

మ

ஐ
ቀ

ஐି୧ఊ

ஐమାఊమ
ቁቅ

భ

మ
 ,     (43) 

 
with relevant expression for the real and imaginary 
parts 𝑛஽

ᇱ (Ω) and 𝑛஽
ᇱᇱ(Ω). Also, Eqs. (24), (25), and 

(29) too hold good for 𝑛஽
ᇱ (Ω), 𝑛஽

ᇱᇱ(Ω), and normal 
incidence reflectance 𝑅஽(Ω)  with appropriate 
replacement of 𝜀௥

ᇱ (Ω), 𝜀௥
ᇱᇱ(Ω), 𝑛ᇱ(Ω), and 𝑛ᇱᇱ(Ω).   

   It may be mentioned that in the case of 
conducting materials, generally, 𝛾 is quite small as 
compared to 𝜔௣. Now, we consider the following 
five situations. 
(i) For the ideal case 𝛾 = 0 , Eqs. (42) and (43) 
yield  
 

        𝜀௥,஽
ᇱ (Ω) = 1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
 ,  𝜀௥,஽

ᇱᇱ (Ω) = 0;       (44) 

 

  𝑛஽
ᇱ (Ω) = ൜1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
ൠ

భ

మ

,   and  𝑛஽
ᇱᇱ(Ω) = 0.    (45) 

  
As expected, the expressions for 𝜀௥,஽

ᇱ (Ω)  and 
𝑛஽

ᇱ (Ω) are special cases of relevant expression in 
Eqs. (14) and (26) with 𝜔଴ = 0. Note that 𝜀௥,஽

ᇱ (Ω) 
is negative for Ω < 𝜔௣  having quite large 
magnitude for low values of Ω. It becomes zero 
when Ω = 𝜔௣  and increases with increase in Ω 
value, becoming unity when Ω ≫ 𝜔௣ . 
Furthermore, 𝑛஽

ᇱ (Ω)  and, hence, 𝑛஽(Ω)  is 
imaginary when Ω < 𝜔௣  implying that the ideal 
metal is completely opaque to the relevant e.m. 
radiation. It is less than unity for Ω > 𝜔௣, and for 
Ω  much larger than 𝜔௣ , we can write 𝑛஽

ᇱ ≈ 1 −
ଵ

ଶ
ቀ

ఠ೛

ஐ
ቁ

ଶ

.  

(ii) For nonzero 𝛾 , 𝜀௥,஽
ᇱᇱ (Ω) is always positive, 

but 𝜀௥,஽
ᇱ (Ω) will be negative if Ω < ඥ𝜔௣

ଶ − 𝛾ଶ and 

positive for Ω > ඥ𝜔௣
ଶ − 𝛾ଶ . Combined with Eqs. 

(22) and (23) these imply that 𝑛஽
ᇱᇱ(Ω) >  𝑛஽

ᇱ (Ω) for 
Ω < ඥ𝜔௣

ଶ − 𝛾ଶ  and reverse will be true when 

Ω > ඥ𝜔௣
ଶ − 𝛾ଶ . 

(iii) When Ω is quite small as compared to 𝜔௣ 
and comparable with 𝛾 so that 𝜔௣

ଶ ≫ Ωଶ + 𝛾ଶ, then 

from Eq. (42) we see that 𝜀௥,஽
ᇱ ൫Ω ≪ 𝜔௣൯ will be  

negative with quite large magnitude while 
𝜀௥,஽

ᇱᇱ ൫Ω ≪ 𝜔௣൯ will be positive and reasonably 
large depending on the value of 𝛾/Ω . 
Consequently, 𝑛஽

ᇱᇱ൫Ω ≪ 𝜔௣൯  will be much larger 

than 𝑛஽
ᇱ ൫Ω ≪ 𝜔௣൯ . Furthermore, dominance of 

𝑛஽
ᇱᇱ(Ω)  in the expression for 𝑅(Ω)  (Eq. (29)), 

indicates that 𝑅஽൫Ω ≪ 𝜔௣൯  will be reasonably 
close to unity. Physically, these features imply that 
at quite low frequencies (Ω ≪ 𝜔௣) , the electric 
field cannot penetrate the metal and that most of 
the e.m. radiation will be reflected by it. 

(iv) If Ω = 𝜔௣  implying that 
ఠ೛

మ

ఊమାஐమ  ≈ 1 

(assuming that 𝛾 is quite small) then 𝜀௥,஽
ᇱ ൫𝜔௣൯ ≈ 0 

and 𝜀௥,஽
ᇱᇱ ൫𝜔௣൯ =

ఊ

ఠ೛
 ≪ 1. Thus, both 𝜀௥,஽൫𝜔௣൯ and 

𝑛஽൫𝜔௣൯ ≈ 0. However, if 𝛾 is not very small then 
𝜀௥,஽

ᇱ ൫𝜔௣൯ , 𝜀௥,஽
ᇱᇱ ൫𝜔௣൯ , 𝑛஽

ᇱ ൫𝜔௣൯  and 𝑛஽
ᇱᇱ൫𝜔௣൯  are 

nonzero and their magnitudes will depend on the 
value of 𝛾 . Furthermore, since 𝑛஽

ᇱ ൫𝜔௣൯  and 
𝑛஽

ᇱᇱ൫𝜔௣൯  are nonzero though reasonably small 
 𝑅஽൫𝜔௣൯ will still be high and will depend upon 
the value of 𝛾. 
(v)  For Ω > 𝜔௣ , 𝛾 ≪ Ω  and Ωଶ + 𝛾ଶ ≈ Ωଶ . 

Therefore, 𝜀௥,஽
ᇱ ൫Ω > 𝜔௣൯ = 1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
> 0  and 

𝜀௥,஽
ᇱᇱ ൫Ω > 𝜔௣൯ ≈ 0. In this case, from Eqs. (24) and 

(25), we have  

𝑛஽
ᇱ ൫Ω > 𝜔௣൯ ≈ ට𝜀௥,஽

ᇱ ൫Ω > 𝜔௣൯ = ൜1 − ቀ
ఠ೛

ஐ
ቁ

ଶ
ൠ

ଵ/ଶ

 

and 𝑛஽
ᇱᇱ ≈ 0  so that 

 𝑅஽൫Ω > 𝜔௣൯ ≈ {𝑛஽
ᇱ (Ω) − 1}ଶ {𝑛஽

ᇱ (Ω) + 1}ଶ⁄ . 
Thus, 𝑛஽

ᇱ (Ω) and,  
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Fig. 10. Plots for 𝜀௥,஽

ᇱ (Ω) (below the zero line) and 
𝜀௥,஽

ᇱᇱ (Ω) (above the zero line) as function of 
conducting material with 𝜔௣ = 15

0.5 eV (black solid line), 𝛾 = 1.0 eV (red dash
line), and 𝛾 = 2.0 eV (blue dash-dash line).
that both the axes have been highly truncated. 
 
 
hence, 𝑛஽(Ω)  become nonzero when 
𝜔௣ , and attain maximum value 1 for 
Obviously,  𝑅஽(Ω ≫ 𝜔௣)  will be zero.
words, at very high frequencies, the free electron 
contribution is unimportant.                                     
   To bring out various aspects discussed above, w
have plotted 𝜀௥,஽

ᇱ (Ω) and 𝜀௥,஽
ᇱᇱ (Ω) as function of 

for a metal characterized by 𝜔௣

𝛾 = 0.5, 1.0, and 2 .0 𝑒𝑉 in Fig. 10. Note that 
lies between 9 and 20 eV for most of the 
conducting materials and that we have taken 
𝜔௣ = 15 𝑒𝑉  to analyze the experimental data for 
aluminium in Section 5. Since 
𝜀௥,஽

ᇱ (Ω) and 𝜀௥,஽
ᇱᇱ (Ω) are quite high and we wanted 

to clearly bring out the effect of change in 
we have taken Ω  values from 0.6 eV to 2.4 eV 
rather than keeping these sufficiently
the 𝜔௣ value. However, it must be mentioned that 
the value of 𝜀௥,஽

ᇱ (Ω)  changes from negative to 
positive at Ω  = 14.99, 14.97, and 14.87 eV for 
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(below the zero line) and 
(above the zero line) as function of Ω for a 

15 eV  and 𝛾 =

eV (red dash-dot 
dash line). Note 

that both the axes have been highly truncated.  

become nonzero when Ω  exceeds 
, and attain maximum value 1 for Ω ≫ 𝜔௣ . 

will be zero. In other 
words, at very high frequencies, the free electron 

                                     
To bring out various aspects discussed above, we 

) as function of Ω 
𝜔௣ = 15 𝑒𝑉  and 

in Fig. 10. Note that 𝜔௣ 
9 and 20 eV for most of the 

and that we have taken 
to analyze the experimental data for 

 magnitudes of 
are quite high and we wanted 

to clearly bring out the effect of change in 𝛾 value, 
values from 0.6 eV to 2.4 eV 

sufficiently higher than 
However, it must be mentioned that 

changes from negative to 
= 14.99, 14.97, and 14.87 eV for 

𝛾 = 0.5, 1.0, and 2.0 eV, resp
accord with the relation 

 
Fig. 11.  Graphic representation of  
line) and 𝑛஽

ᇱᇱ(Ω)   (dash
15 eV and 𝛾 = 0.5 eV 
   
 
Ω = ඥ𝜔௣

ଶ − 𝛾ଶ  found above
𝜀௥,஽

ᇱ ൫𝜔௣൯  and 𝜀௥,஽
ᇱᇱ ൫𝜔௣

0.033 for 𝛾 = 0.5 eV
respectively, for 𝛾 = 2
values for 𝛾 = 0.1 eV are 4
   The plots for  𝑛஽

ᇱ (Ω
from 1 eV to 25 eV) for 
0.5 and 2.0  eV have been projected in Fig. 11. 
These exhibit predominance of 
However, for Ω > 𝜔

becomes nonzero approaching 1 for 

mentioned in the discussion of case (iv) above, 

𝑛஽
ᇱ ൫𝜔௣൯ as well as 𝑛஽

ᇱᇱ

values considered here. These have values 0.131 
and 0.127 for  𝛾 = 0.5 eV, and 0.27 and 0.24 for 
= 2.0 eV. However, the
0.058 and 0.057, respectively.
   The effect of 𝛾 on the variation of 
has been shown by plotting the graphs for 
15 eV, and 𝛾 = 0.0 , 0
Fig. 12. Here too, the presence of 
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and 2.0 eV, respectively, which are in 
accord with the relation  

 

Fig. 11.  Graphic representation of  𝑛஽
ᇱ (Ω) (solid 

(dash-dot line) vs Ω  for 𝜔௣ =

 (black) and 2.0 eV (red). 

found above. Furthermore,  
൫ ௣൯  have values 0.001 and 

eV , and 0.018 and 0.131, 
2.0  eV. The corresponding 
are 4× 10ିହ and 0.007.   

(Ω)  and 𝑛஽
ᇱᇱ(Ω)  vs Ω  (varied 

from 1 eV to 25 eV) for 𝜔௣ = 15 eV  and 𝛾 =

eV have been projected in Fig. 11. 
exhibit predominance of 𝑛஽

ᇱᇱ(Ω) for Ω < 𝜔௣. 

𝜔௣, 𝑛஽
ᇱᇱ(Ω) ≈ 0 and 𝑛஽

ᇱ (Ω) 

becomes nonzero approaching 1 for Ω ≫ 𝜔௣.  As 

the discussion of case (iv) above, 

஽
ᇱᇱ൫𝜔௣൯ are nonzero for the 𝛾 

values considered here. These have values 0.131 
0.5 eV, and 0.27 and 0.24 for 𝛾 

their values for 𝛾 = 0.1 eV are 
and 0.057, respectively.    

on the variation of 𝑅஽(Ω) with Ω 
has been shown by plotting the graphs for 𝜔௣ =

0.1 ,  0.5 , 1.0,  and 2 . 0 eV in 
Fig. 12. Here too, the presence of damping leads to 
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smoothing of corner and departure of the 
maximum reflectivity from unity
considerations show  

 
Fig. 12. Spectral dependence of 
𝜔௣ = 15 eV,  and 𝛾 = 0.0  (black solid line), 
𝛾 = 0.1 eV (red dash-dot line),  𝛾 =
dash-dash line), 𝛾 = 1.0 eV (brown solid 
𝛾 = 2.0 eV (purple dash-dot line). 
 
 
that the metals are immensely reflective for the 
e.m. radiation with frequencies less than their 
respective plasma frequencies and are 
when Ω >  𝜔௣. This explains why metals are very 
good reflectors of visible light and transparent to x
rays; their 𝜔௣  values lie in the ultraviolet region.
This situation is sometimes called ultraviolet 
transparency of metals.   
   It is worth mentioning that the electrons bound to
the atoms in the conducting materials act as 
Lorentz oscillators and, therefore, analysis of their 
experimental data pertaining to the electrical and 
optical properties discussed here must be carried 
out employing models involving many Lorentz 
oscillators along with the DM. This arrangement 
constitutes the so-called DLOM. Furthermore, if 
the material contains more than one metal then 
expressions for different physical quantities in the 
DM are also modified to include more terms with 
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and departure of the 
maximum reflectivity from unity. These 

 

Fig. 12. Spectral dependence of 𝑅஽(Ω)  for 
(black solid line), 

= 0.50 eV (blue 
eV (brown solid line), and 

that the metals are immensely reflective for the 
e.m. radiation with frequencies less than their 

are transparent 
This explains why metals are very 

good reflectors of visible light and transparent to x-
values lie in the ultraviolet region. 

This situation is sometimes called ultraviolet 

the electrons bound to 
the atoms in the conducting materials act as 

oscillators and, therefore, analysis of their 
experimental data pertaining to the electrical and 
optical properties discussed here must be carried 
out employing models involving many Lorentz 
oscillators along with the DM. This arrangement 

DLOM. Furthermore, if 
the material contains more than one metal then 
expressions for different physical quantities in the 
DM are also modified to include more terms with 

appropriate values of the plasma frequencies, 
damping constants, and fraction
a particular type (see, e.g. [10]).   
   It is pertinent to point out that the way we have 
introduced the many oscillators LOM
preceding section, 𝜔௣

However, while analyzing the optical spectra of 
materials using this model or its combination with 
the Drude model (the DLOM)
values of 𝜔௣ are used and even 
are employed (see, e.g. [
 
5 Some Illustrative Applications of LOM

and DLOM 
 

In this section, we demonstrate some 
representative applications of the formulae derived 
in sections 3 and 4 by 
experimental data pertaining to optical constants 
for a wide range of angular frequencies
energies in respect of 
We have directed our attention 
rather than the dielectric functions because the 
former are themselves defined in terms of the latter 
and because their experimental investigation is 
relatively easy. Furthermore, the choice of the 
examples discussed has mainly
availability of easily accessible data in the 
literature. 
Before proceeding further, it may, however, be 
emphasized that our aim is to illustrate the 
applications and not to claim the high quality of 
agreement between the model calculations and the 
experimental data. Otherwise also, as pointed out 
earlier too, the models discussed in this article are 
classical in nature and are being used for analyzing 
the properties which are properly understood in the 
framework of quantum mechanical description.  
 
(i). Rutile (TiO2) crystal, which is
semiconductor, is a substance having 
refractive index in the visible region. It is used for 
the manufacture of certain optical elements, and in 
photocatalysis and dilute magnetism. The 
experimental values of 
values from 0.83 eV to 6.20 eV have been taken 
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appropriate values of the plasma frequencies, 
and fraction of the electrons of 

particular type (see, e.g. [10]).    
It is pertinent to point out that the way we have 

many oscillators LOM in the 

௣  is fixed and ∑  𝑓௝௝  = 1. 
However, while analyzing the optical spectra of 

this model or its combination with 
(the DLOM), more than one 

are used and even  𝑓௝ larger than unity 
(see, e.g. [9] and [10]).  

Some Illustrative Applications of LOM, DM 

In this section, we demonstrate some 
representative applications of the formulae derived 
in sections 3 and 4 by considering analysis of 

data pertaining to optical constants 
angular frequencies / photon 

in respect of materials of different types. 
We have directed our attention to optical properties 
rather than the dielectric functions because the 
former are themselves defined in terms of the latter 
and because their experimental investigation is 

ly easy. Furthermore, the choice of the 
examples discussed has mainly been guided by the 
availability of easily accessible data in the 

Before proceeding further, it may, however, be 
emphasized that our aim is to illustrate the 

not to claim the high quality of 
agreement between the model calculations and the 
experimental data. Otherwise also, as pointed out 
earlier too, the models discussed in this article are 
classical in nature and are being used for analyzing 

ich are properly understood in the 
framework of quantum mechanical description.   

) crystal, which is a large band-gap 
semiconductor, is a substance having quite a high 
efractive index in the visible region. It is used for 

the manufacture of certain optical elements, and in 
photocatalysis and dilute magnetism. The 
experimental values of 𝑛ᇱ(Ω)  and 𝑛ᇱᇱ(Ω)  for Ω 
values from 0.83 eV to 6.20 eV have been taken 



Physics Education                                   
 

39/1/4                                                                             

from [16] and have been used to 
corresponding 𝑅(Ω)  values employing Eq. (29). 
All these optical parameters as function of 
shown in Fig. 13. It may be mentioned that 
𝑛ᇱᇱ(Ω), 

 
Fig. 13. A comparison of single oscillator
LOM plots for 𝑛ᇱ(Ω)  (black solid line), 
(blue dash-dash line), and 𝑅(Ω) (dark green solid 
line) obtained by using 𝜔௣ = 10

4.1 𝑒𝑉 , and 𝛾 = 0.85  eV with the 
data [16] for 𝑛ᇱ(Ω) (red points and dash
𝑛ᇱᇱ(Ω) (dark brown points and dot
𝑅(Ω)  (pink points and dot-dot line)  for 
crystal. 
 
 
and 𝑅(Ω) have peaks of 5.39, 3.56, and 0.62 
3.88, 4.32, and 4.77 eV, respectively.
acceptable fit to this single-peak 
LOM has been obtained with 
𝜔଴ = 4.1 𝑒𝑉, and 𝛾 = 0.85 eV. The corresponding 
plots have also been included in Fig. 13
it may be mentioned that model calculations based 
on 𝜔௣ = 10.0 𝑒𝑉, 𝜔଴ = 4.08 𝑒𝑉, and 
led to a very good fit for 𝑛ᇱ(Ω) but a poor one for 
𝑛ᇱᇱ(Ω) . Similarly, a commendably good fit for
𝑛ᇱᇱ(Ω) but not for 𝑛ᇱ(Ω) was obtained with 

                                                               January-March 2025

                                                                                                                                       www.physed

been used to determine 
values employing Eq. (29). 

All these optical parameters as function of Ω are 
in Fig. 13. It may be mentioned that 𝑛ᇱ(Ω), 

 

Fig. 13. A comparison of single oscillator-based 
(black solid line), 𝑛ᇱᇱ(Ω) 

) (dark green solid 
10.0 𝑒𝑉,  𝜔଴ =

eV with the experimental 
(red points and dash-dot line), 

(dark brown points and dot-dot line), and 
dot line)  for TiO2 

, and 0.62 at Ω =  
eV, respectively. A reasonably 

 data using the 
 𝜔௣ = 10.0 𝑒𝑉, 

eV. The corresponding 
Fig. 13. However, 

it may be mentioned that model calculations based 
, and 𝛾 = 0.60 eV 
but a poor one for 

. Similarly, a commendably good fit for 
was obtained with 𝜔௣ = 

9.40 𝑒𝑉,  𝜔଴ = 4.18
However, in both these cases the agreement 
between model calculations and experimental 
results for 𝑅(Ω) was relatively poor.
observations show that a single
inadequate to analyze the data for 

 
Fig. 14. Model calculations for TiO
employing two oscillators 
𝜔௣ = 10.30 𝑒𝑉,  𝜔଴ଵ = 3.95 eV,

 𝑓ଵ= 0. 30, and 𝜔଴ଶ= 4.25 eV,
0.70. Legends for the model calculations and the 
experimental data are the same as in Fig. 13.
 
 
Accordingly, a two-oscillator fit was 
and the outcome together with the parameters used 
is depicted in Fig. 14. Obviously, the fits are better 
than those displayed in Fig. 13. 
 
(ii). Silica (SiO2) is a well
used in microelectronics, in structural materials, in 
production of glass and optical fibers, and as an 
additive in the food and pharmaceutical industries.
We could get experimental data for 
𝑛ᇱ(Ω) up to Ω  = 5.91 eV [16] and extracted the 
values for 𝑛ᇱᇱ(Ω) for Ω
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18 𝑒𝑉 , and 𝛾 = 0.95  eV. 
However, in both these cases the agreement 
between model calculations and experimental 

was relatively poor. In fact, these 
ations show that a single-oscillator model is 

inadequate to analyze the data for TiO2 crystal. 

 

Model calculations for TiO2 crystal 
two oscillators with parameters 

= 3.95 eV,  𝛾ଵ = 0.45  eV, 

= 4.25 eV,  𝛾ଶ = 1.0 eV,  𝑓ଶ= 
Legends for the model calculations and the 

experimental data are the same as in Fig. 13.  

oscillator fit was carried out 
and the outcome together with the parameters used 

Obviously, the fits are better 
than those displayed in Fig. 13.  

) is a well-known insulator and is 
used in microelectronics, in structural materials, in 
production of glass and optical fibers, and as an 

the food and pharmaceutical industries. 
We could get experimental data for SiO2 crystal for 

= 5.91 eV [16] and extracted the 
Ω up to 19.4 eV from Fig.1 in 
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[15]. These are projected in Fig. 15. Note that the
values of 𝑛ᇱᇱ(Ω) are close to 0 for Ω
it has four peaks of magnitudes: 1.48, 1.08, 0.95, 
and 0.92 at Ω = 10.2, 11.4, 14.2, and 17.2 eV, 
respectively. We have not calculated
𝑅(Ω) values because of the lack of nonzero values 

 
Fig. 15. Plots showing LOM fitting of 
experimental data pertaining to 𝑛ᇱ(
[16]) and 𝑛ᇱᇱ(Ω) (green points with dash
extracted from Fig. 1 in [15]) for crystalline SiO
with four oscillators having parameters 
13.5 𝑒𝑉 , 𝜔଴ଵ = 10.2 eV,  𝛾ଵ = 0.35
𝜔଴ଶ= 11.3 eV,  𝛾ଶ = 1.65 eV,  𝑓ଶ= 0.28, 
eV,  𝛾ଷ = 1.9 eV,  𝑓ଷ= 0.26, 𝜔଴ସ= 16.7 eV,
eV, and 𝑓ସ= 0.36. The model-based curves are 
solid line for 𝑛ᇱ(Ω)), red dash-dot line
and blue dash-dash line for 𝑅(Ω).  
 
 
of both 𝑛ᇱ(Ω)  and 𝑛ᇱᇱ(Ω)  over the same spectral 
range. A reasonably good fit to the data shown in 
Fig. 15 has been obtained using 
with parameters listed in the caption to this figure. 
The model-based plots for 𝑛ᇱ(Ω), 𝑛
are also included in the figure.
possible to improve the fit by considering 
number of oscillators.   
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[15]. These are projected in Fig. 15. Note that the 
Ω up to 8 eV and  
1.48, 1.08, 0.95, 

10.2, 11.4, 14.2, and 17.2 eV, 
calculated experimental 

values because of the lack of nonzero values  

 

. Plots showing LOM fitting of available 
(Ω)  (pink points 

points with dash-dot line 
for crystalline SiO2 

with four oscillators having parameters 𝜔௣ =

35  eV,  𝑓ଵ = 0.10, 
= 0.28, 𝜔଴ଷ= 14.0 

= 16.7 eV,  𝛾ସ = 2.8 
based curves are black 

dot line for 𝑛ᇱᇱ(Ω) , 

over the same spectral 
range. A reasonably good fit to the data shown in 

 four oscillators 
with parameters listed in the caption to this figure. 

) 𝑛ᇱᇱ(Ω), and 𝑅(Ω) 
included in the figure. It should be 

by considering a higher 

(iii). Plots for optical parameters of alkali metals as 
function of Ω are quite simple and do not show any 
structure. These are well accounted for by DM. As 
typical representative of these we have displayed 
experimental data for reflectivity 

 
Fig. 16. Reflectance vs 
lines with points represent the experimental data 
 𝑅௘(Ω)  from [17] while the full lines are for the 
outcome  𝑅஽(Ω)  determined from the 
parameters given in the text. The upper curves are for 
K and the lower ones for Rb. 
 
 
graphs for potassium (
reported by Monin and Boutry
corresponding DM based results 
by using 𝜔௣ = 3.75 𝑒𝑉

𝜔௣ = 3.32 𝑒𝑉, 𝛾 = 0.24

the content of this figure.
the model calculations and the experimental data 
for the two metals is reasonably good.
   In contrast with alkali metals, optical properties 
of other metals like aluminium, silver, gold, 
copper, chromium, etc. are not e
alone. These require DM combined with many
oscillator Lorentz model. As an example, we have 
considered aluminium (Al) because this can be 
safely considered as a free electron gas system 
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Plots for optical parameters of alkali metals as 
are quite simple and do not show any 

structure. These are well accounted for by DM. As 
typical representative of these we have displayed 
experimental data for reflectivity  𝑅௘(Ω) vs Ω  

 

Fig. 16. Reflectance vs Ω for K and Rb. The dash-dot 
lines with points represent the experimental data 

from [17] while the full lines are for the 
determined from the DM using 

parameters given in the text. The upper curves are for 
K and the lower ones for Rb.  

potassium (K) and rubidium (Rb) 
Monin and Boutry [17] in Fig. 16. The 

corresponding DM based results  𝑅஽(Ω)  obtained 
𝑒𝑉 , 𝛾 = 0.1  eV for K and 
24 eV for Rb also constitute 

this figure. The agreement between 
the model calculations and the experimental data 
for the two metals is reasonably good. 

In contrast with alkali metals, optical properties 
of other metals like aluminium, silver, gold, 

etc. are not explained by DM 
alone. These require DM combined with many-
oscillator Lorentz model. As an example, we have 
considered aluminium (Al) because this can be 
safely considered as a free electron gas system 
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despite being a non-alkali metal. The experimental 
data for 𝑛௘

ᇱ (Ω), 𝑛௘
ᇱᇱ(Ω), and  𝑅௘(Ω)

eV has been taken from [18] and plotted i
The presence of a peak in the first and dips in the 
last two at Ω close to 1.5 eV is quite clear. This is 
an  

 

 
Fig. 17. Plots depicting experimental data 
𝑛௘

ᇱᇱ(Ω) , and  𝑅௘(Ω)  (red points joined with dot
line) [18]; DM fitting with 𝜔௣ = 15

eV (blue dash-dash line), and excellent DLOM fit 
obtained with four oscillators having parameters
𝜔௣ = 15.0 𝑒𝑉 ,  𝛾଴ = 0.04  eV,  𝑓଴

contribution), 𝜔଴ଵ = 0.12 eV,  𝛾ଵ =
0.23, 𝜔଴ଶ= 1.56 eV,  𝛾ଶ = 0.23 eV, 
1.80 eV,  𝛾ଷ = 1.35  eV,  𝑓ଷ = 0.19, 
 𝛾ସ = 5.0  eV, and  𝑓ସ = 0.03 (black solid line)
aluminium. 
  
 
indication of departure from the DM behaviour, 
which too is shown in the figure; the parameters 
used to get this plot are 𝜔௣ =
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alkali metal. The experimental 
( ) for Ω up to 20 

been taken from [18] and plotted in Fig. 17. 
presence of a peak in the first and dips in the 

close to 1.5 eV is quite clear. This is 

 

 

 

ing experimental data 𝑛௘
ᇱ (Ω) , 

red points joined with dot-dot 
15.0 eV, 𝛾 = 0.55 

dash line), and excellent DLOM fit 
four oscillators having parameters 

଴ = 0.51 (DM 
= 0.35  eV,  𝑓ଵ = 

eV,  𝑓ଶ= 0.04, 𝜔଴ଷ= 
= 0.19, 𝜔଴ସ = 4.3 eV, 
(black solid line) for 

indication of departure from the DM behaviour, 
which too is shown in the figure; the parameters 

= 15.0 𝑒𝑉 , 𝛾 =

0.55 eV. An impressive fit to the experimental data 
is obtained using DLOM with four oscillators with 
the parameters listed in the caption of Fig. 17; the 
relevant optical parameters have been denoted by 
𝑛ᇱ(Ω), 𝑛ᇱᇱand 𝑅(Ω).  
 
(iv). In ionic solids like 
potassium chloride, rubidium bromide, 
cations and anions are charged and undergo 
vibrations about their equilibrium positions in the 
crystal lattice. As  
such, these can be treated as Lorentz oscillators 
with equal and opposite charges
the relevant ion. Obviously, masses of these 
oscillators are much higher, and their fundamental 
angular frequencies are much smaller as compared 
to the corresponding quantities for electronic 
oscillators considered in section 2.
resonant frequencies lie in the infrared region. In 
addition, the valence electrons of the cations as 
well as the anions can also be treated as Lorentz 
oscillators having high characteristic frequencies
Consequently, the dielectric and o
of these types of crystals get contributions from 
ionic as well as electronic oscillators and their 
experimental data have been analyzed using 
numerous-oscillators LOM. As an example, it may 
be mentioned that reflectance vs 
potassium chloride has about six sharp peaks 
maximum value of about 0.3, 
peaks for Ω  between
Obviously, its analysis will involve 
oscillators.  
 
(v). A plasma is an electrically conducting medium 
having nearly equal number of positively charged 
ions and electrons, produced at high temperatures 
and / or very low number density. The ions and 
electrons can move around independently of each 
other. Since the electrons are not bound to any ion, 
like metals, a plasma does not have any 
characteristic resonant frequency, i.e., 
Furthermore, because of low number density (
𝜔௣ is quite small (~4

the collisions of electrons are essentially negligible 
implying that 𝛾 = 0. Thus, a plasma 
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. An impressive fit to the experimental data 
is obtained using DLOM with four oscillators with 
the parameters listed in the caption of Fig. 17; the 
relevant optical parameters have been denoted by 

)

In ionic solids like sodium chloride, 
rubidium bromide, etc. both 

cations and anions are charged and undergo 
vibrations about their equilibrium positions in the 

such, these can be treated as Lorentz oscillators 
with equal and opposite charges, and mass that of 

relevant ion. Obviously, masses of these 
oscillators are much higher, and their fundamental 
angular frequencies are much smaller as compared 

corresponding quantities for electronic 
considered in section 2. Generally, their 

frequencies lie in the infrared region. In 
, the valence electrons of the cations as 

well as the anions can also be treated as Lorentz 
having high characteristic frequencies. 

Consequently, the dielectric and optical properties 
of these types of crystals get contributions from 
ionic as well as electronic oscillators and their 
experimental data have been analyzed using 

oscillators LOM. As an example, it may 
reflectance vs Ω  plot for 

has about six sharp peaks with 
maximum value of about 0.3, and some broad 

between 7 eV and 22 eV [3]. 
Obviously, its analysis will involve many Lorentz 

A plasma is an electrically conducting medium 
equal number of positively charged 

, produced at high temperatures 
or very low number density. The ions and 

electrons can move around independently of each 
Since the electrons are not bound to any ion, 

lasma does not have any 
characteristic resonant frequency, i.e., 𝜔଴ = 0 . 
Furthermore, because of low number density (𝑁) 

× 10ିହ − 4 × 10ିଷ 𝑒𝑉) and 
the collisions of electrons are essentially negligible 

0. Thus, a plasma essentially 
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corresponds to the first case discussed in Section 4. 

Accordingly, for a plasma 𝜀௥(Ω) = 1 − ൫𝜔௣ Ω⁄ ൯
ଶ

, 
which is a real quantity. Also, 𝑛(Ω) =

ට1 − ൫𝜔௣ Ω⁄ ൯
ଶ

.  Both of these are close to unity 

for very large Ω  values. Note that  𝑛(Ω)  is 
imaginary for Ω < 𝜔௣ and real but less than unity 
for Ω > 𝜔௣ . Furthermore, from 𝛾 = 0 case in 
Fig.12, we infer that a plasma will be 100% 
reflective for e.m. waves of frequency Ω < 𝜔௣ and 
highly transmissive for Ω significantly higher than 
𝜔௣ . This is in consonance with the fact that 
ionosphere, which is a plasma layer around the 
earth having 𝜔௣~108 rad s-1, reflects back the radio 
signals of lower frequencies extending the range of 
receiving stations on the earth and is transparent to 
the signals with higher frequencies (the so-called 
short waves) enabling communication with 
satellites in space. 
 
6 Epilogue 

 
It is worth mentioning that at extremely high 
angular frequencies ( Ω → ∞ ), the dielectric 
function is real and unity in LOM as well as DM. 
Physically, this means absence of polarization of 
the medium which is so because the electrons do 
not respond to the applied field. Under these 
conditions, there is neither refraction nor 
absorption and only high transmission of the 
incident e.m. wave.   
   We close the article by quoting Wooten [3], 
‘Both the Lorentz and Drude models are largely ad 
hoc, but still useful as starting points and for 
developing a feeling for optical properties. …many 
features of these classical models have quantum 
mechanical counterparts which are easily 
understood as generalizations of their classical 
analogs’.  
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Appendix : Analysis of Complementary and 
Particular Integral Solutions for a One-
dimensional Forced Oscillator 

The equation of motion giving dynamical balance 
of forces for a one-dimensional forced damped 
harmonic oscillator corresponding to the one 
described by Eq. (1) can be written as 
 
         �̈�(𝑡) + 𝛾�̇�(𝑡) + 𝜔଴ 

ଶ 𝑥(𝑡) = 𝐹𝑒ି௜ஐ௧.        (A1) 
Here, 𝑥(𝑡) is instantaneous displacement, 𝐹  is the 
amplitude of the applied force and other symbols 
have the same meaning as in Eq. (1). The general 
solution of this second-order nonhomogeneous 
linear differential equation with constant 
coefficients consists of two parts: (i) the 
complementary or homogeneous solution, 𝑥஼ி(𝑡), 
and (ii) the particular or nonhomogeneous solution, 
which is also called particular integral, 𝑥௉ூ(𝑡). For 
an underdamped oscillator satisfying the condition 
𝛾 < 2𝜔଴, these solutions are given by  
 
 
             𝑥஼ி(𝑡) =  𝐴𝑒ିఊ௧/ଶ𝑠𝑖𝑛 (𝜔𝑡 + 𝜃)          (A2) 
 

with 𝐴  as amplitude,  𝜔 = 𝜔଴ට1 −
ఊమ

ସఠబ 
మ   as 

damped angular frequency, and 𝜃 as initial phase; 
and  
 

𝑥௉ூ(𝑡) =  
1

(𝜔଴
ଶ − Ωଶ) − 𝑖𝛾Ω

𝐹𝑒ି௜ஐ௧ 

 

                        = ൜
൫ఠబ

మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝐹𝑒ି௜ஐ௧.     (A3) 

 
Accordingly, for the complete solution of Eq. (A1), 
we have  
 
                    𝑥(𝑡) = 𝑥஼ி(𝑡) + 𝑥௉ூ(𝑡).               (A4) 

 

   Note that for an oscillator having initial 
displacement 𝑥଴ and initial velocity 𝑣଴, 
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 𝐴 =
ටఠమ௫బ

మା(௩బା
ംೣబ

మ
)మ

ఠ
 ,   and   𝜃 = 𝑡𝑎𝑛

                                                                      
                

Also, in Eq. (A2), since 𝑒ି
ം೟

మ  is a uniformly 
decreasing function of time, 𝑥஼ி

oscillations about the equilibrium position with 

continuously diminishing amplitude 
becomes zero. Note that the oscillations 
usually referred to as transients and effective 

damped amplitude  𝐴𝑒ି
ം೟

మ   is said to define 
envelope of decay of 𝑥஼ி(𝑡) . Obviously, 
decrease in amplitude is fast if 𝛾 is large
versa. To appreciate the effect of damping 
parameter 𝛾 on 𝑥஼ி(𝑡) in a better way, we note that

𝐴𝑒ି
ം೟

మ  will be 0.1 % of 𝐴 at time 𝑇 =

ଵଷ.଼ଶ

ఊ
 . Thus, for 𝑡 > 𝑇 , 𝐴𝑒ି

ം೟

మ  and hence

may be essentially taken as zero.   
   Next, simplifying Eq. (A3), we can write its real 
part as 
 

                        𝑥௉ூ
ᇱ (𝑡) = 𝐵 cos(Ω𝑡 − 𝜑

 
where 
 

𝐵 =
ி

ටቀ𝜔0
2−Ω2ቁ

2
+(𝛾Ω)2

, and 𝜑 = 𝑡𝑎𝑛ିଵ

 
In fact, this is the same expression as we 
considering the nonhomogeneous term as 
𝐹 cos(Ω𝑡)  in Eq. (A1). Clearly, 
oscillatory function with constant amplitude 
From experimental observation point of view, 
complete solution for Eq. (1) can be written as
 
                   𝑥(𝑡) = 𝑥஼ி(𝑡) + 𝑥௉ூ

ᇱ (𝑡)

 
As argued above, for sufficiently large times 
𝑇 , the transients vanish and only the particular 
solution is left, and we have 
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𝑡𝑎𝑛ିଵ ൬
ఠ௫బ

௩బା
ംೣబ

మ

൰.  

                                                                      (A5)   

is a uniformly 
஼ி(𝑡)  describes 

oscillations about the equilibrium position with 

continuously diminishing amplitude 𝐴𝑒ି
ം೟

మ  till it 
Note that the oscillations 𝑥஼ி(𝑡) are 

usually referred to as transients and effective or 

is said to define the 
) . Obviously, the 

is large and vice 
appreciate the effect of damping 

in a better way, we note that 

=
ିଶ ୪୬ (଴.଴଴ଵ)

ఊ
=

and hence 𝑥஼ி(𝑡) 

simplifying Eq. (A3), we can write its real 

𝜑),                (A6) 

ቀ
ఊஐ

ఠబ
మିஐమ

ቁ.  (A7) 

In fact, this is the same expression as we obtain by 
considering the nonhomogeneous term as 

Clearly, 𝑥௉ூ
ᇱ (𝑡)  is an 

oscillatory function with constant amplitude 𝐵. 
From experimental observation point of view, a 

solution for Eq. (1) can be written as 

( ).               (A8)  

As argued above, for sufficiently large times 𝑡 >
only the particular 

 
                           𝑥(𝑡) =
 
This is said to give a 
problem. 
   To elaborate this aspect in
we have plotted 𝑥஼ி

𝑥஼ி(𝑡) + 𝑥௉ூ
ᇱ (𝑡)  for a damped forced oscillator 

characterized by (arbitrarily chosen) parameters 
𝜔଴ = 4.0 rads-1, 𝛾 = 1.0 s

 
Fig. A1. Plots showing time variation of
(black dashed line), 𝑥௉ூ

ᇱ

𝑥(𝑡)  (red dash-dot line) for a forced oscillator 
having parameter values
solid line represents the envelope of decay of  
𝑥஼ி(𝑡). 
 
 
ms-1, 𝐹 = 1.0 N, and Ω 
rads-1, A = 0.13 m, 𝜃 = 0.23 rad, B = 0.13 m, and 
𝜑 = 0.40 rad, in Fig. A1. This clearly shows that 
for small t values 𝑥(𝑡)

𝑥஼ி(𝑡) and 𝑥௉ூ
ᇱ (𝑡), while for reasonably large times 

(𝑡 > 𝑇 = 13.82 𝑠) 𝑥஼ி

the steady state solution. We can extend this 
treatment straightaway for a forced one
dimensional harmonic oscillator to the case of 
relevant three-dimensional oscillator.
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( ) = 𝑥௉ூ
ᇱ (𝑡).                        (A9)  

 steady state solution to the 

To elaborate this aspect in a proper perspective, 

஼ி(𝑡) , 𝑥௉ூ
ᇱ (𝑡) , and 𝑥(𝑡) =

for a damped forced oscillator 
characterized by (arbitrarily chosen) parameters 

= 1.0 s-1, 𝑥଴ = 0.03 m,  𝑣଴ = 0.50  

 

showing time variation of 𝑥஼ி(𝑡) 

௉ூ
ᇱ (𝑡) (green solid line), and 

dot line) for a forced oscillator 
values listed in the text. Blue 

solid line represents the envelope of decay of  

 = 3.0 rads-1 so that 𝜔 = 3.97 
= 0.23 rad, B = 0.13 m, and 

= 0.40 rad, in Fig. A1. This clearly shows that 
( ) gets contribution from both 

, while for reasonably large times 

஼ி(𝑡) = 0 and 𝑥(𝑡) = 𝑥௉ூ
ᇱ (𝑡) , 

he steady state solution. We can extend this 
treatment straightaway for a forced one-
dimensional harmonic oscillator to the case of 

dimensional oscillator. 
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