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EDITORIAL 

  

 

It is a pleasure to publish the Vol 29, No. 2 

issue (with dateline Apr–Jun 2013) of ‘Physics 

Education’, having, I think, high pedagogical content. 

Thus the article by Swarna Lakshmi clarifies the 

misconceptions about such an elementary property 

like electrical load, while T. Shivalingaswamy and B. A 

Kagali give a simple method to obtain relativistic 

momentum and energy of a particle. Somnath Datta’s 

article deals with the basic structure of Minkowski 

space-time. Another paper by K P J Pradeep et. al. 

explains how to model a partially-known continuous 

state space of a RLC circuit and use it to optimize the 

unknown model parameters.  This issue contains a 

‘News and views’ feature covering the news about 

‘Rahul Basu Memorial Best Thesis Award’ for best 

thesis in high energy physics, in memory of late Prof. 

Rahul   Basu,   one   of   India’s   leading   high    energy  

 

 

 

 

physicists. This news is followed by the article on the 

thesis work of the awardees for 2012, I invite you to 

read about their work and these articles. On a 

personal note, I had occasions to interact with Rahul, 

as his wife, Neelima, was my colleague until 1996. 

Finally, this issue contains the usual feature of ‘Physics 

through problems’ by Ahmed Sayeed and review of 

Somnath Datta’s book on mechanics by Prof. R. 

Ramachandran.  

Wish you a happy reading! 

 

  

   

Pramod S. Joag. 

                                         Chief Editor, Physics Education                       

Chief-editor@physedu.in, 

pramod@physics.unipune.ac.in 

_______________________________________________________________________________________________  
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Abstract 

In this article we discuss an alternate and a simple method employing only the relativistic 

rules for the addition of velocities to deduce the well-known expressions for the relativistic 

momentum and energy of a particle, instead of using conventional methods that either 

involves interaction of more than one particle or require an advanced level of theory of 

relativity 

 

1. Introduction. 

Expressions for relativistic momentum and 
energy of a material body are derived using 
several methods.  Use of the law of 
conservation of momentum in the elastic 
collision of equal masses [1-4], the Lorentz 
invariant action integral [5] and the four 
vector acceleration [6,7] are the most 
common among the methods.  While first of 
the cited methods involves interaction of 
more than one particle, the other two methods 
require an ‘advanced’ level of understanding 
of the theory  of relativity. 
In this short article, a fairly simple method 
employing only the velocity addition rules for 
a single particle is shown to yield the well-

known expressions for momentum and 
energy. 
 

2. Lorentz Transformation of 

velocities 

Let us consider two identical frames Sand  S1 
such that S1 is moving with respect to S along 
their common X-axis with velocity V. Let us 
consider a particle of mass m that is having a 
velocity u along Y-direction in S1. Therefore, the 
particle’s velocity components in S1  are 

)1(0    vandv,0v '
z

'
y

'
x === u

Using Lorentz transformations, The X,Y  and Z 
component so f the particle’s velocity in Scan be 
found to be[8] 
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3. Relativistic momentum 
 
Using the Newtonian definition as a guide, 
we can expect the relativistically correct 
momentum to take the form 

( )vv
rrr

fmP =  

Where ( )v
r

f is an unknown function that 

depend so nylon the magnitude of the 
particle’s velocity in such a way that  ( )v

r
f

should approach unity in the limit of  
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

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tending to zero. 
Using this ansatz, we get the following 
components in S for the momentum of the 
particle being considered. 
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But as V→0,the particle simplyhasonlyY  
component of velocity equal to u. Hence, its 
momentum tends to ( )ufmu . In the limit 

V→0, this May be written as 

( ) ( ) )4(vv 2
y

2
y ufmuVfm =+

Expanding in powers of  
2

2

c

V
 and retaining 

the terms with first powers of 
2
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c

V
, we get 

LHS of equation (4) as 
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  (5) 
This should be equal to ( )ufmu=RHS . 

Equating the coefficients of 2V  on both 
sides of the equation (4), we get the 
following equation for ( )uf  

( ) )6(01
11

2

2

2
=








−







+−
c

u

udu

df
uf

c

This is the first order equation for ( )uf  can 

be written as 
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On integration, we get 
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The constant in the above equation can be 
found by taking recourse to the Newtonian 

limit: ( ) 0as1 →→
c

u
uf . Therefore the 

constant must be simply equal to unity. 
Since the Y direction may be chosen 
arbitrarily, we may conclude that the 
relativistically correct momentum for a 
particle of mass m and velocityv

r
is given by 
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This is well-known expression we sought to 
derive. 

4. Relativistic Energy 
 
Whenever there is change in momentum of 
a body, there will be change in the energy 
of the body such that 
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This can be simplified to  
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Hence, we get the well-known expression 
for relativistic energy 
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5. Discussion 
We have shown here that with reasonable 
assumptions, Lorentz transformation of 
velocities of a single particle can lead to the  
 
 

correct expression for relativistic 
momentum and the energy. There is noneed 
to invoke two-body collisions or Lorentz 
invariant action. Hence this alternate 
method will help the students and teachers 
who take up the derivation while 
understanding relativistic expressions for 
energy and momentum. 
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Abstract

In 1908 Minkowski wrote a paper in which he introduced the concept of a 4-dimensional
”world” popularly known as space-time, and introduced ”world postulate” suggesting that
all physical phenomena should be described only in space-time. He showed how to
construct 4-vectors, and classified them into two categories, namely time-like and space-like
vectors. Some of the examples of these vectors as worked out by him are the velocity and
acceleration vectors, the momentum and the force vectors, all in 4-dimensions. He derived
the 4-dimensional law of motion from which he also obtained the famous E = mc2 formula.
In his final analysis Minkowski demonstrated further application of the world postulate by
giving a geometrical construction of the Lienard-Weichert potentials and used it to obtain
the force exerted by a moving charge on another moving charge. In this article we have
explained Minkowskis work as mentioned above using our own interpretation.

1 Introduction

In 1905 Einstein wrote two revolutionary pa-
pers [1] giving the framework of what he
later called the Special Theory of Relativ-
ity (STR). Eleven years later, i.e., in 1916,
he presented his General Theory of Relativ-
ity (GTR) which turned out to be a geomet-
rical theory of gravitation[2]. Whereas the

STR is mathematically a simple theory origi-
nally intended to set right some “asymmetries
in Maxwell’s Electrodynamics”, the GTR
involved complex mathematics of Reiman-
nian geometry. It visualized gravitation as
a curvature in a four dimensional “world”,
more familiarly now known as space-time
and the orbits of planets and satellites (even
trajectories of mundane earthly objects like

Volume 29, No. 2, Article Number : 2 www.physedu.in
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cricket balls) as geodesics marked out on this
“curved space-time”.
The geometrical ideas that form the bridge

between the STR and the GTR were cre-
ations of H. Minkowski [3]. In 1908 he
geometrized the STR, which under Ein-
stein later culminated in the geometriza-
tion of gravity[2]. In his original paper
Minkowski fancied a four-dimensional mani-
fold of “events” where the time co-ordinate
t takes equal status along with the three
space co-ordinates (x, y, z), and called it
world. The points in this “world” are there-
fore “events” characterized by 4-coordinates
(x, y, z, t). The basic physical quantities of
classical mechanics. e.g., displacemnent, ve-
locity, momentum, energy and force were
conceived as 4-vectors (geometrical objects),
or components of 4-vectors, in their corre-
sponding 4-dimenational “worlds”.
In 2005, as part of celebration of Einstein’s

birth cenetennary, we had written an exposi-
tion of Einstein’s special relativity papers[4]
with the following remarks. “Einstein’s orig-
inal papers were terse because they were
meant to be read by the leading physicists
of that time. We have therefore simplified
his work by providing between-the-lines elu-
cidation for many of the concise statements in
these papers which many students may find
difficult to understand. It is hoped that stu-
dents and physics teachers may be able to get
a full view of Einsteins relativity papers us-
ing our article as a guide.” In the same spirit
we are writing this article to expose the stu-
dents and teachers of physics to the pioneer-
ing work of Minkowski. We have banked on
the English version of this paper available in

Ref.[3].
The original paper of Minkowski appears

to be difficult to understand on first reading.
It requires considerable efforts to comprehend
his statements which are very brief. We have
tried to elucidate these statements, as best
as we could understand them, by expanding
them into explanatory notes.
In the Appendix of Ref.[3] there

are explanatory notes given by Prof.
A.Sommerfeld. The reader may also take a
look at these notes. However, most of these
notes refer to other papers/articles written
in German to which we could not get access.
Even though we have benefitted from a few
of these notes, we have mostly interpreted
Minkowski’s original paper with our own
understanding.
It is our hope that the readers of this article

(students and teachers) will find this article
useful in strenthening their understanding of
the special theory of relativity, in particular
their concept of the 4-dimensional represen-
tation of classical mechanics, its equations of
motion, E = mc2, and the covariant formula-
tion of classical electrodynamics. It may also
help them place the works of the founding fa-
thers of the theory of relativity in a proper
historical perspective.
In this article we shall frequently use

the term space-time to mean Minkowski’s
“world”. Many of the new concepts and
terms introduced by Minkowski, e.g., world
point, world line, proper time, pictured in the
4-dimensional “world” are now familiar terms
in text books. Even the famous mass-energy
equivalence equation E = mc2, which we nor-
mally attribute to Einstein, was written in

Volume 29, No. 2, Article Number : 2 www.physedu.in
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this revolutionary form by Minkowski1. See
our remarks on page 39.
Wherever we shall quote an axact passage

from Minkowski’s paper, we shall place them
within “quotes”. Most of these quotes (at
least the most important ones of them) will
be found in a separate paragraph, placed with
an “indent”.
Minkowski’s paper has 5 sections, labelled

with roman numerals I-V. We have coverd
them in this article in 17 sections. Our Sec-
tions 2-10 cover Sec. I of Minkowski, Section
11 covers Sec.II, Sections 12-14 cover Sec.III,
Section 15 covers Sec.IV, and Sections 16-17
cover Sec.V.
Minkowski begins his article with the philo-

sophical prediction, “Henceforth space by it-
self, and time by itself, are doomed to fade
away into mere shadows, and only a kind of
union of the two will preserve an independent
reality.”

2 Two-fold invariance of

Newtonian Mechanics

The concepts of newtonian mechanics revolve
around displacement r, velocity v, accelera-

1In his relativity papers of 1905 Einstein derived a
series of corollaries of his relativity postulates, some
of them being (i) transformation under Lorentz trans-
formation of the electromagnetic field, (ii) consequent
derivation of the relativistic Doppler formula, (iii)
transformation of light energy. Using the last re-
sult he established the following. Suppose an object
(e.g., an atom) loses energy equal to δw by emission
of light. As a consequence the object also loses its
mass by an amount δm which satisfies the equality:
δw = (δm)c2. See page 67 of Ref.[4].

tion a. All these quantities are referred to
a certain frame of reference S, e.g., a Carte-
sian system of XY Z axes, having its origin O
located somewhere. However, the laws of mo-
tion remain unchanged (a) “if we subject the
underlying system of spatial coordinates to
any arbitrary change of position”, by which
Minkowski seems to imply rotation of the co-
ordinate axes from XY Z to X ′Y ′Z ′, or (b)
“if we change its state of motion, namely, by
imparting to it any uniform translatory mo-
tion”, i.e., switch into another frame of ref-
erence S ′ whose origin O′ is moving with re-
spect to O with a constant velocity u.

The totality of all operations (a) and (b)
form two distinct groups of transformation.

“The two groups side by side, lead their
lives entirely apart. Their utterly inho-
mogenous character may have discour-
aged any attempt to compound them.
But it is precisely when they are com-
pounded that the complete group, as a
whole, gives us to think.”

Minkowski begins Sec. I of his paper with
the proposal to combine the two groups into
a single one (which he later calls Gc.) He
proceeds towards this goal by introducing the
terms world point, world and world-line.

“The objects in our perception invari-
ably include places and times in combi-
nation. Nobody has ever noticed a place
except at a time, or a time except at a
place... A point of space at a point of
time, that is, a system of values x, y, z, t,

Volume 29, No. 2, Article Number : 2 www.physedu.in
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I will call a world point. The multiplic-
ity of all thinkable x, y, z, t, systems of
values we will chirsten the world.”

We shall elucidate. The term “world
point” is synonimous with the term “event”
used in special relativity. Having fixed a
frame of reference defined by the Cartesian
coordinate system XY Z an event Θ takes
place at some point P having coordinates
(x, y, z) and at a certain time t. We can
therefore fancy a 4-dimensional “manifold”
W having four axes X, Y, Z, T in which the
event Θ is represented by a corresponding
image Θ having coordinates (x, y, z, t) with
reference to the above mentioned four axes.
This point Θ is a world point. The continuum
of all points in this manifold having values of
each one of x, y, z, t from −∞ to +∞ is the
“world” as defined by Minkowski.

We shall however feel more comfortable to
use the more familiar term space-time for
Minkowski’s world.
We shall illustrate some of Minkowski’s ar-

guments using the diagram in Fig. 1. Since
it is not possible to picture the 4-dimensional
space time, we have eliminated the Z axis and
have presented a kind of picture of space-time
on a sheet of paper. In doing this we have
taken the XY plane as the base on which
we have constructed the superstructure, the
space-time, by going vertically up, along the
T axis.
Let us think of a material particle mov-

ing in some manner such that its location at
time t is at some point P having spatial co-
ordinates x, y, z. Minkowski refers to such a
particle by the term “substance”. We shall
find it more natural to use our familiar term
“particle” instead of “substance”.

Consider two successive events on the path of a material particle.

ΘP : The particle is at P(x, y, z) at time t.
ΘQ : The particle is at Q(x+ dx, y + dy, z + dz) at time t+ dt.

The displacement vector
−→
PQ has Cartesian

components (dx, dy, dz). Seen in the space-
time W there is a progression of the parti-
cle from ΘP to ΘQ through four coordinates
(dx, dy, dz, dt). The line joining ΘP to ΘQ is
an element of the world line of the particle.

In the 3-dimensional Euclidean space, of-
ten denoted as E3, the particle moves from
A to B along a certain path Γ. In the 4-

dimensional space-time W the particle traces
out the continuous curve Ω as it progresses
from the event ΘA to the event ΘB. This
curve is the world line (WL) of the particle.

Volume 29, No. 2, Article Number : 2 www.physedu.in
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3 Freedom of the Time

Axis

Let us now get back to the group of transfor-
mations (a), i.e., rotation of the XY Z axes,
called orthogonal transformations, and often
denoted by the symbol O(3) in the termi-
nology of group theory. The simplest such
transformation is the rotation of theXY axes
about the Z axis by an angle θ, shown in
Fig. 2. The coordinates (x, y, z) of a point
change to (x′, y′, z′) in such a transformation
and

x′ = x cos θ + y sin θ,
y′ = −x sin θ + y cos θ,
z′ = z.

(1)

In this transformation, in fact in all general
orthogonal transformations, the distance of a
point measured from the origin remains un-
changed, i.e.,

x2 + y2 + z2 = x′2 + y′2 + z′2. (2)

As we have noted, and we repeat it here,
the equations representing Newton’s laws of
motion donot change if the old coordinates
(x, y, z) are replaced by the new coordinates
(x′, y′, z′) which are obtained from the former
by any orthogonal transformation.
The group of transformations (b) consists

of Galilean transformations of “events”. We
shall abbreviate it as GT. Let us consider a
material particle moving along a certain tra-
jectory Γ. It is at a certain point P at time
t. Let the spatial coordinates of the point
P be (x, y, z) when viewed from an inertial
frame S, and (x′, y′, z′) when viewed from an-
other inertial frame S ′ which is moving with

respect to S with a constant velocity u. It is
assumed that the Cartesian axes XY Z of S
remain parallel to the Cartesian axesXY Z of
S ′, and coincide at t = 0. In the parlance of
special relativity we often say that the frame
S ′ has a boost u with respect to S.
In Fig. 3 we have illustrated a boost in the

X direction with velocity u. The GT for this
special case is

x′ = x− ut; y′ = y; z′ = z; t′ = t. (3)

In a more general boost, the frame S ′ will
be moving in an arbitrary direction with ve-
locity u having componets u = (ux, uy, uz)
in the X, Y, Z directions. The GT for this
general case will be

x′ = x−uxt, y′ = y−uyt, z′ = z−uzt, t′ = t.
(4)

We shall represent GT in space-time as il-
lustrated in Fig. 4. To make the comprehen-
sion of the graphical construction easier we
shall consider the special case of boost in the
X direction, represented by Eqs. (3).
Just as the transformation of the coordi-

nates (x, y, z) represented by the orthogonal
transformation (1) induces in the space E3

the rotation of the XY axes as illustrated in
Fig. 2, the transformation GT represented by
Eqs. (3) induces a kind of rotation shown in
Fig.4(a) in which the time axis T is rotated
by the angle tan−1 u to become the T ′ axis,
whereas the X ′, Y ′, Z ′ axes remain parallel to
the corresponding X, Y, Z axes. To see this
clearly we should only note that the equation
of the new T ′ axis should be

x′ = 0; Or, x− ut = 0. (5)

Volume 29, No. 2, Article Number : 2 www.physedu.in
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We can get back the GT given by Eqs. (3)
from the above diagram in the following way.
Consider an arbitrary event Θ represented in
space-time. Draw three lines ΘA, ΘB and
ΘC parallel to the axes T ′, T and X respec-
tively. The first two intercept the X axis at
A and B respectively, and the third one inter-
cepts the T axis at C, and the T ′ axis at C′.
Fix the scale of the X and X ′ axes 1,2,3,...
at equal intervals by taking unit length along
theX ′ axis to be unit length along theX axis.
Similarly fix the time scale 1,2,3,.. on the T
axis at equal intervals. Draw lines 11,22,33,..
from the T axis, parallel to the X axis, to fix
the length scale on the T ′ axis as shown. In
other words if the intercept O1 on the T axis
represents unit length on the T axis then the
intercept O1 on the “slanted” T ′ axis rep-
resents unit time on this axis. Using these
scales it is then seen that

ÔC′ = ÔC, Or, t′ = t.

ÔA = ÔB− ut, Or, x′ = x− ut.
(6)

In the above equation we have used “wide-
hat” .̂..... to represent the measure of a given
segment indicated by the capital letters. We
have thus retrieved the same GT as given in
Eqs. (3) by a graphical method.
It is then seen that just as the XY Z axes

are not unique due to invariance of Newton’s
laws of motion, under the group (a) of trans-
formations, the time axis is not unique due to
invariance of Newton’s laws of motion under
the (b) group of transformations.
In Fig. 4(b) we have pictured a rotated time

axis T ′ under a more general GT.
Minkowski observes, which we write as the

following proposition

“Hence we may give to the time axis
whatever direction we choose towards
the upper half of the world, t > 0.”

He next poses the question,

“Now what has the requirement of or-
thogonality in space to do with the per-
fect freedom of the time axis in an up-
ward direction?”

4 The Group Gc

The central theme of Minkowski’s paper is in-
variance of the laws of physics under a group
of transformation which he denoted as Gc. It
consists of all linear transformations in space-
time which change the co-ordinates (x, y, z, t)
of an “event” to a new set of co-ordinates
(x′, y′, z′, t′) in such a way that the expres-
sion

F (x, y, z, t)
def
= c2t2 − x2 − y2 − z2 (7)

remains invariant, i.e.,

c2t′2−x′2−y′2−z′2 = c2t2−x2−y2−z2. (8)

In Minkowski’s words

“Let us take a positive parameter c, and
consider a graphical representation of

c2t2 − x2 − y2 − z2 = 1.

It consists of two surfaces separated by
t = 0, on the analogy of a hyperboloid
of two sheets. We consider the sheet in
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the region t > 0, and take those homoge-
neous linear transformations of x, y, z, t
into four new variables x′, y′, z′, t′, for
which the expression for this sheet in the
new variables is of the same form. ...
It is evident that the rotations of space
about the origin pertain to these trans-
formations.”

It seems to us that by “rotations of space”
Minkowski means “rotations of space-time”.
Minkowski then proposes a graphical con-
struction of this transformation simplifying
it by keeping the y, z variables unchanged.

“Thus we gain full comprehension of
the rest of the transformations simply
by taking into consideration one among
them, such that y and z remain un-
changed.”

We shall explain this construction in the
next section. We shall however proceed
with the following remarks. A trivial ex-
ample of Gc is pure rotation in space, i.e.,
the group of orthogonal transformations de-
noted by SO(3) and discussed in the pre-
vious section. It is obtained from Eq. (8)
by setting t = 0. Our interest however lies
in Lorentz transformation proper which had
been derived by Einstein as a corollary to
his relativity postulates. In our discussion
to follow we would like to be clear that we
are talking about Lorentz transformation, or
the group of Lorentz transformations (even
though Minkowski is silent about it) by men-
tioning Gc. We shall often use the abbrevia-
tion LT to mean Lorentz transformation.
Let S and S ′ be two “inertial frames of ref-

erence” whose axes X, Y, Z and X ′, Y ′, Z ′ are

parallel and coincide at t = t′ = 0. In the rest
of this article we shall prefer the term Lorentz
frame to mean an inertial frame in the con-
text of special relativity. Let u = βc be the
velocity with which S ′ is moving relative to
S. Here c is the speed of light, so that β

is a dimensionless velocity having magnitude
less than unity. The “event” co-ordinates
(x, y, z, t) and (x′, y′, z′, t′) mentioned above
are with reference to S and S ′ respectively.
A simple and special case of this transfor-

mation is when the boost is in the x direction,
so that u = βc i as illustrated in Fig. 3. The
intended transformation is then:

x′ = γ(x− βct), (a)
y′ = y; z′ = z. (b)
ct′ = γ(ct− βx). (c)

with γ = 1√
1−β2

. (d)

(9)

5 Graphical Construction

of Lorentz

Transformation

We shall now present Minkowski’s construc-
tion of Lorentz Transformation, analogous to
the graphical construction of Galilean trans-
formation presented in Sec. 3. Imagine the
hyperboloid hyper-surface

F (x, y, z, t) = 1, (10)

carved out in space-time, where the expres-
sion for F (x, y, z, t) was defined in Eq. (7).
For the sake of pictorial representation of this
hyperboloid on this sheet of paper we shall
suppress the y and z dimensions. This will
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reduce the hypersurface to a two dimensional
curve, viz., the hyperbola

c2t2 − x2 = 1. (11)

In Fig. 5(a) we have plotted the above hyper-
bola and its asymptotes OE (t = x

c
) and OF

(t = −x
c
). Its vertex V lies at (x = 0, t = 1

c
).

Draw any “radius vector” OA from the ori-
gin O to any point A on the hyperbola. This
line extended indefinitely becomes the new T ′

axis. At A draw a tangent to the hyperbola,
intersecting the asymptote OE at B. The par-
allelogram ABCO is completed by drawing
BC and OC parallel to AO and AB respec-
tively and intersecting at C. The straight line
OC is now extended to represent the new X ′

axis.
We now specify the scales of the new axes

as follows. The intercept OC is to measure
unity on the X ′ axis and the intercept OA
to measure 1

c
on the T ′ axis. We have repro-

duced this scale in Fig. 5(b).
Let us consider an arbitrary event P hav-

ing co-ordinates (xP , tP ) with respect to the
X −T axes. The event P is now projected to
the pair of points (R,Q) on the X ′ − T ′ axes.
With the scales just defined the space-time
co-ordinates (x′P , t

′
P ) of P with respect to the

X ′ − T ′ axes are now given by the following
ratios.

x′P =
ÔR

ÔC
, t′P =

1

c

(
ÔQ

ÔA

)
. (12)

In the above equation we have used “wide-
hat” to represent the length of a given seg-
ment indicated by the capital letters. This

completes Minkowski’s graphical transforma-
tion of (x, t) to (x′, t′).
It now needs to be seen that the transfor-

mation of co-ordinates given above meets our
requirement, which we write in the form of
the following statement.

Theorem 1 The co-ordinates (x′, t′) of an
arbitrary event P referred to the new X ′ − T ′

axes are related to their old co-ordinates (x, t)
referred to the X−T axes in such a way that

F (x, t)
def
= c2t2 − x2 (13)

remains invariant. That is,

c2t′2 − x′2 = c2t2 − x2. (14)

Instead of proving the above theorem di-
rectly we shall now prove the following equiv-
alent lemma.

Lemma: 1 The co-ordinates (x′, t′) of an ar-
bitrary event P referred to the new X ′ − T ′

axes are related to their old co-ordinates (x, t)
referred to the X−T axes in such a way that
they satisfy Lorentz transformation given in
Eq. (9).

It is a simple exercise (the reader must have
done this himself as part of his homework in
special relativity) to prove that the transfor-
mation (9) satisfies the invariance required by
Eq. (14).

Proof of lemma 1 : Let us first note that the
X ′ and T ′ axes must satisfy t′ = 0 and x′ = 0
respectively. By Eq. (9) they must therefore
to be represented by the following straight
lines

X ′ axis : t = β

c
x (a)

T ′ axis : t = 1
βc
x (b)

(15)
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Figure 5: Graphical construction of Lorentz transformation.
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Let the angle subtended by the line OA
(which represents the T ′ axis) with theX axis
be θ. Then by Eq. (15b) tan θ = 1

βc
.

Note that a tangent dt
dx

to all hyperbolas of
the form

c2t2 − x2 = k, satisfies
dt

dx
=

x

c2t
. (16)

Hence the tangent AB drawn at A must have
the slope tanφ = x

c2t
= βct

c2t
= β

c
, since the

point A lies on the T ′ axis. Consequently the
line OC which is parallel to AB, will have the
same equation as that of the X ′ axis given by
Eq. (15a). We are thus satisfied that the lines
OC and OA truly represent the transformed
X ′ − T ′ axes.
In summary, the angles θ, φ that the T ′, X ′

axes make with the X axis are given as

tan θ =
1

βc
; tanφ =

β

c
. (17)

We shall now convert the segment ratios
given in Eq. (12) into algrebraic expressions
in terms of the co-ordinates (xP , tP ) of the
event P. For this purpose we shall obtain the
(x, t) co-ordinates of the points A, B, C, R, Q
on the x−t diagram. Each of these points lies
at the intersection of two curves or straight
lines. The reader should work out the equa-
tions of the straight lines OA, AB, CB, OC,
QP, RP and the co-ordinates of the intersec-
tion points to tally with the results tabulated
below.

Straight line # 1 Curve/straight line # 2 Their intersection
OA : T ′ axis: t = 1

βc
x Hyperbola ; c2t2 − x2 = 1 A: (xA, tA) =

(
βγ, γ

c

)

AB : t = 1
c

(
1
γ
+ βx

)
OE :x = ct B: (xB, tB) =

1
γ(1−β)

(
1, 1

c

)
.

OC : X ′ axis : t = β

c
x BC : t− 1

cγ(1−β)
= 1

βc

(
x− 1

γ(1−β)

)
C: (xC , tC) =

(
γ, βγ

c

)

OC : X ′ axis : t = β

c
x PR : t− tP = 1

cβ
(x− xP ) R: xR = γ2(xP − βctP )

OA : T ′ axis : t = 1
βc
x PQ : t− tP = β

c
(x− xP ) Q: tQ = γ2(tP − β

c
xP )

Ox : X axis : t = 0 BC : t− 1
cγ(1−β)

= 1
βc

(
x− 1

γ(1−β)

)
D:xD = 1

γ

(18)

The last row in the table, though not rele-
vant to the present exercise, will be useful in
the next section.

We can now compute the ratios suggested
in Eq (12) from the geometrical construc-
tions given in Fig. 5 and the values of the
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co-ordinates obtained in Eqs. (18).

x′P =
ÔR

ÔC
=
xR
xC

= γ (xP − βctP ) ;

t′P =
1

c

(
ÔQ

ÔA

)
=

1

c

tQ
tA

= γ
(
tP − β

c
tP
)
.

(19)
which are same as the Lorentz Transforma-
tion equations of (9).

Q.E.D.

We have thus completed a graphical con-
struction of Lorentz transformation for arbi-
trary “boost” βc in the X direction. With
0 ≤ β < 1 as continuous parameter the set
of all such boosts constitute a 1-parameter
group. It is a subgroup of a larger 3-
parameter group in which the boost velocity
β has arbitrary direction. It is this group that
Minkowski has identified with the symbol Gc.
We shall summarize the essential features

of Minkowski’s graphical construction in the
following proposition.

Proposition 1 1. A straight line drawn
from the origin O of the X − T plane to any
point A of the hyperbola given in Eq. (11) can
become a new time axis which we can repre-
sent as T ′.
2. Let AB be a tanegent to this hyperbola

at A. Then a straight line OR drawn from
the origin O and parallel to the straight line
AB can be the new space axis which we can
represent as X ′.
3. Projection of an event P projected on

the new X ′, T ′ axes according to the rules and
scales defined in this section will give the new
(x′, t′) coordinates of this event under a boost
cβ along the X axis.

6 The Group G∞

We have just seen that Gc is associated with
Lorentz transformation. When c → ∞, γ →
1, βc = u, and Gc becomes G∞. In this lim-
iting case the Lorentz transformation Eq. (9)
reduces to the old Galilean Transformation
as given in Eq. (3).

In Fig. 6 we have illustrated graphically
the metamorphosis of Gc → G∞ as c → ∞.
However, cβ = u remains unchanged, so that
β → 0. As a consequence the inclination an-
gle θ = tan−1 u of the axis T ′ remains un-
changed. However, since β

c
→ 0, the angle

φ = tan−1
(
β

c

)
→ 0, and the axis X ′ merges

with the X axis.

In Fig. 6(a) the line TT′ is parallel to the

X ′ axis, so that the intercepts ÔT on the T
axis and ÔT ′ on the T ′ axis give the same
measure of time interval with respect to the
frames S and S ′ respectively. The same is
true in Fig. 6b, with the line TT′ being now
parallel to the common X and X ′ axis, since
the two have merged.

In contrast one common scale of length
measurement (along the common X and X ′

axis) applies to both systems of reference.

Now consider an arbitrary event P with co-
ordinates (x, t) with respect to the system S.
It is projected to the points (R′,Q′) on the
X ′−T ′ axis and (R,Q) on theX−T axis. Us-
ing the scales as described above one obtains
the same values for the co-ordinates (x′, t′) of
P with respect to S ′ as given in Eq. (3). We
get back the GT in space-time as in Sec.3 and
Fig. 6(b) becomes similar to Fig.3(a). This is
the transformation under the group G∞.
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Figure 6: Metamorphosis Gc → G∞

7 Invariance of the Laws

of Nature under Gc

Minkowski observes,

“The axis of T ′ may have any upward
direction whatever, while X ′ approaches
more and more exactly to X. In view of
this it is clear that the group Gc, in the
limit when c = ∞, that is the group G∞,
becomes no other than that complete
group which is appropriate to Newto-
nian Mechanics. This being so, and since
Gc is more intrelligible than than G∞, it
looks as though the thought might have
struck some mathematician, fancy-free,
that after all, as a matter of fact, natural
phenomena do not possess an invariance
with the group Gc, but with a group Gc,
c being finite and determinate, but in or-

dinary unit of measure, extremely great.
Such a premonition would have been an
extraordinary triumph for pure mathe-
matics. Well, mathematics, ... with its
senses sharpened by an unhampered out-
look to far horizona, to grasp forthwith
the far-reaching consequences of such a
metamorphosis of our concept of nature.

I will state at once what is the value of
c with which we shall be finally dealing.
It is the velocity of propagation of light
in empty space.”

Minkowski now touches on the central
theme of his paper, viz., invariance of the laws
of nature,

“The existence of the invariance of the
natural laws for the relevant group Gc

would have to be taken then in this way:-
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From the totality of natural phenomena
it is possible, by successive enhanced ap-
proximations, to derive more and more
exactly a system of reference x, y, z, t,
space and time, by means of which these
phenomena then present themselves in
agreement with definite laws. But when
this is done, this system of reference is
by no means unequivocally determined
by the phenomena. It is still possible to
make any change in the system of refer-
ence that is in conformity with the trans-
formations of the group Gc, and leave the
laws of nature unaltered.”

We shall elucidate. There was a hypothet-
ical frame of reference, often referred to as
the Absolute frame of reference, which New-
ton had in mind when he enunciated the laws
of motion. We shall refer to it as the ab-
solute inertial frame, or the AIF. However,
the basic tenets of Newtonian mechanics hold
not only with reference to the AIF but also
with reference to any “non rotating frame of
reference” whose origin is moving relative to
the AIF in a straight line with a constant
velocity βc. Such a frame of reference is
called an inertial frame, or IF. It had been
believed that Maxwell’s equations of electro-
dynamics were valid when referred to the
AIF, but not with reference to any other IF.
The null result of Michelson-Morley experi-
ments pointed to the fallacy of such a no-
tion. Einstein’s formulation of special rel-
ativity demonstrated that Maxwell’s equa-
tions are valid in all IFs, provided one trans-
formed both the co-ordinates and the fields
from one IF to another according to Lorentz

transformation. What Minkowski proposed
in the above statements is an echo of Ein-
stein’s relativity postulate, which essentially
says that the laws of physics, when formu-
lated with correct mathematical equations,
are valid with reference to all IFs. This prin-
ciple is often referred to as the Principle of
Covariance. Since different IFs are now con-
nected by Lorentz transformations, we shall
use the term Lorentz frames to mean all IFs
(as already mentioned.)

Referring to the geometrical construction
shown in Fig. 5, in which we have trans-
formed x, t axes to x′, t′, keeping y, z axes
unaltered, Minkowski points out,

“We may also designate time t′, but then
must of necessity, in connection there-
with, define space by the manifold of the
three parameters x′, y, z, in which case
the physical laws would be expressed
in exactly the same way by means of
x′, y, z, t′ as by means of x, y, z, t. We
should then have in the world no longer
space, but an infinite number of spaces,
analogously as there are in three dimen-
sional space an infinite number of planes.
Three dimensional geometry becomes a
chapter in four-dimensional physics.”

We shall present our interpretation. The
term “space” may perhaps be given the
following mathematical connotation. It is
a continuum, being a continuous set P of
points having co-ordinates (x, y, z) given
with reference to the Cartesian axes XY Z of
a certain IF S, at any instant of time t. P :
{(x, y, z);−∞ < x, y, z <∞, t = constant}.
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In a sense P is the entire set of “simulta-
neous events” in S. Similarly the space P ′

is the entire set of simultaneous events in
S ′. However, with respect to S (almost) half
of the events comprising P ′ occured in the
past and (almost) the other half will occur
in future, as we know from LT. The “space”
P ′ is therefore not the same as the space P .
Every IF has its own space which, in general,
is different from the space of another IF.
This point can be further illustrated with
reference to Fig. 5a, which, due to sppression
of the Y, Z axes, presents the picture of a
1-dimensional universe. The axis X, or any
straight line parallel to it, represents the
space P . Similarly any straight line parallel
to X ′ represents the space P ′. Except one
point they have nothing in common.

If we had taken into consideration both
the X and the Y axes while constructing
the diagram in Fig. 5a, the staright line X
axis would be replaced by one X − Y plane.
In that case P would be represented by any
plane parallel to the X − Y plane, and P ′ by
any plane parallel to theX ′−Y ′ plane. There
would be an infinite number of such planes
representing spaces P ,P ′,P ′′, . . ., associated
with inertial frames S, S ′, S ′′, . . ..

Further extension of this picture into the
real 3-dimensional universe is difficult to vi-
sualize. The spaces P ,P ′,P ′′, . . . in this case
are 3-dimensional “planes” embedded in the
4-dimensional “world” of Minkowski.

8 The Fundamental

Axiom

Sec. II of Minkowski’s paper is devoted to two
important statements, the first one of which
he calls the fundamental axiom, and the sec-
ond one, the world postulate.

Let us consider the world lines (WL) of
three particles, which we have labelled as #1,
#2 and #3 in Fig. 7.
(a) Particle #1 is a stationary particle in

the frame X − T . Its WL is a staight line
parallel to the T axis.
(b) Particle #2 is moving with constant ve-

locity u = βc in the X direction. Its WL is a
staight line of the form x = x0+ut, where x0
is a constant. This WL is therefore parallel
to the T ′ axis (same as the T ′ axis of Fig. 5.)
(c) Particle #3 is moving with varying speed

in the X direction. Its WL is a curved line.

It is then that the WLs of a stationary or a
uniformly moving particle is the same as the
time axis of the Lorentz frame in which the
particle is at rest. Minkowski’s fundamental
postule is an extension of this statement.

Suppose at a world point U the tangent to
the WL of #3 is parallel to the straight line
OA drawn from the origin to the hyperbola,
so that the instantaneous velocity of the par-
ticle at the event point U is u = βc. One can
then choose a new set of axes X ′′ − T ′′ at U,
parallel to the X ′ − T ′ axes (as in the graph-
ical construction of LT, shown in Fig. 5, in
which the X ′ and the T ′ axes are given by the
lines OR and OA) and the particle will be “at
rest” with respect to these axes at the event

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 17 Apr-Jun 2013

φθ

c1/

//
X

//
T

U
V

#1 #2
#3

/
T

X/

tanφ β
c=

cβ
1tanθ 1

u= =

O

.A.

T

X

R

Figure 7: Rest frame of a moving particle

U. This, according to Minkowski is a funda-
mental axiom and states it with emphasis as
follows.

Fundamental Axiom: “The substance at
any world point may always with the appro-
priate determination of space-time, be looked
upon as at rest.”

Minkowski points out an important corol-
lary of this axiom. Let there be two infinitely
close events U: (x, y, z, t) and V: (x+ dx, y+
dy, z + dz, t + dt) on the world line of an ar-
bitrarily moving particle. Let us assume that
the instantaneous velocity of the particle at
U is βc = (βx, βy, βz)c, so that

dx = βxct, dy = βyct, dz = βzct;

with β2 = β2
x + β2

y + β2
z .

(20)

Now, since all transformations under Gc

are linear transformations, the co-ordinate

differentials (dx, dy, dz, dt) transform linearly
in the same way as the coordinates (for exam-
ple, their transformations may follow Eq. (9)
with the differentials dx, .., dt; dx′, ..., dt′ re-
placing x, ...t; x′, ..., t′). All transformations
under Gc leave the expression F (x, y, z, t) in-
avariant, as indicated in Eqs. (7), (8). The
transformation of the co-ordinate differentials
(dx, dy, dz, dt) must then leave the following
expression invariant.

ds2
def
= c2dt2 − dx2 − dy2 − dz2. (21)

This is the same thing as saying

c2dt′2 − dx′2 − dy′2 − dz′2

= c2dt2 − dx2 − dy2 − dz2.
(22)

Applying the above equation to the infinites-
imal displacement along the WL #3, noting
that dx′′ = dy′′ = dz′′ = 0, since the particle
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is instantaneously at rest, and using Eq. (20),
we get

c2dt′′2 = c2(1− β2)dt2. (23)

Since the left side is positive definite, it fol-
lows that β < 1, so that u < c. This is
same as the following corollary, as stated by
Minkowsi:

Corollary: “c would stand as the upper
limit of all substantial velocities.”

The expression written in Eq. (21) is now
known as the Minkowski metric. Minkowski
wrote only the expression on the right side
of (21), but not the ds2 appearing on the left
side, which we have inserted following the ex-
isting convention, and in recognition of the
major role it played in Einstein’s construc-
tion of a relativistic theory of gravity (known
as the general theory of relativity).
In retrospect the Minkowski metric con-

tains the seed of a geometrical idea which
Einstein absorbed to formulate the new the-
ory of gravity based on differential geometry.
The metric brings in geometrical concepts,
like curvature, geodesics (shortest line join-
ing two points). Minkowski metric represents
“flat” space-time in which gravity is absent,
and the geodesics, representing world lines of
particles, are straight lines.
In Einstein’s theory the metric of space-

time is more general than the form given
in Eq. (21), and gravity is recognized by
how much it differed from the Minkowskian
one. In Einstein’s theory of gravity “the met-
ric is the foundation of all[5].” Distribution
of matter, or rather distribution of energy-
momentum in space distorts space-time into
a curved one, making the geodesics curved,

and the world lines of free falling objects, like
planets, into curved lines.

9 Group Gc for Optics

and G∞ for Rigid

Bodies

Before establishing a justification for the
group Gc Minkowski raises the following
questions.

“The question is what are the circum-
stances which force this changed concep-
tion of space and time upon us? Does it
actulally contradict experience? And is
it advantageous for describing phenom-
ena?”

To the first question he gives the following
answer.

“The impulse and true motive for assum-
ing the group Gc came from the fact that
the differential equation for the propa-
gation of light in empty space possesses
that group Gc.”

We shall present our intepretation of the
above statement. By “the differential equa-
tion for the propagation of light in empty
space” we mean the following homogeneous
wave equation:
[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

]
ψ(x, y, z, t) = 0.

(24)
in which ψ represents any one of the 6-
components of the propagating electromag-
netic field (E,B) = (Ex, Ey, Ez, Bx, By, Bz)
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in any region of space where there are no
sources of electric charge and current. It is
known that the wave equation (both the ho-
mogeneous form shown above which is valid
in empty space, and the inhomogeneous form
for the scalar and vector potentials which is
valid everywhere) is a direct consequence of
Maxwell’s equations. Einstein had shown in
the first one of his 1905 relativity papers that
the transformation (9) leads to transforma-
tions of the electromagnetic field (E,B) →
(E′,B′), and electric charge-current densities
(ρ,J) → (ρ′,J′), in such a way that Maxwell’s
equations remain invariant[6]. That would
mean that Lorentz transformation will trans-
form [(x, y, z, t), ψ] → [(x′, y′, z′, t′), ψ′], and
when this is done the “equation for the prop-
agation of light” given in Eq. (24) will trans-
form into a new equation in which the un-
primed quantities will be replaced by primed
quantities. In other words Eq. (24) will re-
main invariant under any transformation un-
der the group Gc.
Referring to the second question

Minkowski surmises, “the concept of
rigid bodies has meaning only in mechanics
satisfying the group G∞,” suggesting thereby
that Gc contradicts our concept of rigid
bodies.
How? Let the XY Z axes be fixed in a rigid

body with its origin at O, and let (x, y, z)
be the space co-ordinates of any arbitrary
point P in the rigid body. Mechanics of a
rigid body starts with the axiom that the dis-
tance

√
x2 + y2 + z2 between O and P is un-

changed in any motion of the body. It is easy
to show that this assumption is violated by
LT.

Proof : For convenience we redesignate the
space co-ordinates of any arbitrary point P
in the rigid body with respect to its rest
frame S ′ as (x′, y′, z′). The distance ÔP is
r′ =

√
x′2 + y′2 + z′2. Let us now imagine

that the same rigid body is moving in the
X direction with velocity βc. We would like
to know the distance ÔP as measured by a
laboratory observer S.
Since the body is moving with respect to S,

we have to think of two simultaneous events
O : “O(0, 0, 0) at t = 0” and P : “P (x, y, z)
at t = 0”, and find out the distance between
their locations in S. Using Lorentz transfor-
mation (9) we get x′ = γx. Hence the dis-

tance ÔP , as measured in S, is

r =
√
x2 + y2 + z2 =

√
x′2/γ2 + y′2 + z′2.

Thus r < r′.

(25)

The body has contracted in the direction of
motion by a factor γ (Lorentz contraction).

Q.E.D.

10 Graphical

Construction of

Length Contraction

Minkowski does not derive the formula (25)
using LT. He presents a graphical construc-
tion of length contraction. His motivation is
to show that

“the Lorentzian hypothesis (of length
contraction) is completely equivalent to
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the new conception of space and time,
which, indeed makes the hypothesis
much more intelligible.”

We shall present Minkowski’s construction
in a slightly different form to suit our taste.
In Fig. 8(a) we have redrawn the hyperbola
of Eq. (11) and the X ′ − T ′ axes. The par-
allelogram OA′B′C′ is same as the parallel-
ogram OABC of Fig. 5. The X ′ axis (the
straight line OC′) represents an infinite set of
events which are simultaneous in S ′ at t′ = 0.
The straight line A′B′, which is parallel to the
X ′ axis, represents another infinite set of si-
multaneous events (in S ′) when t′ = 1

c
(see

specification of time scale in Sec. 5, following
Eq. (11).)

Imagine two frames of reference S and S ′,
characterized by coordinate axes X,T and
X ′, T ′ respectively, such that S ′ has boost cβ
in the X direction with respect to S. Let M
and M′ be two standard (hence identical) me-
ter sticks. These sticks are lain, respectively,
along the X axis of S, and along the X ′ axis
of S ′ such that their left ends coincide with
the respective origins. The right ends of M
and M′ will coincide with the points C and
C′ on the X axis of S and X ′ axis of S ′ re-
spectively (Fig. 8b). Note that the segment
OC′, shown with thick line, represents unit
length on the X ′ axis. The world line of its
left end will be the T ′ axis represented by the
line OA′t′ and the world line of the right end
will be the parallel line C′B′ intersecting the
X axis at D.

What is the length ℓ of M′ in the frame S?
It is the distance between the points O and D
on the x axis which coincide with the left end

and the right end of the rod simultaneously
(at t = 0). In other words ℓ = ÔD.
In the last row of table-equation (18) we

had obtained the x co-ordinate of the point
D to be equal to 1

γ
. Hence,

ÔD =
1

γ
. (26)

Eq. (26) gives contracted length of a 1 meter
long meter rod in motion.
Let there be now two objects (which

Minkowski calls“images of two equal
Lorentzian electrons”) each of length ℓ. The
first one of them is at rest and the second
one moving with uniform velocity βc, when
seen from the system S. Then the length of
this second object will be ℓ′ = rℓ = ℓ

γ
in the

system S.
There is an alternative graphical construc-

tion method suggested by Loedel for obtain-
ing length construction and time dilation[7].

11 The World Postulate

Much of classical mechanics and classical
electrodynamics is built on geometrical pic-
turization of physical quantities - e.g., veloc-
ity, acceleration, electric and magnetic fields -
as vectors, which are directed line segments in
a 3-dimensional Euclidean space E3 spanned
by the X, Y, Z axes.
We have two fundamental equations of

classical mechanics. One of them equates the
time rate of change of linear momentum vec-
tor p to force vector F. The other one equates
the time rate of change of angular momentum
vector L to torque vector N. Similarly, the
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Figure 8: Geometrical construction of length contraction

laws of classical electrodynamics are written
in the form of four equations involving elec-
tric field vector E and magnetic field vector
B. In a sense the important physical quan-
tities of classical physics are vectors, or ge-
ometrical objects, in the 3-dimensional Eu-
clidean space, and what we call physical laws
are relationships among such 3-dimensional
geomterical objects.

Minkowski feels that the term relativity
postulate (coined by Einstein) is a rather fee-
ble word to emphasize invariance of the laws
of the laws of nature under Gc. He prefers
the term the Postulate of the Absolute World,
or, in brief, the World Postulate for which he
makes the following statement:

“Only four dimensional world in space
and time is given by the phenomena, but
that the projection in space and in time
may still be undertaken with a certain
degree of freedom.”

Here we may add that the above statement
is similar to what Minkowski says earlier, “It
is still possible to make any change in the sys-
tem of reference...”, quoted by us in Sec. 7,
on page 15.

12 Construction of

Time-like and

Space-like Vectors

Minkowski now follows up the World Postu-
late to propose a 4-dimensional equivalent of
Newton’s 2nd Law of motion, familiar in the
form F = ma. As a first step towards this
goal he begins by showing how to construct
4-vectors. He begins Sec.III of his paper with
the following remarks.

“The world postulate permits identi-
cal treatment of the four co-ordinates
x, y, z, t. By this means, as I shall now
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show, the forms in which the laws of
physics are displayed gain in intelligibil-
ity. In particular the idea of acceleration
gains a clear-cut character.”

He explains his ideas using a space-time di-
agram which we have expanded into four sub-
figures in Fig. 9.
In Fig. 9a we have presented a flat pic-

ture of space-time by showing only two axes
viz., X and T , whereas in the remaining ones
of Fig. 9 we have tried to present a kind
of 3-dimensional view by including one extra
space axis.
Let O be an arbitrary event point. Tak-

ing O as the origin and using the function
F (x, y, z, t) = c2t2 − x2 − y2 − z2, as defined
in Eq. (7) we draw the following three sur-
faces of revolution around the T axis: (a)
F (x, y, z, t) = 0; (b) F (x, y, z, t) = 1; and (c)
F (x, y, z, t) = −1. To be more explicit, these
three surfaces are given by the following three
implicit equations.

(a) ⇒ c2t2 − x2 − y2 − z2 = 0.
(b) ⇒ c2t2 − x2 − y2 − z2 = 1.
(c) ⇒ c2t2 − x2 − y2 − z2 = −1.

(27)
They are described below.
(a) two branches of the cone F (x, y, z, t) = 0,
corresponding to t < 0, called the front cone,
and t > 0, called the back cone, as shown
in Figs. 9a and 9b. We shall refer to these
cones as light cones.
(b) two branches of the hyperboloid
F (x, y, z, t) = 1, corresponding to t < 0 and
t > 0, as shown in Figs. 9a and 9c.
(c) the hyperboloid F (x, y, z, t) = −1, as
shown in Figs. 9a and 9d.

Minkowski goes further with his descrip-
tion.

“The territory between the cones is filled
by the one-sheeted hyperbolidal figures
−F = k2. ... We are specially inter-
ested in the hyperbolas with O as cen-
tre, lying on the latter figures. The sin-
gle branches of these hyperbolas may
be called briefly the internal hyperbolas
with centre O. One of these branches,
regarded as a world line, would repre-
sent a motion which, for t = −∞ and
t = +∞, rises asymptotically to the ve-
locity of light.”

We have shown one such hyperbolid, cor-
responding to k = 1 in Fig. 9d., and one such
internal hyperbola, labelled Ω, inscribed on
it. It represents the the world line of a parti-
cle that comes from infinity at t = −∞ with
the speed of light, approaches the origin at
t = 0 where it momentarily stops, and then
recedes back to infinity at t = ∞ with the
speed of light.
The territory within the cones is also filled

with two sheeted hyperboloids F = k2. One
of them shown in Figs. 9a and 9b corresponds
to k = 1. There is however no mention of the
family of hyperboloids in Minkowski’s state-
ments.
The reader should note that the two dimen-

sional curves F = 1 and F = 0 appearing in
Fig. 9a are the same as the hyperbola and its
asymptotes shown in Fig. 5.

“If we now, on the analogy of vectors
in space, call a directed length in the
manifold of x, y, z, t a vector, we have
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to distinguish between the time-like vec-
tors with directions from O to the sheet

+F = 1, t > 0, and the space-like vec-
tors with directions from O to −F = 1.

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 24 Apr-Jun 2013

The time axis may run parallel to any
vector of the former kind.”

The most elementary example of a 4-
vector is a 4-dimensional directed line seg-
ment stretching from one event P to an-
other event Q drawn in Space-time (i.e.,
Minkowski’s World.) Minkowski proposes
two types of 4-vectors, viz., time-like and
space-like vectors.
Minkowski proposes the components of

these vectors in the following language.

“We divide any vector we choose, e.g.,
from O to x, y, z, t into four components
x, y, z, t.”

We shall make a small departure from
Minkowski’s convention and take the compo-

nents of the 4-vector
−→
OR as (x, y, z, ct), i.e.,

multiply with c the time component proposed
by Minkowski so that all the components of
a 4-vector have the same dimension, viz., the
dimension of length. This practice will be fol-
lowed in the rest of this article
It will be interesting to quote Minkowski’s

definition of two new types of vector.

“If we now, on the analogy of vectors
in space, call a directed length in the
manifold of x, y, z, t a vector, we have
to distinguish between the time-like vec-
tors with directions from O to the sheet
+F = 1, t > 0 and the space-like vectors
with directions from O to −F = 1.”

We shall elucidate. Let
−→
OA be a directed

line segment marked out on a straight line
OR that intersects the upper sheet (i.e., t >

0) of the hyperbolid F (x, y, z, t) = 1 (Fig. 9c)

and let
−→
OB be another directed line segment

marked out on another straight line OS that
intersects the hyperboloid F (x, y, z, t) = −1

(Fig. 9d). Then
−→
OA is a time-like 4-vector,

and
−→
OB is a space-like 4-vector.

Let us denote these vectors as
−→
A and

−→
B .

Any vector
−→
A which is parallel to

−→
A, is a

time-like 4-vector and any vector
−→
B which is

parallel to
−→
B , is a space-like 4-vector 2. We

shall find a better criterion in the next section
for qualifying a vector as time-like or space-
like.
In this article we shall denote a 4-vector

with a full arrow “→” on top of the symbol,

as in the example
−→
A, and the conventional 3-

vector with just a bold letter, e.g., A without
any arrow on top.
Why such peculiar adjectives “time-like”

and “space-like”? Minkowski’s justification
for the first adjective :

“The time axis may run parallel to any
vector of the former kind.”

The last sentence is a reminder of the princi-
ple adopted in the graphical construction of
Lorentz transformation, shown in Fig. 5, and
expressed in the paragraph below Eq. (11) on

2Author’s comment: A line segment that inter-
sects the surface +F = 1 will also intersect the fam-
ily of surfaces +F = k2, since they are all asymp-
totic to the light cone F = 0, and lie inside the cone.
Similarly a line segment that intersects the surface
−F = 1 will also intersect the family of surfaces
{−F = k2}. In effect then a time-like vector is one
which has the end point within the light cone, and a
space-like vector is one having the end point outside
it.
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page 10: any radius vector drawn from the
origin to any point of the hyperbola F = 1
can become the time axis.

We shall elucidate this further. Let O and
A be two events. If it is possible to find
a Lorentz frame of referece S ′, (by trans-
forming from S to S ′ by a suitable Lorentz
transformation) such that these two events
accur at the same spatial coordinates (i.e., at
x′ = x = 0, y′ = y = 0, z′ = z = 0), then

the radius vector
−→
OA is a time-like vector. In

this new frame S ′ this 4-vector will have a
non-zero component cτ only along the time
axis T , its spatial components (i.e., along the
X, Y, Z axes) being all equal to zero. This
time is the proper time between the events as
we shall define in the next section.

In general any 4-vector
−→
A is a time-like

vector if a suitable Lorentz transformation
can reduce its X, Y, Z componets to zero,
leaving a non-zero component only for its
time component, i.e., along the cT axis.

Mikowski’s justification of the second ad-
jective “space-like” can be seen by taking an-
other look at Fig. 5. Any straight line OX ′

that does not intersect the hyperbola lies nec-
essarily beyond the asymptotes and can be-
come a space axis. Analogously, in Fig.9(b)
and (c) any straight line that does not in-
tersect the hyperboloid F = 1 lies necessar-
ily beyond the light cone and can become a
space axis. All events are simultaneous along
a space axis in a 4-dimensional space-time.

Let us now consider two events O and B.
If it is possible to find a Lorentz frame of
referece S ′, in which these two events accur
simultaneously, then in this new frame the

radius vector
−→
OB has only space components,

and no time component. Consequently we

call this radius vector
−→
OB a space-like vector.

In general any 4-vector
−→
B is a space-like

vector if a suitable Lorentz transformation
can reduce its time componet to zero, leaving
a non-zero component along the space hyper-
plane spanned by the X, Y, Z axes.

It will be worthwhile to quote Minkowski’s
statement, “Any world point between the
front and back cones of O can be arranged
by means of the system of reference so as to
be simultaneous with with O, but also just as
well so as to be earlier than O or later than
O. Any world point within the front cone of
O is necessarily always before O; any world
point within the back cone of O necessarily
after O.”

What about a line segment that intersects
neither hyperboloid? Such a line segment

must be either
−→
QO lying on the front cone, or−→

OP lying on the back cone. Minkowski has
not given any name for such vectors. In mod-
ern textbooks such vectors are called null vec-
tors, and the cones they lie on (i.e., the front
cone and the back cone) are jointly called the
light cone. Justification of the first name will
become clear as we proceed further. Justifi-
cation of the second name lies in Minkowski
own statement: the front cone of O consists
of all the world-points (like Q) which “send
light to O” and the back cone of O, of all
the world points (like P) which “receive light
from O”. In brief, all points lying on the light
cone drawn from O are connected to O by
light signals.

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 26 Apr-Jun 2013

13 Orthogonality and

Magnitudes of

4-vectors

We shall quote Minkowski’s definition of or-
thogonality and magnitudes of 4 vectors.

“We divide up any vector we choose, e.g.,
that from O to x, y, z, t into the four
components x, y, x, t. If the directions
of two vectors are, respectively, that of
a radius vector OR from O to one of
these two surfaces ∓F = 1, and that
of a tangent RS at the point R of the
same surface, the vectors are said to be
normal to each other. Thus the condi-
tion that the vectors with components
x, y, z, t and x1, y1, z1, t1 may be normal
to each other is

c2tt1 − xx1 − yy1 − zz1 = 0. (28)

For the measurement of vectors in differ-
ent directions the units of measure are to
be fixed by assigning to a space-like vec-
tor from O to −F = 1 always the magni-
tude 1, and to a time-like vector from O
to +F = 1, t > 0 always the magnitude
1
c
.”

We shall do some thinking to absorb the
meaning of the above statement. Let us con-
sider the first part of the statement (i.e., up
to Eq. 28). In Fig. 10(a) we have shown
the trace of the surfaces ∓F = 1 on a 2-
dimensional X − T plane. They have been
marked by the labels Ω and Γ .

The line OR intersects the hyperboloid
F = 1, and the line RS is a tangent to it.
According to Minkowski’s proposition the 4-

vector
−→
U = (ux, uy, uz, ut) which is paral-

lel to the line OR and the 4-vector
−→
V =

(vx, vy, vz, vt) which is parallel to the tangent
RS are normal to each other.

Why do we attribute orthogonality be-
tween these two vectors? The answer can
be found in the graphical construction of
Lorentz transformation presented in Sec. 5.

Let us define orthogonal vectors in the
4-dimensional space-time W by proposing
that the unit vectors along the four axes
X, Y, Z, T , as defined below,

−→ex = (1, 0, 0, 0),
−→ey = (0, 1, 0, 0),
−→ez = (0, 0, 1, 0),
−→et = (0, 0, 0, 1).

(29)

are the foremost example of a quadruple of
mutually orthogonal vectors.

Now, the Lorentz transformation S → S ′

can set the time axis along OR and the space
axis along the line OX′ which is parallel to
the line RS. These directions are then the di-
rections of the transformed unit vectors −→et ′
and −→ex ′, and hence, are orthogonal to each
other.

It may require some deeper thinking to ap-
preciate the definition of orthogonality given
in Eq. (28). Let us recall how we construct
a normal vector on a three dimensional sur-
face. Let Φ(x, y, z) = k be a surface shown
as Σ in Fig.10(b). Let P(x, y, z) be a point
on this surface. The gradient vector ∇Φ at

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 27 Apr-Jun 2013

P defined as

∇Φ(r)
def
= i

∂Ψ(r)

∂x
+ j

∂Ψ(r)

∂y
+k

∂Ψ(r)

∂z
. (30)

This vector is necessarily normal to this sur-
face at P. A unit normal vector n on Σ at P is
∇Φ divided by its magnitude, i.e.,n = ∇Φ

|∇Φ|
.

Let Q(x + dx, y + dy, z + dz) be a point
on the surface Σ infinitesimally close to P, at
a displacement vector dr = dxi + dyj + dzk
from P, so that Φ(x+ dx, y+ dy, z+ dz) = k.
Hence,

Φ(x+ dx, y + dy, z + dz)− Φ(x, y, z) = 0, (a)

Or,
∂Φ(r)

∂x
dx+

∂Φ(r)

∂y
dy +

∂Φ(r)

∂z
dz = 0. (b)

Or, ∇Φ(r) · dr = 0. (c)

(31)

Now, dr is a tangent vector on the sur-
face Σ, passing through the point P. Let t

be a unit tangent vector in the direction of
dr. Then the last relation in Eq. (31) is same
as the trivial statement n · t = 0, i.e., n and
t are orthogonal.

Now we come back to space-time W
and think of the hypersurface Σ shown in
Fig. 10(a) of which the equation is

F (x, y, z, ct) = c2t2−x2−y2−z2 = k2. (32)

We shall obtain the 4-dimensional version of
Eq. (31), using the 4-dimensional gradient

operator
−→
���

def
=
(

∂
∂x
, ∂
∂y
, ∂
∂z
, ∂
∂ct

)
.

−→
���F (x, y, z, ct) =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z
,
∂F

∂ct

)

= 2(−x,−y,−z, ct)
(33)

Let d−→r = (dx, dy, dz, dct) be a 4-
displacement vector on the hypersurface S.
Then analogous to Eq. (31b) we have here

∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz ++

∂F

∂(ct)
d(ct) = 0. (a)

Or, −x dx− y dy − z dz + ct d(ct) = 0. (b)
(34)

Here R(x, y, z, ct) is a point on the hyper-

surface given in (32), so that −→r =
−→
OR =

(x, y, z, ct) is the 4-radius vector from the ori-
gin to the hyperboloid, as shown in Fig.10(a).
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Figure 10: Orthogonal 4-vectors

By assumption
−→
dr = (dx, dy, dz, dct) is tan-

gent to this surface at P. Its direction is same
as the direction of the tangent RS shown in
Fig.10(a). Therefore they are mutually or-
thogonal.

Let us now think of the 4-vector−→
U = (ux, uy, uz, ut) which is parallel
to −→r = (x, y, z, ct) and the 4-vector−→
V = (vx, vy, vz, vt) which is parallel to−→
dr = (dx, dy, dz, dct). These vectors are
orthogonal, as already said. Eq. (34b) would
now imply

−uxvx − uyvy − uzvz + utvt = 0. (35)

Eq. (35) matches Eq. (28), and is therefore
the criterion of orthogonality of any two 4-
vectors as laid out by Minkowski.

We shall now interpret the second part
of Minkowski’s statement (regarding “mag-
nitude”) using Fig. 11.

Consider the “unit vectors”, in the 3-
dimensional Euclidean space, as shown in
Fig.(a). These vectors are shown as the line

segments
−→
OA,

−→
OB,

−→
OC, · · · −→OE. (a) The tips

of these vectors lie on the surface of a sphere
with O as origin, and given by the equation

x2 + y2 + z2 = 1. (b) Any vector
−→
OA can

be transformed into any other vector
−→
OB by

an orthogonal transformation mentioned in
Sec. 3 and represented by Eq. (2). (c) One of

these vectors, namely
−→
OE, intercepts the Z

axis at z = 1.

There exists an analogous situation in
space-time illustrated in Fig.(b), in which

we have shown 4-vectors
−→
OA,

−→
OB,

−→
OC, · · · −→OE

drawn against the X − T axes (suppressing
the Y, Z axes.) (a) The tips of these vec-
tors lie on the hyperboloid F (x, y, z, ct) ≡
c2t2 − x2 − y2 − z2 = 1. (b) Any vector

−→
OA

can be transformed into any other vector
−→
OB
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by the Lorentz transformation mentioned in
Sec. 4 and represented by Eq. (8). (c) One

of these vectors, namely
−→
OE intercepts the T

axis at ct = 1. Therefore, we assign to all
these vectors unit magnitude.

The class of unit vectors mentioned in the
previous para are all time-like vectors. In
Fig (c) we have shown shown space-like vec-
tors originating from the origin O and ter-
minationg on the surface of the hyperboloid

F (x, y, z, ct) ≡ c2t2 − x2 − y2 − z2 = −1.
As in the case of time-like vectors all the
space-like 4-vectors shown in the diagram,

namely,
−→
OA,

−→
OB,

−→
OC, · · · −→OE have the same

length. Since x = 1, ct = 0 for the point E,
all these space-like 4-vectors have unit mag-
nitude.

How does one arrive at the magnitude
of any arbitrary 4-vector using Minkowski’s
proposition? We shall find the answer in
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Fig.(d). Here
−→
OA and

−→
OB are two arbi-

tray vectors, time-like and space-like respec-
tively. The region within the front cone is
filled with a family of hyperboloid hypersur-
faces F = k2 corresponding to every positive
value of k. One of these hypersurfaces, hav-
ing value k = α will pass through the point

A. Then the magnitude of
−→
OA is α.

Similarly, the space between the front cone
and the back cone is filled with another fam-
ily of hypersurfaces F = −k2 corresponding
to every positive value of k. One of these
hypersurfaces, having value k = β will pass
through the point B. Then the magnitude of−→
OB is β.
Whatever Minkowski has said in the

present context can be simplified by defining
a scalar product of two vectors.

Let us think of two arbitrary vectors
−→
A =

(ax, ay, az, at) and
−→
B = (bx, by, bz, bt). We de-

fine their scalar product as

−→
A · −→B def

= atbt − axbx − ayby − azbz. (36)

Minkowski has not defined scalar product
in his article. However, it is an important
concept. In particular Lorentz invariance of
scalar product is useful in working out many
relativistic formulas involving energy and mo-
mentum. By Lorentz invariance we mean
that even though the components of the 4-

vectors
−→
A and

−→
B will change under a Lorentz

transformation, the scalar product will not
change at all. That is, it is same in all Lorentz
frames.
We can now define orthogonality and mag-

nitude in a slightly different way. Instead of
magnitude we shall use the term “norm” of a

vector, which is, in a sense, square of magni-
tude.
(a) The 4-vectors

−→
A and

−→
B are orthogonal if−→

A · −→B = 0.
(b) The norm of a 4-vector

−→
A is defined as

A2 def
=

−→
A · −→A = a2t − a2x − a2y − a2z.

(c)
−→
A is (i) time-like if A2 > 0, (ii) space-like

if A2 < 0, (iii) is a null vector if A2 = 0.
A null vector lies along the light cone. In

Fig. (d) the displacement vectors
−→
OC and

−→
OD

are null vectors. A null displacement vector
represents propagation of a light signal (i.e.,
a photon.)
The norm, being a scalar product, is an in-

variant quantity. If we accept Minkowski’s
definitions of magnitude, and denote the

magnitude of a 4-vector
−→
V as V̌ , then the

magnitudes Ǎ and B̌ of a time-like vector
−→
A

and a space-like vector
−→
B are given as

Ǎ =

√
(
−→
A · −→A) =

√
a2t − a2x − a2y − a2z,

B̌ =

√
−(

−→
B · −→B) =

√
b2x + b2y + b2z − b2t .

(37)
and these magnitudes are same in all Lorentz
frames.

14 Proper Time, Proper

Velocity, Proper

Acceleration

In Fig. 12 we have shown the world line of a
material particle and marked it as Ω. The
particle is at two infinitesially close world
points Q and R at times t and t+ dt. The 4-
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displacement vectors of these two points are:
−→r =

−→
OR = (x, y, z, ct) and −→r +d−→r =

−→
OQ =

(x+ dx, y + dy, z + dz, ct+ d ct).

We are interested in the infinitesimal 4-
displacement d−→r =

−→
RQ = (dx, dy, dz, d ct)

taking place in the infinitesimal time interval
dt. The norm of this 4-vector is called the
metric of space-time. It is given as

ds2 = d−→r ·d−→r = c2dt2−dx2−dy2−dz2. (38)

The vector d−→r is necessarily a time-like
vector, i.e., ds2 > 0. To realize its time-like
nature let assume that the particle has veloc-
ity v = (vx, vy, vz) at R. Then

ds2 = c2dt2 − v2xdt
2 − v2ydt

2 − v2zdt
2

=
(
c2 − v2

)
dt2.

(39)

Since c > v, the right side is positive.

The time-like property of d−→r ensures that
it always lies within the light cone. This
also implies that the at every world point the
world line of the particle lies within the light
cone, as we have shown in the figure. The
angle that a tangent to the world line will
make with the cT axis must be always less
than 450.

Since ds2 is positive, we can take its square
root and get a positive real number c dτ .

dτ
def
=

√
ds2

c
=

1

c

√
c2dt2 − dx2 − dy2 − dz2

(40)
We integrate this infinitesimal between from

the event Po to the event P and get

τ(Po → P) =
1

c

∫ t

t0

√
c2dt2 − dx2 − dy2 − dz2

=

∫ t

t0

√
c2 − v2 dt.

(41)

Minkowski calls the integral τ(Po → P) “the
proper time of the substantial point at P”. In
keeping with this nomenclature we shall call
the infinitesimal dτ defined in Eq. (40) the
infinitesimal proper time of the particle from
the event R to the event Q.
It should be remarked in passing that

proper time is the time measured by an ob-
server comoving with the particle (whose mo-
tion we are monitoring.)
The proper time dτ is Lorentz invariant,

because it is the square root of a norm (which
is invariant) divided by the speed of light
which is also invariant.
In non-relativistic physics velocity is dis-

placement per unit coordinate time: v = dr
dt
,

i.e., infinitesimal displacement dr divided by
infinitesimal coordinate time dt which is in-
variant under Galilean transformation. By
analogy, Minkowski defines 4-velocity −→v of
the particle as

−→v def
=
d−→r
dτ

=
1

dτ
(dx, dy, dz, d ct)

=

(
dx

dτ
,
dy

dτ
,
dz

dτ
, c
dt

dτ

)
.

(42)

Minkowski adopts the convention that a
dot (·) over a symbol representing a vari-
able will represent derivative of the vari-
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Figure 12: Construction of velocity and acceleration 4-vectors

able with respect to proper time τ . Com-
pare this with the convention adopted in
non-relativistic mechanics: a dot represents
derivative with respect to ordinary time t.
Using Minkowski’s convention we rewrite the
above equation as

−→v = −̇→r = (ẋ, ẏ, ż, cṫ). (43)

In a similar vein Minkowski defines accel-
eration 4-vector −→a as

−→a def
= −̇→v =

d−→v
dτ

=

(
d2x

dτ 2
,
d2x

dτ 2
,
d2x

dτ 2
, c
d2t

dτ 2

)

= (ẍ, ÿ, z̈, cẗ).

(44)

At this point Minkowski points out,

the velocity vector is the time-like
vector of unit magnitude in the di-
rection of the world line at P, and

the acceleration vector at P is nor-
mal to the velocity vector at P, and
is therefore, in any case a space-like
vector.

We shall prove different parts of this state-
ment. As a prelude to this we define Lorentz
factor Γ associated with the particle velocity
v as

Γ
def
=

1√
1− v2

c2

. (45)

It is then seen from (39) that

c2dτ 2 = ds2 =
c2dt2

Γ 2
, ⇒ dτ =

dt

Γ
;

Or, ṫ =
dt

dτ
= Γ.

(46)

In the sequel we shall find it convenient to
convert d

dτ
→ d

dt
, using the prescription

d

dτ
= Γ

d

dt
. (47)
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(a) The velocity vector v is time-like.
Proof : The norm of −→v is given as

−→v · −→v = Γ 2c2 − Γ 2v2

= Γ 2(c2 − v2) = c2.
(48)

Since −→v · −→v = c2 > 0, the 4-vector −→v is
time-like.

Q.E.D.

The “magnitude” of 4-velocity, accord-
ing to our definition of magnitude given in
Eq. (37), is the same for all velocities (for a
particle at rest as well as for a particle mov-
ing with relativistic speed, close to that of
light) and equals c. However, the same mag-
nitude is considered to be unit magnitude by
Minkowski, who proposes at the end of Sec.IV
of his paper to set c = 1.

(b) −→v and −→a are mutually orthogonal.
Proof: Let us first rewrite Eq. (38) as an expression for c2dτ 2, take derivative with respect
to τ .

c2dτ 2 = c2dt2 − dx2 − dy2 − dz2.
Dividing both sides with dτ 2 c2 = c2ṫ2 − ẋ2 − ẏ2 − ż2.

Differentiating with respect to τ 0 = 2
[
c2ṫẗ− ẋẍ− ẏÿ − żz̈

]
,

which implies 0 = vtat − vxax − vyay − vzaz,

(49)

thereby establishing orthogonality between −→v and −→a .

Q.E.D.

(c) The acceleration vector −→a is space-like.
Proof: Let us first establish a theorem:

Theorem 2 Let
−→
A be a time-like vector

which is orthogonal to
−→
B . Then

−→
B is spce-

like.

Proof of the theorem: As shown in Sec.12,

a time-like vector
−→
A can be oriented along

the time axis by a proper choice of Lorentz
frame. Let S be that frame so that the vec-
tor

−→
A will have only time-component in S,

i.e.,
−→
A = (0, 0, 0, cat). Let

−→
B have compo-

nents (bx, by, bz, cbt) in this frame S. By our
assumption of orthogonality

−→
A ·−→B = 0×bx+0×by+0×bz−cat×cbt = 0,

implying that bt = 0, which establishes the

space-like property of
−→
B .

Q.E.D.

In this particular case −→v is time like, and
orthogonal to−→a . Therefore by the above the-
orem we conclude that −→a is space-like.
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Q.E.D.

For future use we shall write the 4-vectors
−→v and −→a in a different form, identifiable by
a bold letter without an arrow on top, often
referred to as the 3+1 form.
Therefore, from (43)

−→v = Γ

(
dx

dt
,
dy

dt
,
dz

dt
, c
dt

dt

)
= Γ (vx, vy, vz, c)

= Γ (v, 1) = (Γv, Γ c).

(50)

In this case the block v stands for the non-
relativistc 3-velocity

v = (vx, vy, vz) =

(
dx

dt
,
dy

dt
,
dz

dt

)

=

(
ẋ

ṫ
,
ẏ

ṫ
,
ż

ṫ

)
.

(51)

We can write the 3+1 form of −→a as follows.

−→a = −̇→v = Γ
d−→v
dt

=

(
Γ
d(Γv)

dt
, c Γ

dΓ

dt

)
.

(52)
By analogy with centripetal acceleration of

a particle moving in a circle Minkowski pro-
poses a formula for the acceleration of a par-
ticle in space-time in the following language.

“Now, as is readily seen, there is a
definite hyperebola which has three in-
finitely approximate points in common
with the world line at P, and whose
asymptotes are generators of a “front
cone” and a “back cone”. Let this hyper-
bola be called hyperbola of curvature at
P. If M is the centre of this hyperbola, we

here have to do with an internal hyper-
bola with centre M. Let ρ be the magni-
tude of the vector MP; then we recognize
the acceleration vector at P as vector in
the direction MP of magnitude c2/ρ.

If (ẍ, ÿ, z̈, cẗ) are all zero, the hyperbola
of curvature reduces to a straight line
touching the world line at in P, and we
must put ρ = ∞.”

We shall try to explain the statement.
However, before proceeding further we shall
have a brief review of what is often referred
to as “a hyperbolic motion”[8, 9].
Consider a particle moving along the X

axis under a constant acceleration a, as mea-
sured in its instantaneous rest frame3. Let us
assume that at t = 0 this particle is instan-
taneously at rest, and located at the origin,
in a certain frame S. Then the (x, ct) coordi-
nates of this particle are given in this frame,
as functions of the proper time τ , as

x =
c2

a

[
cosh

aτ

c
− 1
]
; ct =

c2

a

[
sinh

aτ

c

]
.

(53)
We have shown the world line of this parti-
cle in Fig.13(a). By shifting the origin, as
shown in Fig.13(b), the same world line can
be written as

x =
c2

a

[
cosh

aτ

c

]
; ct =

c2

a

[
sinh

aτ

c

]
. (54)

Then the above parametric equations of
the world line transform into the familiar

3An example of this is the motion of a particle of
charge e moving under a uniform electric field in the
X direction. A detailed analysis for this case for a
relativistic particle is not trivial.
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Figure 13: Hyperbolic trajectory

equation of a hyperbola, involving only the
space and time coordinates.

x2 − (ct)2 = ρ2; where ρ =
c2

a
. (55)

We shall differentiate the coordinates (x, ct),
as given in (54), with respect to proper time
τ to obtain 4-velocity and 4-acceleration.

ẋ = c sinh aτ
c
; cṫ = c cosh aτ

c
;

ẍ = a cosh aτ
c
; cẗ = a sinh aτ

c
;

−→a = (ẍ, cẗ) = a(cosh aτ
c
, sinh aτ

c
).

(56)

The 4-acceleration −→a is a space-like 4-
vector. According to Minkowski’s prescrip-
tion, shown in (37), its magnitude is is

ǎ =
√
a2x − a2t = a =

c2

ρ
. (57)

One can make a formal identity between
the above hyperbolic motion and a “circular

motion” by adopting an imaginary time coor-
dinate: u = ict. Set ω = ia

c
so that ωτ = iaτ

c
.

Then from Eq. (54),

x = ρ
[
cosh aτ

c

]

= ρ
[
cos iaτ

c

]
= ρ cosωτ. (a)

u = ict = ρ
[
i sinh aτ

c

]

= ρ
[
sin iaτ

c

]
= ρ sinωτ. (b)

x2 + u2 = ρ2. (c)
(58)

The hyperbolic path in space-time looks
formally like a circular path of radius ρ fol-
lowed by a particle with angular velocity ω,
except that now this angular velocity is an
imaginary quantity.
An infinitesimal segment of any curve (in

E3) at any point P can be considered to have
three infinitesimally adjacent points passing
through a circle. This circle is referred to as
the circle of curvature at P and the radius ρ
of this circle is called the radius of curvature.
A particle moving along this curve and hav-
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ing velocity v at P has a normal acceleration
equal to an = v2

ρ
, and directed towards the

centre of curvature.
By analogy, any infinitesimal segment of

a world line at any event point P can be
considered to have three infinitesimally ad-
jacent points passing through a hyperbola.
Minkowski calls this hyperbola the hyperbola
of curvature at P. The parameter ρ of this
hyperbola appearing in (55) is analogous to
the radius of curvature. What we have just
seen in (57) is that the magnitude of the ac-
celeration 4-vector is equal to ǎ = c2

ρ
.

If we take u to be a real variable in
Eq. (58c), then the origin is the centre of
the circle. By analogy, Minkowski defines
the same origin to be the centre of the hyper-
bola of curvature when u is pure imaginary.
How to identify this centre for the general
case when the centre is no longer the origin
of coordinates (for example, when equation of
the hyperbola is transformed by shifting the
origin of the coordinate system?) By finding
out where the two asymptotes of the hyper-
bola intersect, as we have shown in Fig. 13(b).
These asymptotes are also the traces of the
light cones passing through the centre.
In the figure we have denoted the centre

as M. Any straight line segment joining M
to any point P on the hyperbola of curvature
gives the “magnitude” ρ of the displacement
4-vector (see Sec. 13 and Fig. 11) and hence
the radius of the hyperbola of curvature.
Fig. 13(c) illustrates the construction of the

the hyperbola of curvature at the event point
P of a of a particle moving with a variable
acceleration. The world line of this particle
is shown with a thicker line, and the light

cones with broken lines.

15 The Four Dimensional

Law of Motion

Section IV of Minkowski’s paper is of a
greater historical significance. He lays out
the foundation and plan for Mechanics in
the new relativistic order. While unravelling
this plan he combines 3-dimensional (Newto-
nian) momentum with kinetic energy to form
a new 4-dimenaional entity which he simply
calls Momentum. He combines 3-dimensional
(Newtonian) force with the rate of work done
into another new 4-dimensional entity which
he calls Motive Force Vector. Many people
today refer to Minkowski’s motive force as
Minkowski force.
Minkowski begins with a sort of preamble,

“To show that the assumption of the
group Gc for the laws of physics never
leads to a contradiction, it is unavoid-
able to undertake a revision of the whole
of physics on the basis of this assump-
tion. ... For the last branch of physics
(i.e., mechanics) it is of prime impor-
tance to raise the question - When a
force with components X, Y, Z parallel
to the axes of space acts at a world point
P (x, y, z), where the velocity vector is
ẋ, ẏ, ż, ṫ what must we take this force to
be when the system of reference is in any
way changed?”

He answers the self-posed question with the
following proposition,
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“When the system of reference is
changed, the force in question trans-
forms into a force in the new space co-
ordinates in such a way that the ap-
propriate vector with the components
ṫX, ṫY, ṫZ, ṫT , where

T =
1

c2

(
ẋ

ṫ
X +

ẏ

ṫ
Y +

ẏ

ṫ
Z

)
(59)

is the rate at which work is done by the
force at the world point divided by c, re-
mains unchanged. This vector is always
normal to the velocity vector at P. A
force vector of this kind, corresponding
to a force at P, is to be called a “motive
force vector” at P.”

We shall elucidate. We shall adhere to our
convention of multiplying the time compo-
nent proposed by Minkowski with c to get
all components having the same dimension.
We shall denote Minkowski’s proposed mo-

tive force as
−→
F and, using Eq. (46), write its

expression as

−→
F = (Fx,Fy,Fz,Ft)

= (ṫX, ṫY, ṫZ, ṫcT )
= Γ (X, Y, Z, cT )
= Γ (F, cT ), (a)

F = Xi+ Y j+ Zk. (b)

(60)

Here F is the 3-dimensional force, as defined
in Newton’s second law of motion, acting on
a particle at a world point P.

Now, the rate at which the force F is do-
ing work on the particle per unit “co-ordinate

time” t is

dW

dt
= F · v = Xvx + Y vy + Zvz

= X
ẋ

ṫ
+ Y

ẏ

ṫ
+ Z

ż

ṫ
.

(61)

We have used Eq. (51) to get the second
equality. Comparing Eq. (61) with (59) we
find that

cT =
1

c

dW

dt
, (62)

as pointed out by Minkowski. We therefore

rewrite the expression for
−→
F as

−→
F = Γ

(
F,

1

c
F · v

)
= Γ (F,F · β), (63)

where we have set β = v

c
.

It has now to be shown that the motive
force

−→
F is normal to the velocity 4-vector −→v .

The proof is easy and straight forward.
Proof:

−→
F · −→v = ΓF · Γv − ΓcT × Γc

= Γ 2

(
dW

dt
− c2T

)
= 0.

Q.E.D.

He proceeds further,

“I shall now describe the world-line of a
substantial point with constant mechan-
ical mass m̄, passing through P. Let the
velocity vector at P, multiplied by m̄, be
called the “momentum vector” at P, and
the “acceleration vector” at P, multiplied
by m̄ be called the “force vector” of the
motion at P. With these definitions the
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law of motion of a point of mass with
given motive force vector runs thus:- The
Force Vector of Motion is equal to the
Motive Force Vector.”

It should be remarked here that the term
“constant mechanical mass m̄” used in the
above statement is same as what is gener-
ally referred to as “rest mass” (for which
Minkowski has used the symbol m.) In this
article we shall use the symbol m0 to mean
the same rest mass, so that we can reseve

m for “relativistic mass” which will be de-
fined in Eq (65) below. We can now repre-
sent Minkowski’s “momentum vector” by the

symbol
−→
P , and his “force vector” by the sym-

bol
−→
F . We shall refer to the first one as 4-

momentum. Using Eq. (43)

−→
P

def
= m0

−→v = Γm0(v, c)
= (p,mc), (a)

−→
F

def
= m0

−→a (b)

(64)

At this point the reader should note that we have defined two quantities while writing
(64), namely, the relativistic mass m and the relativistic 3-momentum p.

Relativistic mass m
def
= Γm0 =

m0
√

1− v2

c2

. (a)

Relativistic 3-momentum p
def
= mv = Γm0v = m0v

√

1− v2

c2

. (b)
(65)

Minkowski’s proposition of “the law of mo-
tion of a point of mass” runs as follows:

−→
F =

−→
F . (66)

In view of Eq. (64b) the law of motion looks
like the 4-dimensional version of Newton’s
law of motion:

m0
−→a =

−→
F . (67)

It may be noted, from the definitions of mo-
mentum in Eq. (64a), and acceleration in
(44), that the above equation of motion can
be written in the following alternative form:

d
−→
P

dτ
=

−→
F . (68)

We shall find the form (68) to be more con-
venient than (67).
Minkowski continues:

“This assertion comprises four equations
for the components corresponding to the
four axes, and since both vectors are a
priori normal to the velocity vector, the
fourth equation may be looked upon as
a consequence of the other three. In
accordance with the above significance
of T , the fourth equation undoubtedly
represents the law of energy. Therefore
the component of the momentum vector
along the axis of t, multiplied by c, is to
be defined as kinetic energy of the point
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mass. The expression for this is

= m̄c2
dt

dτ
=

m̄c2√
1− v2

c2

, (69)

i.e., after removal of the additive con-
stant m̄c2, the expression 1

2
m̄v2 of New-

tonian mechanics down to the magni-
tudes of the order 1

c2
.”

To explain the above statemant we shall
resolve the equation of motion (68) into four
components, converting d

dτ
→ d

dt
using (47)

and (60).

dPx

dτ
= Fx, ⇒ dpx

dt
= X. (a)

dPy

dτ
= Fy, ⇒ dpy

dt
= Y. (b)

dPz

dτ
= Fz, ⇒ dpz

dt
= Z. (c)

dPt

dτ
= Ft, ⇒ d(mc)

dt
= cT. (d)

(70)

In view of Eq. (62) the line (d) of the above
equations implies

d(mc2)

dt
= c2T =

dW

dt
. (71)

Since the work done results in changing the
kinetic energy K, i.e., dW

dt
= dK

dt
, Minkowski

sets the kinetic energy to be equal to the ex-
pression given in (69). We shall however fol-
low the current usage and call the expression
total energy E.

E = mc2 = Γm0c
2 =

m0c
2

√
1− v2

c2

, (72)

which is the famous energy equation at-
tributed to Einstein.

The total energy E of the particle consists
of a kinetic energy partK and a “rest energy”
part Vo.

K = E −m0c
2, Vo = m0c

2. (73)

To appreciate this we shall expand the right
side of (72) in powers of v

c
.

E ≈ m0c
2

[
1 +

1

2

v2

c2

]
= m0c

2 +
1

2
m0v

2

= Vo +K.

(74)

In non-relativistic physics, 1
2
m0v

2 is the ki-
netic energy of the particle. Therefore we
have represented it by K, the symbol for ki-
netic energy. The balance part Vo can be con-
sidered to be potential energy, in view of the
fact that matter can be converted entirely to
energy (as in the cases like electron-positron
annihilation resulting into a pair of gamma
rays.)
We can now see the significance of the last

sentence in Minowski’s statement following
Eq. (69).
We shall now rewrite the 4-dimensional

equation of motion (70) compactly in two
lines, breaking it up into a 3+1 form. For
this we note that the external force F acting
on the particle is as given in (60b). Also from
(61) and (62), c2T = dW

dt
= F·v. Hence, from

(70) and (72),

dp

dt
= F. (a)

dE

dt
= F · v. (b)

(75)

The 4-dimensional equation of motion breaks
up into Newton’s second law of motion (ex-
cept that p has a extra factor Γ ), as shown
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in line (a), and an energy equation, as shown
in line (b). This is because E/c is the time
component of the 4-momentum, as seen from
Eq. (64a), which we should now write in the
following preferable form.

−→
P =

(
p,
E

c

)
. (76)

Before concluding Sec. III Minkowski in-
troduces “natural unit of velocity” and imag-
inary coordinate for time.

“We can determine the ratio of the units
of length and time in such a way that the
natural unit of velocity becomes c = 1.
If we then introduce, further,

√
−1 t = s

in place of t, the quadratic expression

dτ 2 = −dx2 − dy2 − dz2 − ds2 (77)

thus becomes perfdectly symmetrical in
x, y, z, s; and this symmetry is commu-
nicated to any law which does not con-
tradict the world-postulate. Thus the
essence of the postulate may be clothed
mathematically in a very pregnant man-
ner in the mystic formula 3 · 105 km =√
−1 secs.”

16 Lienard-Weichert

4-Potential - the

Minkowski Way

Section V of the paper begins with the fol-
lowing statement.

“The advantages afforded by the world-
postulates will perhaps be most strik-
ingly exemplified by indicating the ef-
fects proceeding from a point charge in
any kind of motion according to the
Maxwell-Lorentz theory. Let us imag-
ine the world-line of such a point elec-
tron with charge e, and introduce upon it
the proper time τ from any initial point.
In order to find the field caused by the
electron at any world point P1, we con-
struct the front cone belonging to P1.
The cone evidently meets the world line,
since the directions of the line are ev-
erywhere those of time-like vectors, at
the single point P, We draw the tan-
gent to the world-line at P and construct
through P1 the normal P1Q to this tan-
gent. Let the length of P1Q be r. Then
by the definition of a front cone, the
length of PQ must be r/c. Now the
vector in the direction PQ of magnitude
e/r represents by its components along
the axes of x, y, z, the vector potential
multiplied by c, and by the component
along the axis of t, the scalar potential of
the field excited by e at the world-point
P. Herein lie the elementary laws formu-
lated by A.Lienard and E.Wiechert. ”

This is a crucial statement which we shall
try to interpret using our understanding of
the Lienard-Weichert potentials (A,Φ) of a
point charge emoving arbitrarily along an ar-
bitrary path and the Lorentz transformation
of these potentials from a frame S to another
frame S ′, or vice versa.
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The word “electron” used by Minkowski
will mean any charged particle in our article.
Fig. 14(a) shows the particle of charge e mov-
ing along the trajectory Λ. At any instant of
time t′ it is located at some point P′, hav-
ing coordinates r′(t′) = (x′(t′), y′(t′), z′(t′))
where its velocity is v(t′) = cβ(t′). Due to its
charge it generates an electromagnetic field
(E,B) at all times, which propagates with the
speed of light, reaching all points in space. D
is one such point, located at the radius vec-
tor r = (x, y, z), fixed in space, and equipped
with a detector. We may like to call it a “field
point”. ,

Let t be any arbitrary time. Then “the
field is detected at D at time t” is a cer-
tain “event” having space-time coordinates
(x, y, x, ct), which we shall designate as the
“field event” P1. The radius vector R(t′) =
r − r′(t′) gives the displacement of D with
respect to P′ at time t′. Let R(t′) be the dis-

tance between P′ and D, and n(t′) = R(t′)
R(t′)

a

unit vector directed from P′ to D. Then the
the e.m. field at the event P1 is given by the
following expressions (in gaussian units)[10]:

E(r, t) = −∇Φ(r, t)− 1
c

∂A(r,t)
∂t

, (a)
B(r, t) = ∇×A(r, t), (b)

where A(r, t) =
[

eβ(t′)
(1−n·β(t′))R(t′)

]
t′=tr

, (c)

and Φ(r, t) =
[

e
(1−n·β(t′))R(t′)

]
t′=tr

. (d)

(78)
Here Φ(r, t),A(r, t) are the scalar and vec-
tor potentials at r at time t, and are known
as Lienard-Weichert potentials. The expres-
sions for these potentials given in lines (c)
and (d) require some explanation.

Let us consider t as the “present time”
(when the field is detected). The charge is lo-
cated at Po at the present time. However, the
field that reaches D at t originated somewhere
in the past, at time tr, called the retarded
time (corresponding to the present time t)
when the particle was located at the retarded
point Pr. The retarded time tr is determined
by solving the equation

R(tr) ≡ |r− r′(t′)|t′=tr = c(t− tr), (79)

because the field propagates with the speed
of light. The expressions given within square
brackets in Eqs.(78c,d) are to be evaluated at
t′ = tr after solving Eq. (79).
The scalar potential Φ and the vector po-

tential A together form a 4-vector
−→
A =

(A,Φ) which we shall call 4-vector poten-
tial. For the simple boost along the X
axis explained in Sec. 4 the the compo-
nents of the 4-potential will undergo the
same Lorentz transformation from S to S ′ as
given in Eq. (9) with (x, y, z, ct) replaced by
(Ax, Ay, Az,Φ).
We shall first try to interpret the statement

for the simpler special case in which a point
charge e charge is moving with a constant ve-
locity v along a straight line which we take
as the X axis. We have shown this path
at the bottom of Fig. 14(b) as the straight
line OX, coinciding with the X axis, and
superimposed above this line the construc-
tion of the potentials using the hint given by
Minkowski.
The world line OPQ represents the uniform

motion of the source charge e moving along
the X axis. The observer is the detector D,
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Figure 14: Lienard Weichert 4-vector Potential. (a) Field originating at the retarded time tr from
an arbitrarily moving charge e; (b) Field originating from a charge e in uniform motion seen in
space-time.

located at a fixed distance d from the origin.
The world lines OP of the source and DP1

of the detector will intersect at some event
point (not shown in the diagram) indicating
the the two will collide somewhere. We are
however considering an event P1 before such
a collision occurs.

We identify the laboratory frame S with
the space-time axes X−T and the rest frame
S ′ of e with the axes X ′ − T ′. The axis cT ′

coincides with the world line of e. (See state-
ment in italics at the beginning of Sec. 8.)

From the event P1 drop a “normal” (in
Minkowskian sense) P1Q to the world line
OPQ, meeting the world line at Q. Draw the
front light cone (i.e., a straight line at 45o

with the X axis) meeting the world line at P.
The event P, located at coordinates (xr, ctr),
is the source of the event P1 located at (x, ct),
i.e., the field detected at P1 originated from P
at the retarded time tr. It should be remem-
berd that the 4-vector

−−→
PP1 is a null vector

that is, the events P and P1 are connected by
a light ray.

The 4-vectors
−−→
P1Q and

−→
OP are normal to

each other (in the Minkowski sense), and
−→
OP

is parallel to the T ′ axis. Therefore
−−→
P1Q is

parallel to the X ′ axis. Let the intercept P̂1Q
(measured along theX ′ axis) be r. According
to Minkowski’s statement,

−→
A =

e

r
−→et ′, (80)
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where −→et ′ is a unit 4-vector along the T ′ axis.
Resolving either side of (80) along the time

and space axes of the frame S ′ we get the
vector and scalar potentials (A′

x, A
′
y, A

′
z,Φ

′)
in S ′.

A′
x = A′

y = A′
z = 0; Φ′ =

e

r
. (81)

The equations are familiar. In the frame S ′

the point charge e is at rest, and the detector
which is moving towards it is at a distance
r from from it at the detection time t. The
detector sees only a static Coulomb electric
field derivable from the scalar potential Φ′ as
shown, but no magnetic field at all, so that
A′ = 0.
In order to get the potentials in the in

the Lab frame S we have to perform Lorentz
transformation from S ′ to S.

Φ = γ(Φ′ + βA′
x) =

γe

r
.

Ax = γ(A′
x + βΦ′) = γβe

r
.

Ay = A′
y = 0; Az = A′

z = 0.
(82)

The above equations show the potentials in
the Lab frame S as functions of the distance r
between e and D, measured in the rest frame
S ′ of e, at the time of detection. They are now
to be expressed as functions of the distance
R, between D and e, measured at the retarded
time tr in the Lab frame S. The answer can
be found in the following lemma.

Lemma: 2 Consider an emitter E moving
along the X axis with velocity v = cβ and a
detector D placed on the same axis at a dis-
tance R from the origin. The emitter E emits
a sharp light pulse at time t = 0 when it is at

the origin O (Event E). This pulse is received
by the detector D at time t (event D). Let r
be the distance between D and E, as measured
in S ′, when the pulse is detected. Then

r = γ(1− β)R. (83)

Proof of the lemma. In Fig. 15(a) we have
shown the events in space-time against X,T
axes as seen from S. In Fig. 15(b) we have
shown the same events against X ′, T ′ axes, as
seen from S ′. We set the coordinates of E to
be (x = 0, ct = 0) in S and (x′ = 0, ct′ = 0)
in S ′. Since the event D is connected to E
by a light signal, the coordinates of D are
(x = R, ct = R) in S and (x′ = r, ct′ = r) in
S ′. Applying Lorentz transformation we get

x′ = γ(x− βct), Or, r = γ(1− β)R.

Q.E.D.

The last line gives the desired relation con-
necting the unknown variable r to the dis-
tance R between the source point and the
field point at the retarded time. Now go-
ing back to Eqs. (82), and using (83) we get
the Lienard-Weichert potentials for the sim-
ple case of point charge in uniform motion:

Φ =
e

(1− β)R
; A =

βe

(1− β)R
i =

βe

(1− β)R
.

(84)
In the second equation i is a unit 3-vector in
the direction of the X axis.
We shall now come back to the general case

in which the particle e is moving with arbi-
trary velocity and acceleration. In order to
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Figure 15: Emission and detection of a light pulse seen from two frames seen in space-time.

show the picture on a sheet of paper we shall
imagine that the trajectory of the particle is
confined to a plane which we shall take as
the XY plane, and that the detector D is
located at (x, y) on this plane. The detec-
tor D receives the field at time t, so that the
field event is P1 (as before), but now hav-
ing coordinates (x, y, ct). This field originates
from the event point P having coordinates
(xr, yr, ctr). We have illustrated this case in
Fig. 16 in which we have shown theXY plane
with a light colour to mark it out from space-
time.

We have shown the path of e on the XY
plane (with a thick line) as Λ, and its world
line (with a broken thin line) as Ω. The points
1,2,P,3,4 on Λ have their corresponding im-
ages 1,2,P,3,4 on Ω.

As in the special case, we identify the lab-
oratory frame S with the space-time axes
X − T . To make the work easier we orient
the axes such that the X axis is in the di-
rection of the instantaneous velocity at the

source event P, so that v = βc = βci is the
velocity of e at the event P. We shall now
consider the instantaneous rest frame of e at
the event P to be the S ′ frame. The time axis
T ′ of S ′ is parallel to the 4-velocity vector −→v
at the event P (making angle α with the T
axis), as we have shown in the figure.
From the event P1 drop a “normal” P1Q to

the axis T ′ meeting it at Q. The front light
cone drawn from the event P1 meets the T ′

axis at P, which is the source event for the
field event P1.
The rest of the arguments, including

Eqs. (82)-(84) are the same as for the “special
case” and will not be repeated. The lemma
2, valid for the special case, is to be replaced
by the following lemma which is valid for the
general case.

Lemma: 3 Consider an emitter E moving
arbirarily and emitting a sharp light pulse at
time t = 0 when it is at a point P (Event E).
This pulse is received by a stationary detec-
tor D at time t (event D). Let S be the Lab
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frame (i.e., the frame of the detector), and S ′

the instantaneous rest frame of E at the event
E . If R is the (fixed) distance between D and
P, as measured in S, and r the distance be-
tween D and E, as measured in S ′, when the
pulse is detected, then

r = γ(1− β · n)R, (85)

where cβ is the instantaneous velocity of E
at the event E , and n is a unit vector directed
from P to D.

Proof of the lemma. We shall consider only
(x, y, ct) coordinates, and suppress the z co-

ordinate. We take the origins of the Lorentz
frames S and S ′ to be the event E .
Let us take the plane polar coordinates

of the detector D as (R, θ) so that x =
R cos θ; y = R sin θ. Here cos θ = β · n. The
event D has coordinates (R cos θ, R sin θ, ct)
in S and (r cosφ, r sinφ, ct′) in S ′. Since
the signal propagtes with the speed of light,
ct = R, ct′ = r. Therefore, performing
Lorentz transformation (9) from S to S ′,

ct′ = γ(ct− βx).

Or, r = γ(R− βR cos θ) = γR(1− β · n).
(86)

Q.E.D.
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Now we go back to Eqs. (82) and (85) to
get the Lienard-Weichert potentials for this
general case.

Φ = e
(1−β·n)R

;

cA = βe i

(1−β)R
= β e

(1−β·n)R
.

(87)

Note that i is a unit 3-vector in the direction
of the X axis which is same as the direction
of β at the retarded time t = 0. Therefore
we have set βi = β in the second line.
The potentials written in Eq. (87) can be

found in Jackson[10].

17 Force between two

charged particles

moving in arbitrary

trajectories

In Fig. 17(a) we have shown two particles of
charges e and e1 moving along arbitrary tra-
jectories Λ and Σ respectively. The shaded
plane represents the space E3 with the Z axis
suppressed. The particle e1 is acted on by
the e.m. field originating from e. The 4-force−→
F that is exerted on e1 at the event point
P1 can be computed by first finding out the
electromagnetic field emanating from e at the
retarded point P and traveling along the back
light cone to reach P1 (as already explained
in the previous section,) and then using the
Lorentz force equation (see Eq. (91) below.)
Minkowski gives a formula for this force in
the following language.

“I will now describe the ponderomotive
action of a moving point charge on an-

other moving point charge. Let us imag-
ine the world line of second point elec-
tron of the charge e1, passing through
the world-point P1. We define P, Q,
r as before, then construct the centre
M of the hyperbola of curvature at P,
and finally the normal MN from M to
a straight line imagined through P par-
allel to QP1. With P as starting point
we now determine a system of reference
as follows:- The axis of t in the direction
PQ, the axis of x in direction QP1, the
axis of y in direction MN, whereby finally
the axis of z is also defined as normal
to the axes of t, x, y. Let the accelera-
tion vector at P be ẍ, ÿ, z̈, ẗ, the velocity
vector at P1 be ẋ1, ẏ1, ż1, ṫ1. The motive
force vector exerted at P1 by the first
moving electron e on the second moving
electron e1 now takes the form

−ee1
(
ṫ1 −

ẋ1
c

)−→
R, (88)

where the components Rx,Ry,Rz,Rt of

the vector
−→
R satisfy the three relations

cRt −Rx =
1

r2
, Ry =

ÿ

c2r
, Rz = 0,

(89)
and where, fourthly, this vector is normal
to the velocity vector at P1, and through
this circumstance alone stands in depen-
dence on the latter velocity vector.”

We shall make our work simpler by assum-
ing that (a) the charge e is moving along a
straight line which is also identified with the
Y axis, (b) its acceleration is constant, equal

Volume 29, No. 2, Article Number : 2 www.physedu.in



Physics Education 47 Apr-Jun 2013

P

X

T

Y

P (x,y,ct)

K

T

P

P

Y

X

1

(b)

1

(a)

e
worldline of e

Σ
Λ

Ω

.O
1

1

Front Cone

1Field point

C

Front Cone

D

v

path of e

r

cu
rv

at
ur

e o
f e

1
P

M

N

F

H
yp

erb
ola

 of

path of e

y

x

t

path of e

path of e

Figure 17: Charged particles on arbitrary trajectories

to a, so that the path is a hyperbola, and that
(c) the second particle e1 is also moving on
the XY plane. We shall take the time axis in
the direction of the instantaneous 4-velocity
−→v of e at the event P. We have shown this
configuration in Fig. 17(b). The front cone
with apex at P1 intersects the XY plane in a
circle of radius R. In the present case r = R.
The retarded event P lies on this circle.

M is the centre of the hyperbola of curva-
ture, which, for this special one dimensional
constant acceleration motion is same as the
hyperbola we have already drawn, and lies on
the Y axis, at the intersection of the asymp-
totes.

We shall now set up a new frame of ref-
erence S ′ according to Minkowski’s prescrip-
tion. The axes of this new frame will be desig-
nated as x, y, z, t, the z axis being suppressed.

The new t axis is taken parallel to the T axis.
From the field event P1 we drop a “normal”

P1Q to the t axis. Then
−−→
QP1 lies parallel to

the XY plane, and equals
−→
PF, and has length

r = R. From M we drop a normal MN to the
straight line FP, both these lines being on the
XY plane. The new x axis is along PF, the

new y axis is parallel to
−−→
MN, so that the x−y

axes lie on the XY plane.

We shall now obtain an expression for
−→
F .

The scalar and vector potentials for the field
created by the moving charge e was writ-
ten in Eqs. (87). The (E,B) fields are
now obtained by performing the differentia-
tions indicated in Eqs. (78a,b). These dif-
ferentiations are tricky and involved because
the potentials involve “retarded” variables
[R(t′), t′]t′=tr , whereas the differentiations are
to be carried out with respect to the field vari-
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ables x, y, z, t. These two sets of variables are
connected through Eqs. (79).
We shall not perform these differentiations.

Instead we shall quote the resulting (E,B)
fields from Jackson[11].

E (r, t) = e
[

n−β

Γ 2(1−β·n)3R2

]
ret

+ e
c

[
n×{(n−β)×β′}

(1−β·n)3R

]
ret
.

B (r, t) = [n× E (r, t)]ret .

(90)

Here we have used the prime symbol ′ to mean
derivative with respect to coordinate time t,
i.e., β′ = dβ

dt
= a/c, the subscript “ret” in-

dicates that the quantities within the square
brackets are to be evaluated at the “retarded
event” P, and n is a unit vector in E3 from
the source point P to the field point F.

The motive force
−→
F is now given by

Eq. (60a), where F is the Lorentz force on
the point charge e1, given as

F = e1[E+ β1 ×B], (91)

(E,B) being the electromagnetic field expe-
rienced by the point charge e1, and v1 = cβ1

is its velocity, all at the field event P1.
In the present case the new frame of ref-

erence is an instantaneous rest frame of the

source particle, so that β = 0. Also n =
i, Γ = 1, R = r. Hence from (90),

E(P1) =
e

r2
i+

e

cr
[i× (i× β′)] . (92)

Since Γ = 1, it follows from Eq. (50) that

cβ′ = a =
d2r

dt2
=
d2r

dτ 2
= r̈. (93)

Therefore,

i× β′ =
1

c
[i× (ẍi+ ÿj)] =

ÿ

c
k. (94)

Hence,

E(P1) =
e

r2
i− eÿ

c2r
j,

B(P1) = i× E(P1) = − eÿ

c2r
k.

(95)

We shall divide the force on e1, given in
(91) into an electric part Fe = e1E and a
magnetic part Fm = e1β1 ×B, for easier cal-
culation. From (50),

−̇→r 1 =
d−→r 1

dτ
= cΓ1β1 = cṫ1β1. (96)

Hence,

Fe = ee1

[
i

r2
− ÿ

c2r
j

]
. Fm =

ee1ÿ

c3rṫ1
[ẋ1j− ẏ1i] .

F = Fe + Fm = ee1

[{
1

r2
− ÿẏ1
c3t1r

}
i+

{
− ÿ

c2r
+

ÿẋ1

c3rṫ1

}
j

]
.

(97)
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We shall use Eq. (63), set Γ1 = ṫ1, and
write the motive force 4-vector on the particle

e1 as

−→
F = Γ1(F, β1 · F) = Γ1(F, β1 · Fe). (98)

We shall now obtain the time component of
−→
F :

Ft = Γ1β1 · F) = Γ1β1 · Fe = Γ1
ṙ1

ṫ1
· Fe =

ee1
c2

{
ẋ1
r2

− ẏ1ÿ

c2r

}
, (99)

and its space components:

Fx = ee1

(
1

r2
− ÿẏ1
c3t1r

)
;Fy = ee1

(
− ÿ

c2r
+

ÿẋ1

c3rṫ1

)
. (100)

It is now seen that

Ft −Fx = −ee1
r2

(
ṫ1 −

ẋ1
c

)
. (101)

Therefore, if we write

−→
F = −ee1

(
ṫ1 −

ẋ1
c

)−→
R, (102)

then

Rt −Rx =
1

r2
; Ry =

ÿ

c2r
. (103)

We now have to establish that
−→
R is a 4-

vector.

Proof: v1(P1) = (ẋ1, ẏ1, cṫ1); r1(P1) =
(r, 0, 0, r). Hence, v1(P1) · r1(P1) = r(ẋ1 −
cṫ1).

It follows that
−→
F = ee1

cr
[v1(P1) · r1(P1)]

−→
R.

The distance r is not a coordinate diatance
between two events. It is a distance defined
in the rest frame of e (like the proper time

which is defined in the rest frame of a parti-

cle.) Hence,
−→
F = scalar×−→

R. The left hand

side is a 4-vector. Therefore
−→
R is a 4-vector.

Q.E.D.
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Abstract 
 

“Electricity and Magnetism” is one of the introductory courses in Physics at Graduate level. The 
concept of electrical load is found to be misunderstood by a substantial percentage of students. 
This misunderstanding is found to hinder their performance in advanced courses on “Electricity 
and Magnetism” and “Electronics”.  The ambiguity arises due to: (a) denoting the load by the 

value of its resistance	��, (b) denoting Power =	
�
2

��			
and Power = ����. This article elucidates this 

frequently used concept of electrical load. An illustrative example that can help students at 
introductory level to assimilate the concept of electrical load is given for use in pedagogy.   

 

1. Introduction 
 

The concept of electrical load is often 
misunderstood by students at the 
introductory level. This misunderstanding is 
found to hinder their performance in 
advanced courses on “Electricity and 
Magnetism” and “Electronics”. Circuit 
analysis in “Electricity and Magnetism” 
demands a clear cut understanding of the 
concept of load. Thevenin’s equivalent 
circuit, Norton’s equivalent circuit, 
Maximum power transfer theorem, Zener 
Diode as Voltage regulator are few key 
areas in “Basic Electronics” which requires 
conceptual understanding of electrical load. 

 

The ambiguity arises due to:  

a) denoting the load by the value of its 
resistance�� 

b) denoting Power =
	


��
and Power = 

����.  

A detailed analysis of lapses in pedagogy 
leading to such erroneous conclusions by 
students is taken up in this study. Remedial 
methods are suggested to address such 
inadvertent errors. The need to emphasize 
“What electrical load means” is discussed in 
detail. An illustrative example that can help 
students at introductory level toassimilate 
the concept of electrical load is given for use 
in pedagogy.   
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2. Load and Load resistance
� 

 

In pedagogy, one speaks of load but denotes 
it by a resistor of value ��as in figure (i). 
Students often think that the load increases 
when the value of ��  increases and load 
decreases when the value of ��  decreases. 
But this is absolutely wrong.  

 

Figure (ii) shows that additional equipment 
connected in parallel indicate increase in 
load. Hence the value of load resistance is 

halved (��||�� �	
��

�
), whereas the load has 

increased. Similarly, disconnecting of 
equipment not in use indicates decrease in 
load and the value of load resistance will be 
increased. The fact that load and load 
resistance are inversely related must be 
reiterated emphatically, by quoting relevant 
examples. 

3. Power P, Current I, Voltage 
V and Load resistance
� 

Actually, the power consumed by equipment 
symbolizes its loading effect on the supply. 
Nonetheless, the load is directly proportional 
to power consumed (and load is not 
proportional to the value of load resistance 
��  as presumed by majority of students). 
But power consumed P can be denoted as: 

P= ����                (1) 

Equation (1) suggests that power consumed 
is directly proportional to the square of the 
current I and also directly proportional to the 
value of load resistance	��. This is a serious 
flaw in the pedagogical approach. Though 
equation (1) is dimensionally flawless, it 
skews the student’s thinking and makes one 
conclude that power (load) is proportional to 
the value of load resistance	��. This can be 
corrected by the use of the following 
formula for power. 

P =
	


��
                (2) 

Equation (2) is an apt representation that 
readily shows the inverse relation between 
power (load) and the value of load 
resistance	��. Equation (1) suggests that the 
current I flowing through the load increase 
with increase in power consumed (or 
increase in the load). But it is equation (2) 
that readily shows that the power (load) is 
inversely dependent on load resistance	�� . 
Teachers should highlight this stark 
difference between the two equations 
representing power and highpoint the 
inverse relation between load and load 
resistance.
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In essence, table 1 elaborates the relation between load and load resistance	��. 

Load Load resistance	
� 

Load is increased (by connecting additional equipment in parallel) 	�� decreases 
Load is decreased (by disconnecting some of the equipment) 	�� increases 

Table 1: Relation between load and load resistance 

4. Example to illustrate the 
difference between load and 
Load resistance
� 

Students are likely to get interested by 
physical examples. A well thought example 
can reduce the burden on tutoring. One such 
example is detailed below. It is adequately 
trimmed to incorporate almost all details 
discussed in sections 2 and 3.  

Case A: Three bulbs connected to supply 

 

Figure (iii) shows three identical 100 W 
bulbs connected across a supply voltage V.  
If the resistance of each bulb is R, the 
effective load resistance is given by: 

�� � �‖	�	‖	� � 	
�

3
 

The total power consumed by the three 
bulbs is: 

���� � 300	� 

Case B: Two bulbs connected to supply 

 

Figure (iv) shows two identical 100 W bulbs 
connected across a supply voltage V.  If the 
resistance of each bulb is R, the effective 
load resistance is given by: 

�� � �	||	� � 	
�

2
 

The total power consumed by the two bulbs 
is: 

���� � 200	� 

Case C: One bulb connected to supply 
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Figure (v) shows one 100 W bulb connected 
across a supply voltage V.  If the resistance 
of the bulb is R, the effective load resistance 
is given by: 

�� � �	 

The total power consumed by one bulb is: 

���� � 100	� 

Table 2 is a comparative statement of the 
above cases: 

Case Load Load 
resistance 

Case A: Three bulbs 
connected to supply 

300 W 
�� =

�

3
 

Case B: Two bulbs 
connected to supply 

200 W 
�� =

�

2
 

Case C:One bulb 
connected to supply 

100 W �� =	R 

Table 2:  Comparative statement of the three cases 

Table 2 clearly illustrates “When load 
decreases, load resistance increases and 
vice versa”. Table 2 also serves as a fine 
example of the facts elaborated in the 
previous sections and compiled in Table 1. 

When students work on this example, it can 
help them understand: 

(a) Why Power = ���� can be misleading, 
and 

(b) How the formula Power =
	



��

gives 

better insight. 

5.  Conclusion 

This article elucidates on a fundamental 
concept that should be dealt with care.A 
detailed analysis of lapses in pedagogy 

leading to erroneous conclusions by students 
is taken up in this study. The problem is 
arising out of denoting the load by load 
resistance	�� . As a remedy, we can more 
appropriately denote the load by 
conductance / admittance,��,because load is 
directly proportional to conductance / 
admittance ��. 

 

Acknowledgement: 

I sincerely thank Central University of 
Tamil Nadu, Tiruvarur, for providing a 
platform for taking up teaching and research 
hand in hand. 

 

References: 

[1] Resnick, Halliday and Walker, 
Fundamentals of Physics (Eighth edition), 
John Wiley (2010). 

[2] .F. W. Sears, M. W. Zemansky, and H D 
Young, University Physics,Addison Wesley 
(1976) 

[3] Integrated Electronics: Analog & Digital 
Circuit Systems – Jacob Millman & Halkias, 
TMH. 

 

 

. 



Physics Education                                                                                     Apr-Jun 2013 

 

Volume 29, No. 2, Article Number : 4                                                                                              www.physedu.in 

IDENTIFICATION OF A CONTINUOUS STATE SPACE MODEL USING LABVIEW 

 

K P J Pradeep, D Hanumesh Kumar, Prof. K Nagabhushan Raju, Prof. C Nagaraja 

 

Dept. of Instrumentation & USIC, 

Sri Krishnadevaraya University, 

Anantapur- 515003, India 

         

(Submitted 16-05-2013) 

   

Abstract 

This paper explains how to estimate a partially-known continuous state-space model of a resistor-
inductor-capacitor (RLC) circuit. This model is used to optimize the unknown model parameters. This work 
illustrates use of LabVIEW for system identification and design of control systems. 

 
Keywords: RLC, System identification, Lab VIEW 
  

1. Introduction: 

 
System identification is the process of 

extracting or inferring information about a 
mathematical model by numerical processing 
experimental data or data derived from 
experimentally collected data. This paper presents 
the identification for control. System identification 
is fundamental for communication and control 
engineering, and it also plays important roles in 
many other areas, such as meteorology and 
economics. Modeling and identification 
techniques help develop knowledge about a 
system.[1] They are prerequisites to many practices 
in engineering and technology and are especially 
important in the field of automatic control. 

 
Model based control design involves 

developing and analyzing model to describe a 
plant or a system, designing and analyzing, and 
simulating the dynamic system. LabVIEW 
provides solution for each of these phases. It has 

different tools which are built on this platform 
with different approaches at each phase in a model 
based control design and identification of a 
system. There are two types of models in system 
identification. They are parametric and non 
parametric models. In parametric model to get the 
data in the form of parameters we are having AR, 
ARX, ARMAX, State space, Instrument variable 
estimator and General Linear etc.[2,6] 

 

2. About the LabVIEW 

 
Laboratory Virtual Instrument Engineering 

Workbench (LabVIEW) which is a graphical user 
friendly Language which is totally based upon 
icons/buttons instead of programming codes and 
code paragraph. This software has the ability to 
build user defined interface with set of objects and 
graphical tools. These programs are labeled as 
Virtual instruments (VIs,) owing to their 
operational replica of physical instruments, like 
oscilloscopes, multi-meters, mathematical tools 
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etc. A Virtual Instrument is the combination two 
panels generally known as windows. i. Front panel 
or window, ii. Block diagram window. 

 

All control and indicator are the part of 
Front panel window and their Icon and connector 
pane lies in a Block diagram window.[3] 

 

3. RLC circuit: 

 
 The following figure shows an RLC 
circuit, where u is the input voltage, y is the output 
voltage, iL is the current, and uC is the capacitor 
voltage. Let us assume y equals the capacitor 
voltage uC. [5] Let us assume R= 1.5 ohms. 

 
Figure - 1: Series RLC circuit 

 

First-order differential equation 
relationship between the capacitor voltage and the 
current of this RLC circuit. 

                                            (1) 

First-order differential equation of the 
voltage relationship in the circuit. 

                                       (2) 

 

By using the Laplace transform we can get 
the following transfer function. 

                  (3) 

Where s represents the s domain 

By manipulating the previous equations, 
the continuous state-space model for this RLC 
circuit  

 

 

4. Simulated responses: 

 
Figure – 2 Block diagram of RLC circuit using LabVIEW 

 

 
 

Figure – 3 Front panel of RLC using LabVIEW 

 
The LabVIEW control design and 

simulation provides the transfer function and state 
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space equations. System identification toolkit 
provides the estimated model, estimated values of 
the unknown variables and the response of the 
system. [4, 7] 

 
 
5. Results 
 

 
 

Figure – 4 Model Estimation of RLC using LabVIEW 

 
Simulated response matches the measured 

response. In the model creation we guess the 
values of L and C are 1.5H, 1.5f.In the model 
estimation, we are getting the nearest values of 
that unknown variables. And the estimation error 
is also very less. By using the AR, ARX, ARMAX 

methods also we can get the parameters from the 
unknown and partially known parameters. 
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In this issue we shall solve some short problems on density matrix.

INTRODUCTION

Consider a quantum system in the state

|ψ〉. If A is an observable, the expectation

value of A is given by

〈Â〉 = 〈ψ|Â|ψ〉 (1)

where Â is the quantum mechanical operator

for A. Here onwards we shall omit the hat

and use the same symbol for both the ob-

servable and its quantum operator. We un-

derstand 〈A〉 as a quantum mechanical aver-

age of an observable quantity A, if the system

is in the state |ψ〉. That is, the average value

of A obtained, when the system is repeatedly

prepared in the state |ψ〉 and A is measured.

Now consider the following. There is a

two state system, with states given by |ψ1〉

and |ψ2〉. And suppose we do not know for

sure in which state the system is – |ψ1〉 or

|ψ2〉. We only know the probabilities p1 and

p2 that the system is in the states |ψ1〉 and

|ψ2〉 respectively (p1 + p2 = 1). What is the

expectation value of A in this case?

If you think it is 〈ψ|A|ψ〉, with |ψ〉 =

p1|ψ1〉+p2|ψ2〉 (it seems the ‘natural’ thing to

do!), you are wrong! Superpositions like this

do not describe a system which is either in

the state |ψ1〉 or in the state |ψ2〉, but a sys-

tem which is simultaneously in both the states

|ψ1〉 and |ψ2〉. The system we are consider-

ing cannot be represented by a single wave-

function or state vector like |ψ1〉 or |ψ2〉, or

any of their linear superposition. This kind

quantum states which cannot be represented

by state vectors are known as ‘statistical mix-

tures’, or ‘mixed states’.

The quantum states that can be rep-

resented by state vectors are called ‘pure
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states’. These are the states that we study

in quantum mechanics, when we are not con-

cerned with statistics. But when we deal with

a statistical mixture described above, we have

to specify it with a set of pure states and the

corresponding probabilities. We can neatly

pack this information in a matrix, known

as ‘Density Matrix’, usually denoted by ρ.

And the density matrix completely specifies a

mixed state, just as a state vector completely

specifies a pure state.

Let us come back to the question we

started with. It is not difficult to find the

expectation value of A for the situation de-

scribed above. If the system is in the state

|ψ1〉 the expectation value of A is 〈ψ1|A|ψ1〉,

which obviously has a probability p1. Simi-

larly the expectation value is 〈ψ2|A|ψ2〉 with

a probability p2. So the average expectation

value is ( expectation value of expectation

values!)

〈A〉 = p1〈ψ1|A|ψ1〉+ p2〈ψ2|A|ψ2〉 (2)

We can readily generalize the above result

- consider a system which can be in states |ψi〉

with probabilities pi, where i = 1, 2, 3, . . . n,

and {|ψi〉} forms a complete orthonormal ba-

sis for the system Hilbert space. The expec-

tation value of observable A is

〈A〉 =
n∑
i=1

pi〈ψi|A|ψi〉

= tr(ρA) (3)

where the operator ρ, know as the density

operator or density matrix is given by

ρ =
n∑
i=1

pi|ψi〉〈ψi| (4)

Since pi’s are probabilities, 0 ≤ pi ≤ 1 and∑n
i=1 pi = 1.

We are also interested in what value we

obtain for an observable A when we perform

a measurement. For a pure state ψ (normal-

ized) it is one of the eigenvalues of A, say ai,

with the probability |〈ai|ψ〉|2, where |ai〉 is

the normalized eigenstate for the eigenvalue

ai. Now consider a mixture given by a density

matrix ρ. The probability that this measure-

ment yields the value ai is

P (A = ai) = 〈ai|ρ|ai〉 (5)

The derivations of the relations (3) and (5)

are simple and can be found in any statistical

mechanics text book, and so are the follow-

ing important properties of a density matrix,

which we just state here.

The diagonal elements of ρ are probabili-

ties and therefore

0 ≤ ρii ≤ 1 (6)

The density matrix is Hermitian:

ρ† = ρ (7)

It has unit trace:

tr(ρ) = 1 (8)
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For a pure state

tr(ρ2) = 1 (9)

For a mixed state

tr(ρ2) < 1 (10)

For a canonical ensemble in thermal equilib-

rium

ρ =
e−βH

tr(e−βH)
(11)

where β = 1/kBT and H is the Hamiltonian

operator. The time evolution of the density

matrix is given by

i~
∂ρ

∂t
= [ρ,H] (12)

which is known as Liouville-von Neumann

equation, and can be considered as the gener-

alization of Schrödinger equation for systems

in mixed states.

Now we turn to solving some simple prob-

lems

PROBLEMS AND SOLUTIONS

Problem 1. Consider a spin-1/2 system

and the eigenbasis of the operator Sz (i.e.,

z-component of angular momentum). Write

the density matrices for the following and

calculate the traces. |a〉, |b〉 are eigenstates

of Sz for the eigenvalues ±~/2

(a) The pure state given by |ψ〉 =

c1|a〉 + c2|b〉; c1, c2 are two complex num-

bers such that |ψ〉 is normalized, i.e.,

|c1|2 + |c2|2 = 1

(b) The mixed state specified as : |a〉 with

probability 2/3, |b〉 with probability 1/3

Solution

(a) We have the general definition in equa-

tion (4). Here we have only one state, |ψ〉,

with p = 1. Thus

ρ = |ψ〉〈ψ|

= (c1|a〉+ c2|b〉)(c∗1〈a|+ c∗2|〈b|)

= |c1|2|a〉〈a|+ c∗1c2|b〉〈a|+ c1c
∗
2|a〉〈b|+ |c2|2|b〉〈b| (13)

In doing the above algebra with bras and kets

it is important to remember to maintain the

order, because |b〉〈a| 6= |a〉〈b| and so on. Now

let us write ρ above in matrix form (in the

basis {|a〉, |b〉} ):

ρ =

〈a|ρ|a〉 〈a|ρ|b〉
〈b|ρ|a〉 〈b|ρ|b〉


=

|c1|2 c1c
∗
2

c∗1c2 |c2|2

 (14)
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In evaluating the matrix elements above we

have used (13) and the orthonormality of |a〉

and |b〉. Thus tr(ρ) = |c1|2 + |c2|2, which is 1,

as assumed in the beginning. The matrix di-

agonal elements are positive and lie between

0 and 1, and ρ† = ρ. Since the system is

in a pure, we must have tr(ρ2) = 1. The

reader can take the square of the matrix ρ

and check the trace is |c1|4 +2|c1c2|2 + |c2|4 =

(|c1|2 + |c2|2)2 = 1.

(b) In this case we have two states |a〉 and

|b〉 with respective probabilities 2/3 and 1/3,

and therefore

ρ =
2

3
|a〉〈a|+ 1

3
|b〉〈b|

In matrix form

ρ =

〈a|ρ|a〉 〈a|ρ|b〉
〈b|ρ|a〉 〈b|ρ|b〉


=

2/3 0

0 1/3


Once again tr(ρ) = 1 and ρ† = ρ. But now

the system is in a mixed sate, and therefore

tr(ρ2) = 4/9 + 1/9 = 5/9 < 1.

Problem 2. In the above problem,

find the expectation value of Sz in the pure

and the mixed states.

Solution

For the pure state

〈Sz〉 = 〈ψ|Sz|ψ〉

= (c∗1〈a|+ c∗2|〈b|)Sz(c1|a〉+ c2|b〉)

= (c∗1〈a|+ c∗2|〈b|)(c1Sz|a〉+ c2Sz|b〉)

= (c∗1〈a|+ c∗2|〈b|)
~
2

(c1|a〉 − c2|b〉)

=
~
2

(|c1|2 − |c2|2)

We have used above Sz|a〉 = (~/2)|a〉,

Sz|b〉 = (−~/2)|b〉. For the mixed state

〈Sz〉 = tr(ρSz)

= tr


2/3 0

0 1/3

 ~
2

1 0

0 −1


=

~
6

Next we consider a slightly more complex

problem.

Problem 3. Consider a spin-1 system

and the eigenbasis of the operator Jz. Write

the density matrix for the system in the

mixed state: states |a〉, (|a〉 + |b〉)/
√

2 and

(|b〉+ |c〉)/
√

2, each with probability 1/3. |a〉,

|b〉, and |c〉 are the normalized eigenstates

of Jz for the three eigenvalues ~, 0 and −~

respectively. Find the expectation value and

the variance of Jz.

Solution

Volume 29, No. 2, Article Number 5 www.physedu.in



Physics Education 5 Apr-Jun, 2013

ρ =
1

3
|a〉〈a|+ 1

3
· 1

2
(|a〉+ |b〉)(〈a|+ 〈b|) +

1

3
· 1

2
(|b〉+ |c〉)(〈b|+ 〈c|)

=
1

6
{3|a〉〈a|+ 2|b〉〈b|+ |c〉〈c|+ |a〉〈b|+ |b〉〈a|+ |b〉〈c|+ |c〉〈b|} (15)

In matrix form

ρ =


〈a|ρ|a〉 〈a|ρ|b〉 〈a|ρ|c〉

〈b|ρ|a〉 〈b|ρ|b〉 〈b|ρ|c〉

〈c|ρ|a〉 〈c|ρ|b〉 〈c|ρ|c〉



=
1

6


3 1 0

1 2 1

0 1 1

 (16)

As we expect, the diagonal elements of ρ are

between 0 and 1, ρ† = ρ, tr(ρ) = 1 and

tr(ρ2) = 1/2 < 1.

The operator Jz in its own eigenbasis is

given by

Jz = ~


1 0 0

0 0 0

0 0 −1



And the expectation value

〈Jz〉 = tr(ρJz)

= tr


1

6


3 1 0

1 2 1

0 1 1

 ~


1 0 0

0 0 0

0 0 −1




=
~
3

And

〈J2
z 〉 = tr(ρJ2

z )

= tr


1

6


3 1 0

1 2 0

0 1 1

 ~2


1 0 0

0 0 0

0 0 1




=
2~2

3

which gives the variance

Var(Jz) = 〈J2
z 〉 − 〈Jz〉2

=
2~2

3
− ~2

9

=
5~2

9

Problem 4. For the system in problem 3,

what is the probability that a measurement

of Jz will result in a value ~?

Solution

To get the value ~, the system has to be found

in the state |a〉. Using the relation in equa-

tion (5)

P (Jz = ~) = 〈a|ρ|a〉

Substituting for ρ from equation (15) we

readily get

P (Jz = ~) =
1

2

which you can see that is the first diagonal

element in the matrix for ρ in equation (16).

From the same logic you can see that the
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other two diagonal elements, 1/3 and 1/6,

are the probabilities for getting Jz = 0 and

Jz = −1. In general the diagonal elements of

density matrix give the probabilities of find-

ing the system in the basis states - which you

can readily see by comparing the equation (5)

and the form the diagonal elements of ρ.
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NEWS - Rahul Basu Memorial Best Thesis Award

reported by

Rahul Basu Awards Committee 2012∗

Sunil Mukhi, corresponding member
sunil.mukhi@gmail.com

(Submitted March 2013)

About the award

The Rahul Basu Memorial Award for Best
Thesis in High Energy Physics has been in-
stituted in 2012 in memory of the late Prof.
Rahul Basu, one of India’s leading High-
Energy physicists and a warm and enthusi-
astic member of the HEP community whose
presence is greatly missed. The award is
given for the two best theses from India,
across all areas of High Energy Physics (the-
oretical and experimental), during each two-
year period and is presented at the DAE sym-
posium in High Energy Physics.

∗Members:Neelima Gupte (IIT-M), Sunanda
Banerjee (SINP), Rohini Godbole (IISc), Sourendu
Gupta (TIFR), Bedanga Mohanty (NISER-
Bhubaneswar), Sunil Mukhi (IISER-Pune).

About the winners

The first award was announced at the end of
2012 and presented at the DAE symposium
held at Visva Bharati University in January
2013. The winners were Dr Lokesh Ku-
mar (Ph.D. from Panjab University, Chandi-
garh) for his thesis titled Identified parti-
cle production, fluctuations and corre-
lations studies in heavy ion collisions at
RHIC energies and Dr Diptimoy Ghosh
(Ph.D. from TIFR, Mumbai) for his the-
sis with title Looking for new physics
beyond the Standard Model through
flavour transitions. Dr Debasish Banerjee
(Ph.D. from TIFR, Mumbai) and Dr Ketan
Patel (Ph.D. from PRL/Mohanlal Sukhadia
University) were declared runners-up.

Dr Lokesh Kumar’s work was related to
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constructing the phase diagram for QCD.
For the construction of this phase diagram
a beam energy scan (BES) program was pro-
posed at the Relativistic Heavy-Ion Collider
Facility, BNL, USA in 2008. The Experiment
aat the Collider was asked to demonstrate
the feasibility of RHIC carrying out this pro-
gram below the injection energies. A test
run was provided at centre-of-mass energies
of 9.2 GeV per nucleon for Au+Au collisions.
A major part of Dr. Lokesh Kumar’s the-
sis work was related to demonstrating that
STAR experiment could successfully carry
out the BES program. With only 4000 events
available in the short test run, he was able
to provide convincing physics results which
played a major role having the program ap-
proved at RHIC from the year 2010. The suc-
cess of the analysis of the 9.2 GeV Au+Au
collision data establishes the foundation for
the subsequent beam energy program, one
of whose primary objective is to locate the
possible critical point in the QCD phase dia-
gram.
Diptimoy Ghosh worked on flavour physics

for his Ph.D. An interesting aspect of his the-
sis is that it looks for signatures of processes
beyond the standard model. He played a
major role in identifying the new physics re-
quired for explaining the large enhancement
seen in the Bs → ττ decay rate. He had also
worked on constraining specific new physics
models using low-energy flavour-physics data
in addition to the high-energy Collider data
from ATLAS and CMS, pointing out implica-
tions of a variety of interesting signals involv-
ing the anomalous decay rates, the top quark
forward-backward asymmetry, searches for

Higgs and supersymmetric particles in vari-
ous channels, etc.

Next Rahul Basu

Memorial Award

The next time we evaluate nominations will
be around September 2014 (for theses whose
provisional degree certificate is dated be-
tween September 1, 2012 and August 31,
2014). Nominations will be invited around
the middle of 2014. Faculty members wish-
ing to nominate outstanding students are ad-
vised to watch out for the announcement at
that time.
The award winners have kindly sum-

marised their theses for Physics Education
(IAPT) and they form the next two sections
of this write up.
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Particle Production and

Beam Energy Scan

Program at RHIC
Lokesh Kumar (Kent State U., Ohio,
and STAR collaboration, BNL),

Ph. D. Panjab University, Chandigarh

The experiments at the Relativistic Heavy
Ion Collider (RHIC) are designed to study
the properties of the matter formed in
nucleus-nucleus collisions at various cen-
ter of mass energies (

√
sNN). The main

goals are to search for the Quark-Gluon-
Plasma (QGP), study its properties, and
study the phase diagram related to the
quarks and gluons. QGP is a state of mat-
ter where quarks and gluons exist in free
state rather than in the nucleonic volumes.

Quark-Gluon Plasma
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Figure 1: Schematic picture of the QCD
phase diagram shown in T − µB space.

Such a free state of quarks and gluons were
supposed to have existed a few microseconds
after the big-bang. Theoretical calculations
suggest that QGP can be created in extreme
conditions such as high temperature and high
pressure [1]. RHIC collider is capable of pro-
ducing such a state of matter and RHIC ex-
periments have confirmed the formation of
QGP at RHIC [2, 3, 4]. Quantum Chromo
Dynamics (QCD) is the theory that deals
with interaction of color charges (quarks and
gluons). The phase diagram of electromag-
netic interactions is well established through
phase diagram of water but the QCD phase
diagram is not that well established. Fig.
1 shows the schematic QCD phase diagram
where x-axis represents baryonic chemical po-
tential (µB) and y-axis represents the temper-
ature (T ). The QCD phase diagram has two
main phases: QGP and hadronic gas. It is
expected that at µB ∼ 0, the transition be-
tween hadron gas and QGP is cross-over [5].
At high µB, QCD based model calculations
suggest a first order phase transition [6]. The
point where this first order phase transition
line ends is the location of critical point [7].
While there are several signatures of forma-
tion of QGP at 200 GeV [2, 3, 4, 8], there
is very little knowledge of the QCD phase
diagram. If the existence of QCD critical
point, first order phase transition and the
phase boundary (which separates the regions
of QGP and hadron gas) could be established,
it will be a great step forward for physics of
strong interactions.
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Figure 2: Left: Typical collisions in Au+Au collisions at
√
sNN = 9.2 GeV Right: The

dE/dx of pions, kaons, protons and electrons plotted as function of rigidity (charge × mo-
mentum).

In view of this, RHIC planned the Beam
Energy Scan (BES) Program with aim to
search for the QCD critical point and QCD
phase boundary [9]. The idea is to vary the
collision energy and look for the signatures
of QCD phase boundary and QCD critical
point i.e. to span the phase diagram from the
top RHIC energy (lower µB) to the lowest
possible energy (higher µB) going even lower
than the injection energy which is 19.6 GeV
at RHIC. To look for the phase boundary,
we would study the established signatures
of QGP at 200 GeV as a function of beam
energy. Turn-off of these signatures at
particular energy would suggest the crossing
of phase boundary. Similarly, near critical

point, there would be enhanced fluctuations
in multiplicity distributions of conserved
quantities (net-charge, net-baryon). These
observables when studied as a function of
beam energy and showing large fluctuations
or divergence from the reference point would
suggest a possible critical point. Since RHIC
collider and STAR detector were optimized
to work at 200 GeV, it was needed to test the
collider and the STAR detector to run below
the RHIC injection energy. This led to the
proposal of Au+Au test run at

√
sNN = 9.2

GeV which was taken in the year 2008. My
thesis work dealt with the study of particle
production in the heavy-ion collisions at
RHIC and provided important input for the
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approval of the Beam Energy Scan program
at RHIC through the successful analysis of

the 9.2 GeV test run.
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Figure 3: Left: (a) Energy dependence of (a) π−/π+ (b) K−/K+, (c) p̄/p, and (b) K/π
ratios at midrapidity (|y| < 0.5) for central collisions. Right: Temperature vs. baryon
chemical potential (µB) from heavy-ion collisions at various

√
sNN . The kinetic and

chemical freeze-out parameters, extracted using models assuming thermal and chemical
equilibrium from midrapidity measurement in central 0–10% Au+Au collisions at

√
sNN =

9.2 GeV, are shown as star symbols.

Fig. 2 (left panel) shows typical collision at 9.2 GeV. The total good events that could be
used for the analysis were ∼ 3000. We could nicely identify the particles such as pions (π±),
kaons (K±), protons (p), and anti-protons (p̄) at such a lower energy using the ionization
energy loss (dE/dx) of these particle inside the STAR Time Projection Chamber (TPC)
(Fig. 2 (right panel)). The momentum distributions, particle yields and ratios, and average
transverse momentum were obtained for π, K, p, and p̄. We also extracted the kinetic
(Tkin and 〈β〉) and chemical freeze-out parameters (Tkin and µB) at 9.2 GeV [10]. All these
results were consistent with the established energy dependence trends (see Fig. 3) thus
demonstrating STAR detector’s and RHIC collider’s capability to provide Physics results at
such a lower energy which is well below the injection energy at RHIC.
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These results also suggested that matter
created at mid-rapidity at lower energies is
baryon rich (small value for p̄/p, Fig. 3 (c)).
For more details, please see the Ref. [11].
Based on these results, a case was made for
the Beam Energy Scan program at RHIC be-
fore the RHIC Program Advisory Committee
(PAC), which subsequently approved the pro-
gram.
The first phase of the BES program started

in the year 2010 with Au+Au collisions at
three energies

√
sNN = 7.7, 11.5, and 39 GeV.

In the year 2011, two more energy points
were added at 19.6 and 27 GeV. The results
from the Phase-I are very interesting. We
observed for the first time the centrality de-
pendence of chemical freeze-out parameters
(Tch vs. µB) at lower energies. This suggests
that we can explore the large region of the
phase diagram to search for the QCD criti-
cal point and QCD phase boundary. Several
interesting results, such as vanishing of jet-
quenching effect [12] and non-observation of
number of quark scaling of elliptic flow [13]
suggest that the system formed at lower en-
ergies is hadron dominated as opposed to 200
GeV where we observed the partonic system.
There are also hints of deviation from the ref-
erence point in the fluctuations observable at
lower energies which could be related to the
critical point [14]. However, the statistics is
not enough for making strong conclusions.
In future, STAR has planned BES Phase-
II with high statistics data below 20 GeV.
This will allow STAR to consolidate the find-
ings from the BES Phase-I. More details on
the BES Phase-I results and information re-
garding BES Phase-II can be found in the

Ref. [15].
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The smaller universe
Diptimoy Ghosh (INFN Rome),

Ph.D. TIFR, Mumbai

The effort and excitement to discover the
smaller and smaller constituents of matter
and unlock the mystery of our smaller uni-
verse increased manyfold after the first sub-
atomic particle was discovered in 1897 by the
British physicist J. J. Thomson. It is now
common knowledge that matter is made up of
extremely tiny particles called atoms, which
join together by chemical bonds to form
molecules. There are simple forms of matter
like water which is made of simple molecules
containing only two or three atoms. More
complicated objects like the human body are
made from more complicated molecules such
as proteins and DNA, and contain millions of
atoms. There are around a hundred differ-
ent types of atoms known as elements, from
hydrogen to uranium, cataloged by chemists
in the periodic table. Chemistry of these el-
ements can be understood by learning the
properties of 3 particles proton, neutron and
electron, and the influence of the electromag-
netic force. There is an equally beautiful and
elegant structure which describes the realm
of particle physics and has an unimaginative
name the “Standard Model”. It describes
the chemistry of all the fundamental particles
known till date. The theories and discover-
ies of thousands of physicists over the past
century have resulted in a remarkable insight
into the fundamental structure of matter: all
the visible matter in the Universe is found
to be made from twelve fundamental matter
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particles, their interactions governed by four
fundamental forces carried by force carriers
called gauge bosons. Seven of these parti-
cles charm, bottom, top, tau neutrino, W,
Z and gluon were predicted by the Standard
Model (SM) before they were observed ex-
perimentally! There is one additional parti-
cle predicted by the Standard Model called
the higgs, whose existence has not yet been
confirmed experimentally although a particle
similar to higgs in behavior has been seen re-
cently in the Large Hadron Collider (LHC)
experiment in Switzerland. Our best under-
standing of how these twelve matter particles
and three of the forces are related to each
other is encapsulated in the Standard Model
of particles and forces. Developed in the early
1970s, it has successfully explained a large
number of experimental results and precisely
predicted a wide variety of phenomena. Over
time and through many experiments by many
physicists, the Standard Model has become
established as a well-tested theory.

Standard model is a set of principles that
describe the exotic chemistry of matter at
very small length scales (about 10−17 −
10−18m) and at very high temperatures
(about 1015 K). We all know that any
matter when sufficiently heated undergoes
phase transitions and eventually vaporise into
atoms and molecules. If the temperature is
increased even further, they ionise to elec-
trons and nuclei. If we go on further increas-
ing the temperature, at some point (around
1013 K) the protons and neutrons themselves
melt into things called as quarks and glu-

ons 1. Interestingly, the standard model pre-
dicts that there is yet another phase transi-
tion (called the Electroweak phase transition)
waiting for us to discover at a even higher
temperatures - a phenomenon which is simi-
lar to the metal-superconductor transition in
some materials.
As chemistry predicts the rate at which

chemical reactions proceed, the Standard
Model, being the chemistry of all the elemen-
tary particles known till date, also predicts
the rates at which they interact and decay,
for example, the rate of higgs boson decay-
ing to a final state of two photons or a fi-
nal state of 2 b-quarks. The quarks are not
seen moving freely for distances much more
than about 10−15 m (a phenomenon called
Asymptotic Freedom) and form bound states
like protons, neutrons, B-mesons, K-mesons
etc. before reaching the particle detectors.
The Standard Model also predicts the rate
of decays of these composite objects, like the
rate at which a neutron decays to a proton, a
lepton and a neutrino or the rate at which a
B-meson decays to a D and K mesons. Hence,
in experiments like at LHC, if B mesons are
produced then the Standard Model predic-
tion of its decay rates to various final states
can be verified by counting the fraction of
B-mesons which decay to a particular final
state. A practical problem to measure some
of these decay rates (which are called rare de-
cays) is that they are so tiny in the Standard

1The Relativistic Heavy Ion Collider (RHIC in
short) in the Brookhaven National Lab, and three
experiments at the LHC ALICE, ATLAS and
CMS aim to produce and study this extreme, high-
temperature phase of matter.
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Model that a really large number of B-mesons
have to be produced in order that a hand-
ful of them decays to these rare final states.
For example, on the average, out of 107 B
mesons only a few is expected to decay to a fi-
nal state consisting of a K-meson, an electron
and a positron. Hence in order to experimen-
tally verify this prediction with sufficient con-
fidence a large number (of order 109 or more)
B-mesons have to be produced. Fortunately,
such a large number of B-mesons are be-
ing produced at the LHC and various crucial
predictions of the Standard Model are being
examined. Till date all measurements have
been consistent with the Standard Model ex-
pectations but more and more data are being
collected to make measurements as precise as
possible so that even a slight deviation from
the SM can be established. Such deviations
would imply the existence of new physics be-
yond the SM, operating in the distance scales
of the order 10−18 - 10−19 or even smaller.
This is reminiscent of the discovery of the
hyperfine structure of the hydrogen spectra.
We should remind ourselves that compared to
Bohr energies even the fine structure (which
was due to the spin-orbit coupling) was a tiny
perturbation – smaller by a factor of α2 (α
is the famous electromagnetic fine structure
constant), smaller still (by another factor of
α) was the Lamb Shift (Quantum Electrody-
namics) and smaller by yet another order of
magnitude was the hyperfine structure. This
shows the importance of more and more pre-
cise measurements to understand the under-
lying microscopic physics.
Going back to precision test of the Stan-

dard Model, we should remember that prob-

ing distance scales of order 10−19m would also
need probes with similar wavelengths which
correspond to an energy of about a Tera elec-
tron volts (TeV in short). Hence, the LHC
with the centre of mass energy of about a few
TeV will hopefully discover the new degrees
of freedom if they exist around the TeV en-
ergy scale. But we should keep in mind that
the new dynamics might be operating not at
the scale of order 10−19m but operating at a
much smaller length scale. In that case LHC
will not have sufficient resolution to discover
them and their effect will be too small (like
the hyperfine splitting or even smaller) to be
detected in the current experiments. This
will mean that the Standard Model is a valid
description (hence, no new physics is neces-
sary) of all the physical phenomena even at
the energy scale of a TeV or equivalently a
length scale as small as about 10−19m. This
is sometimes called “the separation of scales”
which is the statement that to understand the
physics at a particular distance scale it is un-
necessary to know the details of the degrees of
freedom operating at a much smaller length
scale. This is exactly what is done in the mul-
tipole expansion in Electrostatics. If we are
very far away from a localized charge distri-
bution then the higher and higher multipole
terms (which probe the more and more short
distance structure of the charge distribution)
become less and less significant.
Till now we have been discussing the

possibility of the existence of new particles
beyond what we already have discovered.
But do we have some idea about how these
new particles could “look” like? There
are many proposals. The most popular of
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Figure 4: An artist’s view of two typical high energy collision processes at the LHC.

them is the scenario which in its minimal
version supplements all the spin-0 (spin
1/2) SM particles with their new spin-1/2
(spin-0) partners and all the spin-1 SM
particles with their new spin-1/2 partners.
In this case, as the full particle content
looks very symmetrical in the sense that the
total number of bosons (zero and integer
spin particles) is equal to the total number
of fermions (half integer spin particles),
this scenario is called “Supersymmetry”
and the partners of the SM particles are
commonly called super-partners. Another
very popular extension of SM considers our
3-dimensional world as a hyper-surface (this
is a generalization of the more familiar 2
dimensional surface) in a higher dimensional
space. These extensions go by the name of
extra dimensional scenarios which predict
towers of heavier and heavier particles (called
Kaluza-Klein towers) for each or some SM
particles. Other interesting extensions of

SM have also been put forward where the
higgs particle is thought of as a bound state
of some more fundamental particles just as
the pions are bound states of two quarks.

A common feature of all these new pro-
posals is the existence of new particles yet
undiscovered. If we are fortunate enough
that these new particles have masses below a
few TeV then the LHC can possibly produce
them in proton-proton collisions. Once they
are produced they will in general decay to
other lighter particles which can again decay
to even more lighter particles to end up
with a number of stable charged and neutral
particles like electrons, photons, protons
and so on. These stable particles are then
detected in the form of electrical signals in
particle detectors. Analyses of these signals
can then provide information about the
new heavy particles. But things are not so
straightforward as they sound because most

Volume 29, No. 2 Article Number : 6. www.physedu.in



Physics Education 11 Apr - Jun 2013

of these signals are accompanied with noises
and a faithful elimination of these noises are
extremely important to obtain meaningful
information. As an example, let us imagine
that two SM particles say, a W boson and a
Higgs boson (H) are produced in a proton(p)
proton(p) collision. Once produced, the W
boson can decay to an electron (e) and a
neutrino (νe) and the Higgs boson can decay
to a B meson and its anti-particle (B̄ meson)
which are then detected in the detectors.
Let us now assume that there are two new
particles (we will call them by W̃ and H̃
for brevity) which are also produced in the
proton-proton collision and the particle W̃
decays to an electron, a neutrino and another
particle, say Ñ1 while H̃ decays to a B meson,
B̄ meson and yet another particle, Ñ2 (see
Fig. 4 for a diagrammatic representation).
The final state from the decays of W̃ and H̃
looks completely different (consists of two
additional particles Ñ1 and Ñ2) from the final
state originating from our known particles
W and a Higgs boson. But, if Ñ1 and Ñ2 are
somehow not seen by the detector (which
can happen in many situations because
all detectors have their intrinsic as well as
design based limitations) then the new final
state becomes indistinguishable from the SM
one.

We might think that as the number of col-

lision events which gives rise to a final state
of one electron, one neutrino, a B meson and
a B̄ meson is also predicted by the SM, if
new particles are produced and also decay to
the same final state then just a counting ex-
periment can confirm the deviation from SM
prediction. But we have to keep in mind that
the rate of production of most of these (nor-
mally) heavy new particles (like our W̃ and
H̃) is, in most cases, very small and hence
the deviation from SM prediction is also ex-
pected to be small. On top of that, the
SM predictions always suffer from some the-
oretical uncertainties (which are often quite
large) and experimental measurements are
also limited by statistical and systematic er-
rors. Hence, it is extremely important to have
control over both these uncertainties to reach
a sensible conclusion. Thus, computing pre-
cise Standard Model predictions as well as
designing techniques to distinguish potential
new physics signals from the SM background
are extremely important in our endeavour to
search for new physics beyond the SM and
is an active field of research in High Energy
Physics.
I will stop by saying that it is indeed an

exciting time for all of us and hopefully, we
are not far from a zoo of exciting discover-
ies which will start a new episode in particle
physics and necessitate the birth of a new pe-
riodic table.
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Somnath Datta starts with the caption 

‘Mechanics, the Physics of Motion’. It indeed is 

much more than that. Mechanics defines the 

grammar of Physics and together with 

Electrodynamics provides the foundation on 

which stands the edifice of whole of Physical 

Sciences. Therefore it is essential that an 

Introductory Level Course on Mechanics should 

be such that the underlying principles are clearly 

and unambiguously enunciated on the one hand 

and the reader is provided with the necessary skill 

set to compute quantitatively various 

consequences of them. The book under review 

comes out creditably on both counts.  

 

Datta begins with the definition of Inertial Frames 

of Reference, the existence of which is usually 

regarded as the content of the Newton’s First Law 

of Motion, in the first chapter; follows it up in the 

next three chapters the definition of the 

kinematical notions such as displacement, velocity 

and acceleration; linear and angular momentum; 

and imparts the necessary skills to understand and 

manipulate vectors. Newtonian Dynamics, in 

particular the Second Law of Motion, is then 

explored in detail through chapter 5.   Chapter 6 is 

devoted a delightful brief history of Gravitation, 

tracing the process by which Copernicus, Kepler 

and Newton may have arrived at the Universal 

Law of gravitation. Using Newtonian dynamics 

one is adequately equipped to explore the Physics 

of all phenomena in a lab, in everyday activities as 

well as the motion of bodies in the solar system 

with moon, planets, asteroids, comets and artificial 

manmade satellites, rockets, missiles and beyond. 

Datta illustrates the third Law of motion, a much 

misunderstood law, through a sequence of ‘Slides’ 

in the seventh chapter and paves way for the 

notion of conserved Linear and Angular 

Momentum associated with an isolated system to 

be pursued in a later chapter. Main tool for the 

clarity comes from the use of  ‘free body 

diagrams’ that enables us use Newton’s law of 

motion as applicable to the many convenient 

components into which any system can be divided.   

While eighth chapter deals the notions of Work 

and Energy, 9
th

 and 10
th 

chapters are devoted to 

analyze motion in all three dimensions, which help 

deal with many realistic applications. Basic 

principles of hydrostatics are taken up in the next 

chapter and the notion of a rigid body and the 

dynamics of rotational motion are covered in the 

12
th

 chapter. A brief chapter on accelerating 

frames clarifies the nature of pseudo-forces and 

the need to be cautious while working with non-

inertial frames is properly emphasized. Final 

chapter introduces the basic postulates of the 

special theory of relativity and the consequent 
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Relativistic Mechanics. Theory of Elasticity is not 

covered in the book, but an appendix on “Why 

beams bend?” clarifies why the notion of rigid 

body is an idealization never realized in reality,  

 

A salient feature of the book, claims the publisher 

is that an abundant number (180 in all) of worked 

out examples and (185 in all) suggested exercises 

for the students are carried at the end of each 

chapter. Problem solving skills are an important 

aspect of pedagogy and well posed problems are 

essential to make an introductory text book an 

effective teaching aid. Problems chosen for 

exercises should neither be all plug in and 

compute variety nor be contrived posers that tease 

an eager learner. Datta has included the right mix 

of problems that will contribute to the 

understanding the basics of the subject.  

 

A significant noteworthy aspect is that the book 

has  meticulously drawn clear figures (265 in all), 

that the author is justifiably proud about. He is 

obviously fond of the open source software 

gnuplot with which he has drawn each of the 

illustration himself and has included an appendix 

on how anyone can draw such figures using this 

platform. He is disappointed that the figures 

appear shrunk in the book, constrained to fit the 

book format. He has therefore made available all 

these figures in the original size to all readers, 

students as well as instructors at the publisher’s 

website 

(www.pearsoned.co.in/somnathdatta) and his own 

webpage- 

http://sites.google.com/site/physicsforpleasure.  

These figures, being in colour, surely add further 

value to the book. Perhaps in the next edition of 

the book, when one is planned, he should have the 

book may carry three tone colour figures for both 

enhanced pedagogic value and physical appeal. 

 

 This reviewer would have liked to see a Chapter 

on Elasticity, rather than an appendix on the 

bending of beams and a Section on forced 

oscillations. Indeed such topics are handled 

typically in an advanced course, but it will be nice 

to see them as a part of the basic material in 

Mechanics.  

 

Another topic I would include as optional 

additional material is one on the basics of 

Hamiltonian formalism. The notion that a 

mechanical system can be described by a 

Hamiltonian or its energy content and the 

equations of motion are a consequence of a 

minimization principle should be told. Indeed 

these will be covered traditionally in an advanced 

course, but it may be prudent to provide a glimpse 

at this stage, since this paves way to understand 

the beautiful symplectic structure of canonical 

variables inherent in classical mechanics.  

 

There are many excellent text books on 

Introductory Mechanics, such as the one by A P 

French, as alluded by the author, comprehensive 

Halliday,  Resnick and J Walker and widely used 

Kleppner and Kolenkow, more recent ones by 

Mahendra K Verma (IITK) and by Manoj K 

Harbola (IITK). I will place Mechanics – Somnath 

Datta at a comparable level and recommend to  

adopt as a class room text.    
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