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Abstract

Maxwell’s Stress Tensor T̂ owes its origin to the notion prevailing before the advent of
relatvity that ‘action at a distance’ is actually a mechanical interaction, like push and pull,
and is transmitted by an assumed mechanical property of the Aether which pervaded all
space, in particular vacuum. Even after withrawal of Aether this tensor has a useful role to
play not only in formulating conservation of momentum in a time varying electromagnetic
field, but also in simplifying several problems in electrostatics and magnetostatics, by
removing the distinction between the field caused by ‘external sources’ and the total field
surrounding a distribution of charges and currents. This tensor is to be constructed on the
principle that f s(r) = ∇ · T̂ (r), where fs(r) is the force acting on unit volume of a
distribution of electric charges and currents. Our derivations of the stress tensors

T̂
(E)

, T̂
(M)

and T̂
(EM)

, corresponding to electrostatic field, magnetostatic field, and time
varying electromagnetic field respectively, are based on a single vector identity and
application of Maxwell’s field equations. We have worked out two examples of how the
force on an isolated system can be calculated by surrounding it with a sphere of some
radius r and integrating the stress vector over the entire surface, namely, an isolated
electric charge in the electrostatic field of another charge, and an isolated magnetic dipole
in the magnetostatic field of another magnetic dipole. We have taken the stress tensor to
its logical end by writing momentum conservation in a time varying electromagnetic field,

and then identifying −T̂
(EM)

as the momentum flux density Φ̂ of the field. For the special

case of a pure radiation field, Φ̂ = −T̂
(EM)

= Πc, where Π is the momentum density and c
is the ‘velocity’ of light. At the beginning of this article we have given a mathematical
introduction to tensors, in particular stress tensors.
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1 Introduction

‘Action at a distance’ (AAD) was an
enigma to natural philosophers, from Rene
Descartes1 (1596-1650) to James Clerk
Maxwell (1831-1879). We find a an account
of the evolution of physical concepts in Whit-
taker [1]. According the Descartes, space was
a plenum, a medium called aether, capable
of transmitting force on material bodies. “It
was to be regarded as the solitary tenant of
the universe, save for that infinitesimal frac-
tion of space which is occupied by ordinary
matter.”

Subsequent theoretical physicists and
mathematicians, Robert Hooke (1635-1703),
Isaac Newton (1642-1727), Reimann (1826-
1866), W.Thomson (1824-1907), Maxwell
and others lent their support to this view.
Implicit in their belief was the assumption
that force cannot be transmitted except by

actual pressure or impact. AAD was a taboo,
as abhorrent as witchcraft: I wave my hand
here and a fire is ignited there. In order to
support their faith in aether they contrived
every possible idea, any possible mechanical
model, to make aether viable.

According to Newton “All space is per-
vaded by an elastic medium or aether, which
is capable of propagating vibrations in the
same way as air propagates the vibrations of
sound. This aether pervades the pores of all
material bodies, and is the cause of their co-
hesion; its density varies from one body to
another, being greatest in the interplanetary

1The Cartesian coordinate system is associated
with his name

space.”
Maxwell inherited this legacy. We shall

quote a few passages from his celebrated pa-
per ‘A Dynamical Theory of the Electromag-

netic Field ’ read to the Royal Society of Lon-
don on December 8, 1964[2].

“(1) In this way mathematical thories
of statical electricity, of magnetism, of
the mechanical action between between
conductors carrying currents, and of the
induction of currents have been formed.
In these theories the force acting between

two bodies is treated with reference only

to the condition of the bodies and their

relative position, and without reference

to the surrounding medium.”

“(2) The mechanical difficulties, how-
ever, which are involved in the assump-
tion of particles acting at a distance with
forces which depend on their velocities
are such as to prevent me from con-
sidering this theory as an ultimate one,
though it may have been, and may yet be
useful to the coordination of phenmena.”

“(3) The theory I propose may therefore
be called a theory of the Electromagnetic

Field, because it has to do with the space

in the neighbourhood of the electric and

magnetic bodies, and it may be called a
Dynamical Theory, because it assumes
that in that space there is matter in mo-
tion, by which the observed electromag-
netic phenomena are produced.”

“(4) The electromagnetic field is that
part of space which contains and sur-
rounds bodies in electric and magnetic

Volume 30, Number 3 Article Number : 1 www.physedu.in
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coditions. ... It may contain any kind of
matter, or we may render it empty of all

gross matter, as in the case of Geissler’s
Tubes and other so called vacua.

There is always, however, enough mat-

ter to receive and transmit the undula-

tions of light and heat, and it is because
of the transmission of these radiations
is not greatly altered when transparen
bodies of measurable densities are sub-
stituted for the so-called vacuum, that
we are obliged to admit that the undu-

lations are those of aetherial substance,
and not of the gross matter, the presence
of which merely modifies in some way the
motion of the aether.

We have therefore some reason to be-
lieve, from the phenomena of light and
heat, that there is an aetherial medium

filling space and permeating bodies, capa-

ble of being set in motion and of trans-

mitting that motion from one part to an-

other, and communicating that motion to

gross matter so as to heat it and affect it

in various ways. ”

One aspect of the mechanical model
Maxwell built up to present a complete pic-
ture of the electromagnetic field was the
proposition that space, i.e., aether, can sus-
tain stress, and a force is transmitted from
one body (electrified or magnetized) to an-
other by means of stress, in the same way a
force is transmitted from one end of a cable
to the other by means of tensile stress, and
from one part of a beam to another by means
of shear stress.

In his two-volume book ‘A treatise on Elec-

tricity and Magnetism‘ Maxwell presents a
complete formulation of the Stress in the
field (read aether) by constructing the Stress
Tensor for the Static Electric Field [3] and
for the Static Magnetic Field [4], in terms of
the field potentials. The first one is pre-
sented in Vol 1 of his book and second one
in Vol 2. His derivation of the first ten-
sor (for the Electrostatic field) involves ma-
nipulation of Laplace’s and Poisson’s equa-
tions. His derivation of the second tensor
(for the Magnetostatic field) involves mag-
netic poles which are now out of fashion in
current physics text books, and may not be
of much interest to us.
We have derived the stress tensors for Elec-

trostatic field, Magnetostatic field and time
varying Electromagnetic field in terms of the
electric field E , magnetic field B in a unified
manner exploiting the useful identity given in
Eq. (76).
Einstein’s formulation of the Special The-

ory of Relativity saw the demise of the Lu-
miniferous (i.e., light carrying) Aether. Light
travels in empty space, eletric and magnetic
forces also propagate from one body to an-
other (with the speed of light) in empty
space. Is there then any place for Maxwell’s
Stress Tensor? Is it only for historical rea-
son that we are writing this long article? We
shall attempt to provide the answer in four
steps.
First, it is indeed an amazing thing that

the force acting on an isolated body A (which
may consist of electric charges and currents),
due to the presence of charges and currents
elsewhere, can be computed exactly by draw-

Volume 30, Number 3 Article Number : 1 www.physedu.in
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ing a boundary surface S of our convenience
surrounding A, as in Fig.1(a), finding the
“stress” all over this surface, and by inte-
grating this stress. In other words, there
is stress even in vacuum. The purpose of
this article is to articulate how this stress is
to be found out. Also it should be noted
with interest that even empty space is not
a true vacuum. When loaded with the elec-
tric and magnetic fields space comes under
stress. Empty space is always buzzing with
emission and absorption of virtual particles,
with the virtual photons mediating the inter-
action among electrified and magnetized ob-
jects. Aren’t these virtual photons the new
Avatar of the Aaether?
Secondly, calculating the force on an iso-

lated object A requires exact knowledge of
the E or B field in which A is immersed. In
recognizing these fields one has to be very
careful that these E,B fields do not contain
any trace of the fields contributed by A itself.
This is sometimes a challenging task. Con-
sider for example the force acting on the sur-
face of a conductor carrying a suface charge
density σ, as in Fig.1(b). The electric field
just outside the surface is E = (σ/ǫ0)n where
n is a unit normal to the surface. One may be
tempted to conclude that the force per unit
area of the surface is F′ = σE = (σ2/ǫ0)n,
forgetting the fact that an infinitesimal area
da on the surface contributes the same E field
perpendicular to the surface as the rest of the
surface, so that the true force is

F =
1

2
F′ = (σ2/2ǫ0)n = (ǫ0E

2/2)n. (1)

The stress tensor approach, which uses the

total field Etotal, making no distinction be-
tween the test object and the source ob-
ject, will give the right result without creat-
ing any confusion, as we shall show following
Eq. (84).
Thirdly, it is always advisable to arrive at

the same answer through several alternative
routes, if available, just to make sure that we
have not made any mistakes. The stress ten-
sor provides that valuable alternative route.
And fourthly, Maxwell’s Stress Tensor,

which we shall denote by the symbol T̂ , is
needed for understanding conservation and
flow of momentum in the electromagnetic
field, which we shall present in Section 6.
When one goes deeper into the theory of
relativity the same tensor appears as the
most important component of the Energy-
Momentum tensor required not only for pre-
senting a 4-dimensiinal and unified view of
the conservation of energy and momentum,
but also for building up the source term in
formulating Einstein’s field equation for the
gravitational field, in his General Theory of
Relativity.
Maxwell’s stress tensor has been discussed

in all standard books on Electrodynamics[5,
6, 7, 8, 9]. However it has received a more
detailed treatment in the books by Panof-
sky and Phillips and Griffiths. Griffiths has
worked out a very interesting problem to
bring out the meaning of this tensor. In this
article (See Secs. 4.3 and 5.2) we have con-
tributed two worked out prblems to illustrate
the same concept.
We shall begin this pedagogical article by

giving the reader a mathematial introduction
to tensor, and then specializing the same to

Volume 30, Number 3 Article Number : 1 www.physedu.in
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Figure 1: Electrified object in E field.

stress tensor, in particular Maxwell’s stress
tensor.

2 Introduction to Tensor

2.1 Linear Operator in a

Vector Space

What we shall call a tensor in this book is
actually “a tensor of rank 2”. A bold capital
letter with a “widehat” on top, e.g., T̂, will
symbolize such a tensor. In fact a scalar, e.g.,
potential energy V is called a tensor of rank
0, a vector, e.g., momentum p a tensor of
rank 1.
Maxwell’s stress tensor T̂ , which is a ten-

sor of rank 2 is needed for understanding con-
servation and flow of momentum in the elec-
tromagnetic field. in this esction we shall pre-
pare the ground work for constructing this
tensor.

We shall begin by explaining what we mean
by linear operator in a vector space.

By the 3-dimensional linear vector space V
we mean the set of all vectors A,B,C, · · ·
we can think of and all such vectors we can
construct by combining them linearly, e.g.,
ηA+ λB where η, λ are real numbers.

Let us think of two vectors C and D hav-
ing Cartesian components (Cx, Cy, Cz) and
(Dx, Dy, Dz) and related to each other in such
a way that the values of the former determine
the values of the latter. This means that C is
an independent vector and D is a dependent
one. In other words D is a function of C. Let
us further assume that D is proportional to
C. That is, if for example we double C, then
D is doubled. These two vectors, however,
may or may not be in the same direction.
In that case we say that a linear operator Ô
transforms C into D. We may like to write

Volume 30, Number 3 Article Number : 1 www.physedu.in
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this transformation symbolically as

Ô(C) = D. (2)

The property of linearity means that

If Ô(C) = D, and Ô(E) = F,

then Ô(aC+ bE) = aD+ bF,
(3)

where a, b are two arbitrary scalar constants.
In Fig.2 we have shown two simple exam-

ples of how the operation Ô can take place. In
Fig.(a) we have shown a particle of constant
mass m in abrbtrary motion along some tra-
jectory Γ. At some instant of time t it has
velocity v. Therefore its momentum at the
same instant is p = mv. We can therefore
think of the operator Ô transforming veloc-
ity v into momentum p by scaling the length
of the former by the factor m without chang-
ing its direction.
In Fig.(b) we have shown a Rigid Body ro-

tating about some axis pointing in the direc-
tion of the unit vector n with angular speed
ω, so that its angular velocity is ω = ωn. Its
angular momentum is L, which (in general)
does not coincide with the direction of ω. In
this case the operator Ô transforms the angu-
lar velocity ω into angular momentum L by
changing the length as well as the direction.
The linear operator Ô in this case is the iner-
tia tensor Î about which we shall give some
more insight in Sec.2.4.
For our immediate purpose we shall look

upon a tensor T̂ as a linear operator. The lin-
ear operation mentioned above suggests that
T̂ can be represented by a matrix, and the
“tensor operation” can be represented as a
matrix multiplication. This will become evi-
dent in the next section.

2.2 Tensor as a Dyadic

Two arbitrary vectors A,B can be combined
in three types of “multiplication operation”,
the first two of which the reader is familiar
with, namely, (1) the dot product A·B which
is a scalar; (2) the cross product A×B which
is a vector. Now comes (3) the third type,
namely the dyadic product AB, which is a
simple juxtaposition of the vectors, without
any dot or cross in between, which we shall
call a dyad.

We define the dyad AB to be a linear oper-
ator which converts any vector C to another
vector D and this conversion can be done in
either of the following two ways:

(a) operating on the right :

AB ·C
def
= A(B ·C) = ηA

where η = B ·C = scalar.

(b) operating on the left :

C ·AB
def
= (C ·A)B = λB

where λ = C ·A = scalar.

(4)

The linearity property follows from the op-
eration defined in (4). Also note that in gen-
eral, AB 6= BA.
We shall write the sum of two dyads AB

and EF as AB + EF and define it by the
distributive property:

(AB+ EF) ·C
def
= AB ·C+ EF ·C

= A(B ·C) + E(F ·C).

C · (AB+ EF)
def
= C ·AB+C · EF

= (C ·A)B+ (C · E)F.

(5)

It should be a simple exercise to show from
Eqs. (4) that the dyadic product is distribu-

Volume 30, Number 3 Article Number : 1 www.physedu.in
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Figure 2: two examples of how a linear operator Ô transforms a vector into another vector: (a) Ô
acting on v yields p; (b,c) Ô acting on ω yields L.

tive, i.e., if E,F,C are three arbitrary vec-
tors, then

(E+ F)C = EC+ FC.
C(E+ F) = CE+CF.

(6)

As a corollary,

(A+B)(E+F) = AE+AF+BE+BF. (7)

A sum of dyads can be called a dyadic. We
shall prefer to use the term “dyadic” as a gen-
eral name for sums of dyads as well as indi-
vidual dyads.
We shall frequently use the symbols

ex, ey, ez to represent unit vectors in the di-
rections of the X, Y, Z axes, for which we
had used i, j,k earlier in this chapter. As
we progress we shall use another set of sym-
bols e1, e2, e3 to mean the same unit vec-
tors. This transition (i, j,k) → (ex, ey, ez) →
(e1, e2, e3), side by side with (x, y, z) →
(x1, x2, x3) will restore symmetry and help us

use Einstein’s summation convention (follow-
ing Eq.9).
Let us now consider the set of 12 dyads:

{exex, exey, exez, · · · , ezez}. Using them
we can construct the following dyadic

T̂ = Txxexex + Tyxeyex + · · ·
+Tyzeyez + Tzzezez

=
∑3

i=1

∑3
j=1 Tijeiej ≡ Tijeiej,

(8)

where the subscripts (1,2,3) represent (x, y, z)
respectively. That is

e1 ≡ ex; e2 ≡ ey; e3 ≡ ez;
and, T11 ≡ Txx; T12 ≡ Txy; · · · ;

T32 ≡ Tzy; T33 = Tzz
(9)

are arbitrary real numbers.
In the second line of Eq. (8) we have intro-

duced Einstein’s summation convention: sum
over repeated index, without explicitly insert-
ing the sum symbol

∑
. The subscript “i” ap-

Volume 30, Number 3 Article Number : 1 www.physedu.in
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pears twice, implying a sum over i. The sub-
script “j” appears twice, implying one more
sum, this time over j.

The mathematical object T̂ appearing in
Eq. (8) is what we shall call a tensor for
all purposes in this book. The set of dyads
{exex, exey, exez, · · · , ezez} can be looked
upon as a complete set of base dyads form-
ing a basis B̂ in the tensor space T of T̂.
This is analogous to the way that the vec-
tors {ex, ey, ez} form a basis B in the vector
space V of V. Any arbitrary vector V can be
written as a linear superposition of the base
vectors as

V = Vxex + Vyey + Vzez, (a)
where Vx = V · ex, Vy = V · ey,

Vz = V · ez, (b)
(10)

are the Cartesian (scalar) components of V
in the basis B. In the same way any arbitary
tensor T̂ can be written as a linear superpo-
sition of the base dyads, as in Eq. (8), where
the nine quantities {Txx, Txy, · · ·Tzy, Tzz} are
to be interpreted as the Cartesian (scalar)

components of T̂ with respect to this basis
B̂.

From the definition of dyad given in (4),
and the orthogonality of the base vectors
{ex, ey, ez}, i.e.,

ej · ek = δjk; j, k = 1, 2, 3 = x, y, z, (11)

it should be apparent that the base dyads op-
erating on any arbitrary vector V will yield

the following vectors:

exex ·V = exVx; exey ·V = exVy; · · ·
ezey ·V = ezVy; ezez ·V = ezVz.
V · exex = Vxex; V · exey = Vxey; · · ·
V · ezey = Vzey; V · ezez = Vzez.

(12)
Hence, if A = Axex + Ayex + Azez and B =
Bxex+Byex+Bzez are two arbitrary vectors,
then,

A · T̂ ·B
def
= A · (T̂ ·B)

= AiTijBj = (A · T̂) ·B. (a)
As a special case

ei · T̂ · ej = Tij . (b)

(13)

If the nine components {Tij} of a tensor T̂
are given, the tensor can be constructed using
Eq. (8). Conversely, if a tensor T̂ is given in
the form of a mathematical relation, its nine
components Tij can be retrieved by means of
Eq. (13b).
Using the distributive property given in (7)

it is seen that the dyadic product of A and
B has the following dyadic representation:

AB = AxBxexex + AxByexey + · · ·

+ AzByezey + AzBzezez

= AiBjeiej.

(14)

Hence, if we write

T̂ = AB, then, Tij = AiBj. (15)

Using Eq. ((a)4), the operation of the ten-

sor T̂ on the vector C = Ckek placed on the
right works out as follows.

T̂ ·C = (Tijeiej) · (Ckek)

= Tij Ck ei(ej · ek)

= ei (Tij Cj).

(16)

Volume 30, Number 3 Article Number : 1 www.physedu.in
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We have used the orthogonality relation (11)
to get to the last line.

In a similar way, using Eq. ((b)4), the oper-

ation of the tensor T̂ on the vector C = Ckek
placed on the left works out as follows.

C · T̂ = (Ckek) · (Tijeiej)

= Ck Tij (ek · ei)ej

= (Ck Tkj) ej.

(17)

The above two equations suggest that if we
write D = T̂ · C and F = C · T̂, then the
Cartesian components (D1, D2, D3) of D and
(F1, F2, F3) of F can be obtained from matrix
multiplications:




D1

D2

D3


 =




T11 T12 T13

T21 T22 T23

T31 T32 T33







C1

C2

C3


 .

(
F1 F2 F3

)

=
(
C1 C2 C3

)



T11 T12 T13

T21 T22 T23

T31 T32 T33


 .

(18)

In the above equations, starting from
Eq. (4), we have used a dot (·) to separate
the tensor from the vector on which it is op-
erating. We shall frequently refer to a tensor
operation as a dot product between the ten-
sor and the vector. Eqs. (18) show that a dot

product actually involves a matrix multiplica-

tion. A tensor is to be represented as a square
matrix, and a vector either as a column ma-

trix or a row matrix, depending on whether
the tensor operation is on the right or on the

left2.

T̂ =




T11 T12 T13

T21 T22 T23

T31 T32 T33


 = [T ];

C =




C1

C2

C3


 = {C};

F =
(
F1 F2 F3

)
= (F ).

(19)

In the above we have adopted the conven-
tion of indicating a 3×3 square matrix by [ ],
a 3×1 column matrix by { }, and a 1×3 row
matrix by ( ). Hence, Eqs.(18) can be written
as

{D} = [T ]{C}; (F ) = (C)[T ]. (20)

It follows from Eq. (14) that the matrix
representation of the dyadic AB is

AB =




A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3


 . (21)

We shall define the dot product of two ten-
sors Ŝ and T̂ as the tensor R̂ = Ŝ · T̂ by
its operation on an arbitrary vector C on the

right in the following way.

(Ŝ · T̂) ·C
def
= Ŝ · (T̂ ·C). (22)

2 In Quantum Mechanics (QM) a clear distinction
is made between a vector A on left and a vector B

on right, as in the scalar product A · B. The for-
mer is called a bra vector and the latter a ket vector,
and together, in the scalar product, they constitute
a bra-ket : A →< A|; B → | B >; A ·B →< A|B >.
However, these vectors are in genereral infinite di-
mensional, their components are complex numbers,
and the components of the bra vector < A| are com-
plex conjugates of the respective components of the
ket vector |A >.
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From this it follows that the matrix represent-
ing R̂ is given by the product of the matrices
representing Ŝ and T̂. That is,

[R] = [S] [T ], implying: Rij = SikTkj. (23)

It is then obvious that, in general, Ŝ · T̂ 6=
T̂ · Ŝ.
Using the matrix representation as given in

Eq. (23), and the tensor operation on the left
as found out in (17), we can now see how the

product tensor R̂ = Ŝ · T̂ will act on the left.

C · R̂ = (CkRkj)ej = (CkSkmTmj)ej
= (CkSkm)(Tmjej).

Or, C · (Ŝ · T̂) = (C · Ŝ) · T̂.

(24)

We can extend the definition of matrix
product to any number of tensors, by writ-
ing the matrix representation of the product
tensor as the product of the representative
matrices of the component tensors. For ex-
ample

If R̂ = Â · B̂ · Ĉ, then [R] = [A] [B] [C].
(25)

At this point we shall add a word of cau-
tion. A tensor is not the same as a square
matrix, just as a vector is not the same as
a column matrix or a row matrix. The row
matrix shown in Eq. (19 ), for example, gives
the components of the vector F in a given
coordinate system XY Z. As the coordinates
are changed from (x, y, z) to (x′, y′, z′), the
components will transform from (F1, F2, F3)
to (F ′

1, F
′
2, F

′
3). However, the vector F itself

is a “geometrical object” (a straight line of
measured length pointing in an assigned di-
rection) which remains invariant under all co-
ordinate transformations. In the same way

the tensor T̂ is a geometrical object, which
remains invariant under all coordinate trans-
formations, even though its components will
change from the square matrix [Tij ] to an-
other square matrix [T ′

ij ] under the same co-
ordinate transformation.

Yes, the components of all tensors will
transform, except the components of the
identity tensor which we shall introduce in
the next section. They will remain the same,
the same as in (27), following any coordinte
transformations.

2.3 Identity Tensor,

Completeness Relation,
Components of a Tensor in

the Spherical coordinate
system

In matrix multiplication one needs the iden-

tity matrix 1̂ which in the present context,
is the matrix representation of the identity

tensor, also known by the alternative name
idemfactor. It will be recognized by the sym-
bol 1̂. Its sole property is that when it oper-
ates on any vector V, either on the right, or
on the left, it gives back the same vector.

1̂ ·V
def
= V; V · 1̂

def
= V. (26)

Such a tensor must have 1̂ for its matrix
representation. The dyadic representation
(shown below) follows from the above prop-
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erty and the orthogonality relation (11).

1̂ = 1̂ =




1 0 0
0 1 0
0 0 1


 . (a)

1̂ = exex + eyey + ezez = eiei. (b)
(27)

Eq.(a) gives the Matrix representation, and
Eq.(b) the Dyadic representation.
It will be advantageous to write the ten-

sor T̂ in a curvilinear coordinate systen, in
particular, spherical coordinate system. The
reader must be familar with the following
transformation equations for the coordinates
and the base vectors.

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ).
er = sin θ (cosφ ex + sinφ ey) + cos θ ez;
eθ = cos θ (cosφ ex + sinφ ey)− sin θ ez;
eφ = − sinφ ex + cosφ ey.

(28)
Using these equations (and remembering

that ereθ 6= eθer, for example) it should be a
simple exercise to show that

erer + eθeθ + eφeφ = exex + eyey + ezez = 1̂.
(29)

If we have three unit vectors {a, b, c}
which are mutually orthogonal at every point
in space and such that

aa+ bb+ cc = 1̂, (30)

then we say that these three vectors form a
complete orthogonal set, and hence a basis,
so that any arbitrary vector V can be repre-
sented as a linear superposition of these three
vectors 3. This should be clear from the fol-
lowing.

V = V · 1̂ = V · (aa+ bb+ cc)
= Vaa+ Vbb+ Vcc,

where Va = V · a, Vb = V · b, Vc = V · c,
(31)

are the components of V in the directions
of {a, b, c} respectively. Using the complete-
ness property it can be advantageous to write
a tensor in the following style.

T̂ = 1̂ · T̂ · 1̂

= (aa+ bb+ cc) · T̂ · (aa+ bb+ cc)
= Taaaa+ Tabab+ Tacac · · ·
+Tcbcb+ Tcccc, where

Taa = a · T̂ · a, Tab = a · T̂ · b, · · · ,

Tcb = c · T̂ · b, Tcc = c · T̂ · c
(32)

are the components of T̂ with respect to the
basis {a, b, c}.
We shall illustrate the operation shown in

Eq. (32) by writing the tensor T̂ in Cartesian
and spherical coordinate systems.

T̂ = (exex + eyey + ezez) · T̂ · (exex + eyey + ezez) (a)
= Txxexex + Txyexey + Txzexez + · · ·+ Tzxezey + Tzzezez, where (b)

Txx = ex · T̂ · ex, Txy = ex · T̂ · ey, · · · , Tzy = ez · T̂ · ey, Tzz = ez · T̂ · ez. (c)

T̂ = (erer + eθeθ + eφeφ) · T̂ · (erer + eθeθ + eφeφ) (d)
= Trrerer + Trθereθ + Trφereφ + · · ·+ Tφθeφeθ + Tφφeφeφ, where (e)

Trr = er · T̂ · er, Trθ = er · T̂ · eθ, · · · , Tφθ = eφ · T̂ · eθ, Tφφ = eφ · T̂ · eφ. (f)

(33)

3 In QM the completeness of a set of orthonormal
vectors {|ui >; i = 1, 2, . . . ,∞} is expressed through
the statement

∑
i
|ui >< ui| = 1. This relation is

used to change the representation of a Hermitean op-
erator T̂, the equivalent of the tensors we are con-
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Lines (a)-(c) represent the tensor T̂ in a
Cartesian coordinate system, and lines (d)-
(f) in a spherical coordinate system

We can then write the components of T̂ in
the following matrix forms

T̂
( Cart)
−→




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


 .

T̂
(sphr)
−→




Trr Trθ Trφ

Tθr Tθθ Tθφ

Tφr Tφθ Tφφ


 .

(34)

The first matrix gives the Cartesian compo-
nents, and the second one the spherical com-
ponents.
Using the transformation of the base vec-

tors (Eq. 28), and the completeness relations
(29), one can transform the Cartesian com-
ponents to spherical components, for both
vectors and tensors, as we shall show. For
this purpose we shall temporarily denote the
spherical base vectors with a prime, i.e., {e′i :
i = r, θ, φ} and make a table of transforma-

tion coefficients {cij}:

e′i = e′i · ejej = cijej,

where cij ≡ e′i · ej : i = r, θ, φ; j = x, y, z.

=




sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0




(35)

Now, let V be a vector and T̂ a tensor with
Cartesian components [{Vj}, {Tij}, i, j =
x, y, z ] respectively. Then the spherical

components of the same vector and tensor,
namely, [{V ′

j }, {T ′
ij}, i, j = r, θ, φ ] will be

obtained in the following ways4 :

V ′
j = V · e′j = V · ekek · e

′
j = cjkVk.

T ′
ij = e′i · T̂ · e′j = e′i · ekek · T̂ · elel · e

′
j

= cikcjlTkl.
(36)

Note that we have used the summation con-
vention: sum over k in line (a), sum over k, l
in line (b).
We shall illustrate the transformation for-

mulas (36) with two examples, i.e,Vr ≡ V ′
1

and Trθ ≡ T ′
12.

Vr = sin θ cosφVx + sin θ sinφVy + cos θ Vz.
Trθ = sin θ cosφ (cos θ cosφTxx

+cos θ sinφTxy − sin θ Txz)
+ sin θ sinφ (cos θ cosφTyx + cos θ sinφTyy

− sin θ Tyz)
+ cos θ (cos θ cosφTzx + cos θ sinφTzy

− sin θ Tzz).
(37)

2.4 Example: Inertia Tensor

We shall illustrate the tensor concept by
showing two important examples, namely (1)

4 In Tensor analysis, the primary language of the
theory of relativity, the rule of transformation has dif-
ferent forms for contravariant and covariant vectors,
and for contravariant, covariant and mixed tensors.
The rules we are establishing here are different from
them. The components of vectors, tensors we are us-
ing may be called physical components, in contrast
to their contravariant and covariant components for
which a more elegant transformation rule is used.
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the inertia tensor and (2) the stress tensor.
We shall take up a short discussion of the first
example in this section leaving the second ex-
ample, which needs a more detailed coverage,
to the next section.
In Sec. 2.1 we talked about the tensor oper-

ation converting the angular velocity ω into
angular momentum L. The corresponding
operator is the inertia tensor Î of the rigid
body. Its dot product with the angular veloc-
ity ω gives the angular momentum L of the
rigid body. That is,

L = Î · ω. (38)

We shall find an expression for the vector
angular momentum L of a rigid body which
is rotating about a point O (which can be
a moving point, e.g., the CM) with angular
velocity ω = ωn about the axis pointing in
the direction of the unit vector n. Let j be
one of the constituent particles, having mass
mj, and located at the radius vector rj with
respect to O, as shown in Fig. 2(c). The ve-
locity of this point is vj = ω × rj. Therefore
this particle has an angular momentum with
respect to the point O, equal to

ℓj = rj ×pj = rj ×mjvj = mjrj × (ω× rj)

= mj[r
2
jω − (rj · ω)rj]. (39)

Assuming that the rigid body is made of N
particles ( which is a very large number), we
add the angular momentum of each particle
to obtain the angular momentum of the rigid
body about the point O, given as

LO =
N∑

j=0

mj[r
2
jω − (rj · ω)rj]. (40)

We can write the quantity within square
brackets as

[r2jω − (rj · ω)rj] = [r2j 1̂− rjrj] · ω, (41)

and construct the Inertia tensor as the dyadic
(sum of infinitely small dyads)

Î =
N∑

j=0

mj[r
2
j 1̂− rjrj]. (42)

Then we get the angular momentum as the
dot product

LO = Î · ω. (43)

We have thus derived Eq. (38), and along
with it have found an expression for the in-
ertia tensor in Eq. (42). Note that the ex-
pression within the square brackets is the dif-
ference of two dyadics, namely, the identity
dyadic 1̂ multiplied by the scalar r2j , and the
dyadic product of rj with itself.
For further clarification we shall write

down the components of the tensor. Assum-
img that the rigid body has uniform mass
density ρ distributed over its volume V , the
sum in Eq. (42) becomes the integral:

Î = ρ

∫∫∫

V

[r21̂− rr]d3r. (44)

Some of its components are

Ixx = ρ
∫∫∫
V

[r2 − x2]d3r = ρ
∫∫∫
V

(y2 + z2)d3r;

Ixy = −ρ
∫∫∫
V

(xy) d3r; etc.

(45)
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It is now seen that the inertia tensor is a

symmetric tensor, i.e.,

Ixy = Iyx; Iyz = Izy; Izx = Ixz. (46)

This symmetry property is preserved under
all coordinate transformations.

3 Stress in a Medium

Stress and Stress Tensor are discussed in en-
gineering books on Fluid Mechanics[10] and
Strength of Materials[11]. However, physics
students may find useful the introductory
lessons on these concepts by Symon[12] and
Feynman[13].

3.1 Stress Vector

By (mechanical) stress we mean internal

forces (in the form of intermolecular inter-
actions) called into play when bulk matter,
either in the form of solid, liquid or gas, is
subjected to external forces. These inter-
nal forces exist throughout the bulk matter
and its mathematical expression is given by
a stress tensor field T̂ (x, y, z).
For simplicity we shall consider a solid

block in Fig. 3(a). It has been cut into two
parts, the upper block U and the lower block
L, by an imaginary plane Σ, leaving a trace
Γ of its boundary. This plane is identified by
the unit normal vector n pointing from the
lower block to the upper block.
In Fig. 3(b) we have shown the lower block

L with the plane of separation Σ exposed.
Let us consider a small area da at the point
P(x, y, z) inside the solid, but lying on this

plane. Then the stress vector T
(n)(x, y, z)

is defined to be the force per unit area at
P(x, y, z), exerted by the atoms of the upper
block U on the atoms of the lower block L
across the plane n. The infinitesimal force
acting on the area da is then

dF(n) = T
(n)(x, y, z) da. (47)

Note that in general the direction of the
stress vector T

(n)(x, y, z) is different from
the direction of the normal n. If, however,
T

(n)(x, y, z) ‖ n (i.e., perpendicular to the
plane), the stress (vector) is called normal

stress. If T (n)(x, y, z) ⊥ n (i.e., parallel to
the plane), it is called shear stress.

3.2 Stress Tensor

In Fig. 3(c) we have shown the stress vectors
T

(x),T (y),T (z) on three perpendicular faces
of a tiny rectangular block, identified by the
normal vectors ex, ey, ez. Let {nx, ny, nz} be
the direction cosines of n so that

n = nxex + nxex + nxez. (48)

It can be shown, using the equation of motion
of the prism shown in Fig. 3(d) that

T
(n) = T

(x)nx + T
(y)ny + T

(z)nz. (49)

Eq. (49) can be given an elegant form if we
write the stress vectors as column matrices

T
(n) =




T
(n)
x

T
(n)
y

T
(n)
z


 ; T (x) =




Txx

Tyx

Tzx


 ;

T
(y) =




Txy

Tyy

Tzy


 ; T (z) =




Txz

Tyz

Tzz


 ;

(50)
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Figure 3: Explaining the Stress Tensor
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invoke a Stress Tensor T̂ having the matrix

representation

T̂ =




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


 =

(
T

(x)
T

(y)
T

(z)
)

(51)
so that Eq. (49) can be represented by the
following matrix multiplication.



T
(n)
x

T
(n)
y

T
(n)
z


 =




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz







nx

ny

nz


 .

(52)
Alternatively, we can write the stress ten-

sor in the dyadic representation

T̂ = T
(x)ex + T

(y)ey + T
(z)ez, (53)

so that Eq. (49) can be retrieved from the
dot product of the above dyadic with the unit
vector n placed on the right, i.e.,.

T
(n) = T̂ · n. (54)

Note from (51) that in Tij the second index
j is the “surface index” (indicating the direc-
tion of the surface on which stands the stress
vector T

(j)) and the first index i the “com-
ponent index” (indicating x, y, z component
of T (j)).
In Fig. 3(e) we have shown the upper part

of the solid of Fig.(a), and the same area da
as in Fig.(b), but now on the upper block U .
The normal vector now is −n, and the stress
vector is

T
(−n)(x, y, z) = T̂ (x, y, z) · (−n)

= −T
(n)(x, y, z), (55)

so that the force exerted by the atoms of
the lower block L on the atoms of the upper
block U across the same area da is dF′(n) =
−T

(n)da = −dF(n). Which is in conformity
with Newton’s Third Law of Motion.

In obtaining the last equality in Eq. (55) we
have used the linearity property of the tensor
as stipulated in (3). In this case T̂ · (an) =

aT̂ · n where a = −1.

Like the inertia tensor, the stress tensor is
a symmetric tensor, i.e.,

Txy = Tyx; Tyz = Tzy; Tzx = Txz. (56)

which can be proved using the equation of
motion of the angular momentum.

3.3 Gauss’s Divergence
Theorem for a Tensor

Field

When we say tensor field, we mean a
physical quantity represented by a ten-
sor T̂(x, y, z) whose nine components
Txx(x, y, z), Txy(x, y, z), · · ·Tzz(x, y, z) are
defined at every coordinate point (x, y, z).
We assume that these nine components are
all differentiable functions of the coordinates
x, y, z. For such a tensor field we define
its divergence to be the formal dot product
of the grad operator ∇ with the tensor
T̂(x, y, z), it being assumed that ∇ will
appear on the left.

Let us write the tensor T̂ by the dyadic
representation

T̂ = T(x)ex +T(y)ey +T(z)ez, (57)
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as in Eq. (53). Then

div T̂ ≡ ∇ · T̂ = ∇ · (T(x)ex +T(y)ey +T(z)ez)

def
=

(
∇ ·T(x)

)
ex +

(
∇ ·T(y)

)
ey +

(
∇ ·T(z)

)
ez.

(58)

Note that ∇ · T(x),∇ · T(y),∇ · T(z) are the
familiar scalar divergences of the vector fields
T(x),T(y),T(z) respectively,

∇ ·T(x) =
∂Txx

∂x
+

∂Tyx

∂y
+

∂Tzx

∂z
,

∇ ·T(y) =
∂Txy

∂x
+

∂Tyy

∂y
+

∂Tzx

∂z
,

∇ ·T(z) =
∂Txz

∂x
+

∂Tyz

∂y
+

∂Tzz

∂z
.

(59)

and constitute three (scalar) components of

the vector ∇ · T̂ along the X, Y and Z axes
respectively. Combining (58) and (59) we get

∇ · T̂ =
3∑

j=1

3∑

i=1

∂Tij

∂xi

ej ≡
∂Tij

∂xi

ej. (60)

In the second equality we have employed
Einestein’s summation convention (intro-
duced on page 8.)
The divergence of a vector field is some-

times interpreted as “outflux per unit vol-
ume”. This association of divergence with
outflux is due to Gauss’s divergence theorem.
Applying the divergence theorem to the three
vector fields T(x),T(y),T(z) separately, we get
the following three equivalence relations.
∫∫∫
V

∇ ·T(x)(r) d3r =
∫∫
S

n(r) ·T(x)(r) da.
∫∫∫
V

∇ ·T(y)(r) d3r =
∫∫
S

n(r) ·T(y)(r) da.
∫∫∫
V

∇ ·T(z)(r) d3r =
∫∫
S

n(r) ·T(z)(r) da.

(61)

Multiplying either side of the first, second
and third lines with ex, ey, ez respectively,
and adding, we get
∫∫∫

V

∇ ·
(
T(x)ex +T(y)ey +T(z)ez

)
, d3r

=

∫∫

S

n(r)·
(
T(x)ex +T(y)ey +T(z)ez

)
da.

(62)

Identifying the dyadic within the paranthe-
ses as the tensor T̂, we obtain the divergence
theorem for the tensor field.∫∫∫

V

∇ ·T̂(r) d3r =

∫∫

S

n(r) ·T̂(r) da. (63)

Specializing the above theorem to stress
tensor, using its symmetry property, we can
write the integrand on the right side as

n · T̂ = njT jkek = ekT kjnj

= ek(T · n)k = T̂ · n. (64)

We shall write the divergence theorem for
stress tensor in the following form

∫∫∫

V

∇ · T̂ (r) d3r =

∫∫

S

·T̂ (r) · n da.

(65)
We shall find Eq. (65) to be crucial for con-
structing Maxwell’s stress tensor in the fol-
lowing sections.

3.4 Volume force density in a

stress tensor field

Fig. 4 shows an imaginary rectangular
box abcdefgh of infinitesimal dimensions
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Figure 4: Stress Force on a Volume Element

δx, δy, δz inside a medium under stress
(which may be matter, or field). The cen-
tre P of this box is located at the coordi-
nates (x, y, z). Let us assume that the stress
in the medium is given by the tensor field
T̂ (x, y, z), whose components are differen-
tiable functions of the coordinates. We shall
find the total force on this box due to this
stress.

We have shown in Fig.(a) the outward nor-
mal vectors (ex, ey, ez) on the three faces of
the box that are exposed to our view. The
outward normals on the other faces which are
hidden from our view are (−ex,−ey,−ez).
We shall identify each one of the six surfaces
of the box by their outward normal vectors.

Let us consider the opposite faces abcd

and efgh, recognized by the normals (ex) and
(−ex). The locations of their centres are
(x + δx

2
, y, z) and (x − δx

2
, y, z) respectively.

The stress forces on these two faces are

δF+x = T̂ (x+ δx
2
, y, z) · (+ex) δy δz

= T
(x)(x+ δx

2
, y, z) δy δz

= [T (x)(x, y, z) + ∂T (x)

∂x
δx
2
] δy δz

δF−x = T̂ (x− δx
2
, y, z) · (−ex) δy δz

= −T
(x)(x− δx

2
, y, z) δy δz

= −[T (x)(x, y, z)− ∂T (x)

∂x
δx
2
] δy δz

δF+x + δF−x = ∂T (x)

∂x
δx δy δz = ∂T (x)

∂x
δV.
(66)

where δV = δx δy δz is the volume of the in-
finitesimal box. In the same way we find the
forces on the other four faces of the block.
Adding the stress forces on all the six sur-
faces we get

δFs =

[
∂T (x)

∂x
+

∂T (y)

∂y
+

∂T (z)

∂z

]
δV (67)

as the total stress force on the box. The vol-
ume force density fs, which gives the stress
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Figure 5: Stress Forces on a Bulk Volume
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force acting per unit volume of the media un-
der stress, is then given as

fs = ∂T (x)

∂x
+ ∂T (y)

∂y
+ ∂T (z)

∂z

= ∂(ex·T̂ )
∂x

+ ∂(ey ·T̂ )

∂y
+ ∂(ez ·T̂ )

∂z

=
[
ex

∂
∂x

+ ex
∂
∂x

+ ex
∂
∂x

]
· T̂

= ∇ · T̂ .

(68)

One may conclude that total stress force
Fs on a bulk volume V carved out inside a
medium M, as shown in Fig.5(a), is the vol-
ume integral of the force density fs carried out
over the entire volume V . We shall carefully
analyze the forces inside the medium before
jumping into this conclusion.
Let us consider a two-diemnsional view

of nine tiny, imaginary neighbouring blocks
lying inside the medium and forming a
group G. We have marked the blocks as
A,B,C,D,E,F,G,H,K, with A at the centre.
In Fig.(b) we have shown the forces on the
four sides of A as F1,F2,F3,F4. The force
F1 comes from the neighbour B, and by New-
ton’s third law of motion, A applies an equal
and opposite force −F1 on B. Similarly, the
forces F2,F3,F4 come from the neighbours
C, D, E . And A applies equal and opposite
forces −F2,−F3,−F4 on them. It may then
appear that these internal forces, when added
together, get cancelled out and there should
not be any stress force on the group G at all.
A close examination will disprove this

judgement. We have surrounded G by an
imaginary boundary surface Σ. It is now seen
that even though the action-reaction forces
cancel out in the interior of the group G, they
survive on the boundary surface Σ. These
surface forces Fb1,Fb2, · · ·Fb12, when added

together constitute the total force Fs on the
group G.

In Fig.(c) we have divided the volume
V into an infinite number of infinitesimal
blocks. The interior stress forces between ad-
joining blocks will cancel out. However, the
forces on the bounadry surface, some of which
we have shown as Fb1,Fb2,Fb3,Fb4, will sur-
vive and add together to constitute the net
stress force Fs on the volume V .

We now get a clue of how to find the net
stress force Fs on the volume V . In Fig.(d)
we have shown the volume V once again. At
a certain point P on this surface we have pic-
tured a tiny patch of area da, on which we
have drawn a unit outward normal n. The
stress force on this patch is dfs = T

(n) da =
T̂ · n da. Integrate this force over the entire
boundary to get Fs. We shall perform this
integration and convert the surface integral
into volume integral by applying Gauss’s Di-
vergence Theorem as derived in Eq. (63).

Fs =

∫∫

S

T̂ (r) · n da =

∫∫∫

V

∇ · T̂ (r) d3r.

(69)

We have thus confirmed our guess follow-
ing Eq. (68). We shall rewrite the same
equation with emphasis, as this equation will
serve as the cornerstone for the constructon
of Maxwell’s Stress tensor.

fs(r) = ∇ · T̂ (r). (70)
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4 Maxwell’s Stress

Tensor for the

Electrostatic Field

4.1 Volume force density in

terms of the field

We shall now construct the stress tensor for
the electrostatic filed. We shall call this ten-
sor Maxwell’s Stress Tensor and represent it

by the symbol T̂
(E)

, where the superscript (E)

implies Electric field.

Fig. 6 shows a system of electric charges
S placed in an Electric field E(r). In
Fig.(a) the system consists of discrete charges
q1, q2, q3, · · · placed at the radius vectors
r1, r2, r3, · · · . In Fig.(b) the system is a
continuous distribution characterized by a
smooth charge density function ρ(r) confined
within a volume. Our intention is to write
the total electric force F on this system.

The force on the discrete system shown in
Fig.(a) is given as

F =
∑

j

qjE
(ext)(rj). (71)

Here the sum is over all the charges in the
system, and E(ext)(rj) is the external electric

field at the radius vector rj caused by the
presence of all other charges lying outside the
system S.

For the case of continuous distribution,
shown in Fig.(b), the individual charges be-
come infinitesimal elementary charges i.e.,
qj → ρ(r)d3r, and the sum becomes the inte-

gral

F =

∫∫∫

V

ρ(r)E(ext)(r) d3r. (72)

What about the force from the charges in-
side the system S. They are internal forces,
and cancel due to Newton’s third law of mo-
tion.
Let E

(int)
i (rj) be the “internal” field caused

at rj by a member particle i lying within

the sytem S. Then Fij = qjE
(int)
i (rj) is the

force that the member particle i exerts on the
member particle j. By Newton’s third law of
motion, qjE

(int)
i (rj)+qiE

(int)
j (ri) = 0. Adding

together over all pairs for the discrete distri-
bution, and integrating over the entire distri-
bution for the continuous distribution we get

For discrete:
∑N

j=1 qj
∑′ N

i=1 E
(int)
i (rj)

=
∑N

j=1 qjE
(int)(rj) = 0.

For continuous:
∫∫∫
V

ρ(r)E(int)(r) = 0.

(73)
In the first equation the sum symbol

∑′

means that while summing over i, the term
i = j (corresponding to the “self field” of
the member j) is to be avoided. The “inter-
nal field” E(int)(rj) is the field at the location
of the member j caused by “all other mem-
bers” in the system S. In the second equation
E(int)(r) is the “internal field” at the radius
vector r, as sensed by a tiny volume element
d3r at this point.
We shall add the null contribution shown

in the second line of Eq. (73) to the right side
of Eq. (72) and write

F =

∫∫∫

V

ρ(r)E (r) d3r. (74)
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Figure 6: Forces on Charges in an Electric Field

Here E (r) is the actual field at the point
r, being the sum of two contributions, from
the (i) external sources, and (ii) the internal
sources of the system S.

The purpose of adding the null integral of
Eq. (73b) to Eq. (72) is that when we write
the force density f , the internal forces need
to be added. That is,

f(r) = ρ(r)E (r) (75)

is the force on unit volume of the charge dis-
tribution at r, in which E (r) is necessarily
the total field at this location, caused by both

external and internal sources. Now we ma-
nipulate the right hand side of Eq. (75) so

as to convert ρE → ∇ · T̂
(E)

, as suggested in

Eq. (70). This new tensor field T̂
(E)

(r) would
represent “stress” in the electrostatic field.

Construction of the stress tensor for elec-
trostatic field, magnetostatic field and time

varying electromagnetic field will be facili-
tated by the following identity[14]

∇ ·

[
AA−

1

2
A21̂

]

= (∇ ·A)A−A× (∇×A). (76)

Before establishing the above identity we
shall need a standard formula (See for exam-
ple, Vector Formulas compiled in Grifffiths,
3rd Ed)

∇(A ·B) = A× (∇×B) +B× (∇×A)

+ (A ·∇)B+ (B ·∇)A. (77)

By setting B = A in the above formula and
get

∇

(
1

2
A2

)
= A× (∇×A)+(A ·∇)A. (78)

We shall now prove the identity (76).
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Proof:

∇ · (AA) =
(
el

∂
∂xl

)
· (eiejAiAj)

= ∂
∂xi

(AiAj)ej

=
{(

∂Ai

∂xi

)
Aj +

(
Ai

∂
∂xi

)
Aj

}
ej

= (∇ ·A)A+ (A ·∇)A. (a)

∇ ·
(

1
2
A21̂

)
=

(
el

∂
∂xl

)
·
(
1
2
eieiA

2
)

= 1
2
ei

∂A2

∂xi
= ∇

(
1
2
A2

)

= A× (∇×A) + (A ·∇)A, by (78). (b)

The identity (76) follows when we subtract
line (b) from line (a).

Q.E.D.

Note that we have used Einstein’s sum-
mation convention introduced on page 8.
That is, el

∂
∂xl

≡
∑3

l=1 el
∂
∂xl

; eiejAiAj ≡∑3
i=1

∑3
j=1 eiejAiAj, etc.

The stress tensor for the electrostatic field
follows when we set E for A in (76), and use
the field equations: ∇ ·E = ρ/ǫ0; ∇×E = 0:

f (E) = ρE = ∇ · T̂
(E)

, (a)

where T̂
(E)

= ǫ0

[
EE− 1

2
E21̂

]
. (b)

(79)

It will be a simple exercise to write the
Cartesian components of this tensor:

T̂
(E)

=
(
T̂

(E)

· ex T̂
(E)

· ey T̂
(E)

· ez

)

= ǫ0




1
2
(E2

x − E2
y − E2

z ) ExEy ExEz

EyEx
1
2
(E2

y − E2
z − E2

x) EyEz

EzEx EzEy
1
2
(E2

z − E2
y − E2

z )


 .

(80)

4.2 Example: Stress vector on

a plane as a function of the
angle of inclination

The stress tensor (79) will remain abstract
and obscure unless the reader works out a
few examples. Griffiths has shown a beauti-
ful example: the force on the upper half of
a uniformly charged sphere using the stress
tensor as given in formula (79b). However, he
has worked in the Cartesian coordinate sys-
tem. The reader should work out the same

problem using the spherical coordinate sys-
tem, spending much less time in getting the
answer.

We shall provide two examples of which the
first one is depicted in Fig. 7. A uniform elec-
tric field E = Eex exists in a certain region
of space. The stress tensor is then given by
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the following expression.

T̂
(E)

=
ǫ0
2
E2(exex − eyey − ezez)

=
ǫ0
2




E2 0 0
0 −E2 0
0 0 −E2


 . (81)

Imagine a plane running parallel to the Z
axis, but inclined to the X axis by an angle θ
(Fig a). The normal vector is then given as

n = ex sin θ + ey cos θ =




sin θ
cos θ
0


 . (82)

The stress vector T (n) on this plane is then

T
(n) = T̂

(E)

· n =
ǫ0
2
E2(ex sin θ − ey cos θ)

=
ǫ0
2
E2




sin θ
cos θ
0


 . (83)

Let us consider some special cases.

T
(x) = ǫ0

2
E2ex, (by setting θ = π/2) (a)

T
(y) = − ǫ0

2
E2ey, (by setting θ = 0) (b)

T
(z) = − ǫ0

2
E2ez, (same as T̂

(E)

· ez) (c)

T
(45o) = ǫ0

2
E2 1√

2
(ex − ey). (d)

(84)
Lines (a) - (c) give the stress vectors on

the planes identified by the normal vectors
ex, ey, ez, and line (d) gives the stress vec-
tor on a plane making an angle of 45o with
X axis. We have illustrated these points in
Figs. (b) and (c). We have shown the stress
vectors with thick arrows, and labelled them
with the bold Greek letter τ . We draw the

following conclusion.
Conclusion:
(a) If the field is perpendicular to the plane,
the stress vector is normal and outward (ten-
sile stress), and equal to ǫ0

2
E2.

(b) If the field is tangential to the plane, the
stress vector is normal and inward (compres-
sive stress), and equal to ǫ0

2
E2.

(c) If the field makes angle 45o to the plane,
the stress vector is tangential (shear stress),
and equal to ǫ0

2
E2.

Case (a) applies to a conductor in an elec-
tric field E. The field is perpendicular to the
surface. The surface force density is the same
as the stress vector. We get back the same
answer as in Eq. (1) using the stress tensor,
without labouring to find out what is the “ex-
ternal field”.

4.3 Example: Force

transmitted between two
charged particles across a

spherical boundary

We shall first obtain an expression for the E
field at any arbitrary point P (r, θ, φ) located
on the spherical surface Σ. The point P is at
the displacement vector η from A and r from
O. In order to avoid repeated appearance of
the constant 1

4πǫ0
, we shall set E = 1

4πǫ0
E .

Note that

η = r− a = r− aez, (a)
so that η2 = r2 + a2 − 2ra cos θ, (b)

and ez = cos θer − sin θeθ. (c)
(85)
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Figure 7: Stress vector on an inclined plane placed in a uniform electric field.

Then

E = Qr

r3
+ qη

η3
. (a)

= Qer

r2
+ q(r−aez)

(r2+a2−2ra cos θ)3/2
. (b)

(86)
Therefore,

E = Erer + Eθeθ, (a)

where Er = Q
r2

+ q(r−a cos θ)

(r2+a2−2ra cos θ)3/2
. (b)

Eθ = qa sin θ
(r2+a2−2ra cos θ)3/2

. (c)

(87)
From Eq. (79) the stress tensor is

T̂
(E)

= ǫ0

(
EE−

1

2
E21̂

)

=
1

16π2ǫ0

(
EE −

1

2
E21̂

)
=

1

16π2ǫ0
T̃

(E)

where T̃
(E)

= EE −
1

2
E21̂, (88)

which we may refer to as the “reduced stress
tensor”.
Since we have invoked the spherical coordi-

nate system to write the expression for the E

field, the components of the tensor T̂
(E)

will
have to be written in this coordinate system.
Since only r and θ components of E are non-
zero, the non-zero components of this tensor
are Trr, Trθ, Tθr, Tθθ, as seen from (88). There-
fore E2 = E2

r + E2
θ , and we write this tensor

as

T̃
(E)

=




Trr Trθ 0
Tθr Tθθ 0
0 0 0


 , where

Trr = E2
r −

1
2
E2 = 1

2
(E2

r − E2
θ ).

Trθ = Tθr = ErEθ.
Tθθ = E2

θ −
1
2
E2 = 1

2
(E2

θ − E2
r ).

(89)

The first column in the square matrix on
the left represents the stress vector T r on the
spherical surface Σ (corresponding to n = er,
analogous to the first column in Eq. 50). Us-
ing the expressions for Er, Eθ given in (87) we
shall work out the components of T r explic-
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Figure 8: Stress on a spherical surface.
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itly as follows

T r = erTrr + eθTθr

Trr =
1
2
(E2

r − E2
θ ) =

1
2

[
Q2

r4
+

+ q2[(r−a cos θ)2−(a sin θ)2]
(r2+a2−2ra cos θ)3

+ 2Qq(r−cos θ)

r2(r2+a2−2ra cos θ)3/2

]
.

Tθr = ErEθ =
Qqa sin θ

r2(r2+a2−2ra cos θ)3/2

+ q2a sin θ(r−a cos θ)
(r2+a2−2ra cos θ)3

.

(90)
The first component Trr is the normal

stress on the surface Σ and the second one
Tθr the tangential (or, the shear) stress.
In order to illustrate the above equations,

and to see how the electric field vector E and
the Maxwell’s stress vector E vary on the sur-
face of the imaginary sphere Σ, we shall make
a numerical example, setting Q = 2, q =
−1, a = 3, r = 1 in Eqs. (87) and (90). The
expressions we now get are functions of the
polar angle θ only. We have plotted Trr, Tθr

in Fig. 8(b), using Maxima.
In order to show how the field vector E

and the stress vector T r vary on the surface
of the sphere Σ we have prepared the Table
3.1 after evaluating the corresponding quan-
tities in the columns 1-9, using Maxima. The
angles φE, φT appearing in columns 5 and 9
have been explained in Fig. 8(c). The first
one is the angle between the normal er to the
surface Σ and the electric field E at the sur-
face, and the second one is the angle between
er and the stress vector T r on the surface.

E =
√
E2
r + E2

θ ; tanφE =
Eθ
Er

;

Tr =
√
T 2
rr + T 2

θr; tanφT =
Tθr

Trr

. (91)

We have drawn the field vectors E and the
stress vectors T r on the sphere Σ in Fig. 8(d)
and (e) (using two diffferent scales for the two
sets of vectors.)

Table 3.1: E and T r vectors on the surface of the sphere

1 2 3 4 5 6 7 8 9
θ Er Eθ E φE Trr Tθr Tr φT

0o 2.25 0 2.25 0o 2.53 0 2.53 0o

30o 2.15 -0.14 2.16 −3.8o 2.30 -0.31 2.33 −7.6o

60o 2.03 -0.14 2.03 −4o 2.04 -0.28 2.06 −7.9o

90o 1.97 -0.10 1.97 −2.8o 1.93 -0.19 1.94 −5.5o

120o 1.95 -0.05 1.95 −1.6o 1.89 -0.11 1.90 −3.3o

150o 1.94 -0.02 1.94 −0.8o 1.88 -0.05 1.88 −1.5o

180o 1.94 0 1.94 0o 1.88 0 1.88 0o

(92)
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All this tediuos work will have been fruit-
ful if we could show that the surface force
density, when integrated over the entire sur-
face Σ, will give us back the familiar Coulomb
force between the two charges. The surface
force density is the same as the stress vec-
tor on this surface. We shall work with the
“reduced” surface force density, same as T r.
The Coulomb force of attraction (ifQ, q are

of opposite signs) or repulsion (if they are of
the same sign) will be along the line OA join-
ing the two charges. Since this line coincides
with the Z axis, we shall integrate the Z com-
pomnent of T r, which we shall denote as f̃z.
We go back to Eqs. (98) and (90) to compute
this force, and get the following results after
some simplification.

f̃z = ez · T r

= (cos θ er − sin θ eθ) · (erTrr + eθTθr) (a)

= cos θ Trr − sin θ Tθr (b)

= f̃z(Q
2) + f̃z(Qq) + f̃z(q

2), where (c)

f̃z(Q
2) = 1

2
Q2

r4
cos θ. (d)

f̃z(Qq) = Qq[r cos θ−a]

r2(r2+a2−2ra cos θ)3/2
. (e)

f̃z(q
2) = 1

2
q2[(r2+a2) cos θ−2ra]
(r2+a2−2ra cos θ)3

. (f)

(93)
The expressions in lines (d) and (f), in-

volving Q2 and q2, are “self terms”, whereas
the expression in line (e) involving Qq is the
“interaction term” The reader should com-
plete the steps leading from line (b) to these
lines. We shall soon show that the self terms
will vanish upon integration, leaving the inte-
grated stress force entirely a function of Qq.
The “reduced” force transmitted across the

surface Σ, and hence acting on the charge Q,
is the surface integral of f̃z. Let us denote

this integral as F̃ . An area element on Σ is
da = r2 sin θ dθ dφ. Therefore,

F̃ =
∫∫
Σ

f̃z r
2 sin θ dθ dφ

= 2πr2
∫ π

0
f̃z sin θ dθ (a)

= 2πr2[I(Q2) + I(Qq) + I(q2)], (b)

where I(Q2) =
∫ π

0
f̃z(Q

2) sin θ dθ = 0. (c)

I(Qq) =
∫ π

0
f̃z(Qq) sin θ dθ = − 2Qq

a2r2
. (d)

I(q2) =
∫ π

0
f̃z(q

2) sin θ dθ = 0. (e)

Hence, F̃ = −4πQq
a2

. (f)
(94)

The integral given in line (c) is easy to eval-
uate. The other integrals have been worked
out in the Appendix. They can be worked out
more easily using Maxima with a computer.

To get the true force we go back to (88 ),
multiply F̃ with the factor 1

16π2ǫ0
, and get the

force FQ acting on the charge Q.

FQ =
1

16π2ǫ0
F̃ez = −

Qq

4πǫ0a2
ez. (95)

This force is the familiar Coulomb force on
the charge Q located at the origin, exerted on
it by another chareg q located at a distance
a on the positive Z axis. It is repulsive, i.e.,
towards the negative Z axis, if Qq is posi-
tive, and attractive i.e., towards the positive
Z axis, if Qq is negative.
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5 Maxwell’s Stress tensor

for the Magnetostatic

Field

This section is the magnetostatic analogue
of the electrostatic stress tensor presented in
Sec. 4.3. The steps are parallel, so that we
shall avoid detailed explanation.

5.1 Volume force density in
terms of the field

We shall construct Maxwell’s stress tensor for
the magnetostatic field, represent it by the

symbol T̂
(M)

. The volume force density in a
magnetic field is f (M) = J×B. Therefore we

need to construct the tensor T̂
(M)

under the
specification

∇ · T̂
(M)

≡ f (M) = J×B. (96)

This is now an easy task, thanks to the
identity (76) we had established in Sec. 4. We
set B forA in that equation, and use the field
equations: ∇ ·B = 0; ∇×B = µ0J, leading
to:

f (M) = J×B = ∇ · T̂
(M)

, (a)

where T̂
(M)

= 1
µ0

[
BB− 1

2
B21̂

]
. (b)

(97)

Note the similarity between the stress ten-

sor T̂
(M)

written above and the stress tensor

T̂
(E)

written in Eq. (79) on page 24. The
former converts into the latter if we replace

E with B and ǫ0 with 1
µ0
. In the same way

the matrix form given in Eq. (80) converts to

the matrix form of T̂
(M)

. Consequently, the
stress vector changes from normal outward,
to tangential, to normal inward, as the angle
between the plane and the direction of the B
field changes from 90o to 45o to 0o, as shown
in Eqs. (84) and illustrated in Fig 7. and
the “Conclusion” written on page 25 carries
over to the case of a magnetic field without
any change. Each point in the conclusion is
well illustrated in Fig. 9 (see next section) if
the reader compares the direction of the field
vector B in Fig(d) with the direction of stress
vector T r in Fig(e).

5.2 Example: Force

transmitted between two

magnetic diploles across a
spherical boundary

The smallest denomination of the source of a
magnetic field is a magnetic dipole, consist-
ing of a tiny current loop. We shall there-
fore think of the force between two magnetic
dipoles. We have placed these dipoles along
the Z axis, oriented them in the positive di-
rection of this axis. Fig. 9(a) shows the ge-
ometry of this configuration. The dipoles are
shown by tiny spherical blobs with an arrow
pointing in the direction of this vector. As in
the electrostatic example, we shall illustrate

Maxwell’s stress tensor T̂
(M)

by finding the
stress vector on the surface of an imaginary
sphere Σ of radius r surrounding the point
magnetic dipole M which is placed at a dis-

Volume 30, Number 3 Article Number : 1 www.physedu.in



Physics Education 31 Jul-Sep 2014

tance a from the other point magnetic dipole
m such that r < a, and then integrate this
stress vector over the spherical surface to ob-
tain the force FM on M exerted by m.
We shall first obtain theB field at any arbi-

trary point P (r, θ, φ) located on the spherical
surface Σ, at the displacement vector η from
A and r fromO. In order to avoid repeated
appearance of the constant µ0

4π
, we shall set

B = µ0

4π
B. Note that

η = r− a = r− aez, (a)
so that η2 = r2 + a2 − 2ra cos θ, (b)

and ez = cos θer − sin θeθ. (c)
(98)

Let B
(M)(r, θ, φ), B(m)(r, θ, φ) be the

fields[15] produced by the dipoles M and m
respectively, at any coordinate point (r, θ, φ).
Adding them we get the total field B(r, θ, φ).

B(r, θ, φ) = B
(M)(r, θ, φ) +B

(m)(r, θ, φ).

B
(M)(r, θ, φ) = 3 (M·r) r−Mr2

r5

= B
(M)
r er + B

(M)
θ eθ, where,

B
(M)
r = 2M cos θ

r3
; B

(M)
θ = M sin θ

r3
.

B
(m)(r, θ, φ) = 3 (m·η)η−mη2

η5

= B
(m)
r er + B

(m)
θ eθ, where,

B
(m)
r = m[2(r2+a2) cos θ−(3+cos2 θ)ar]

η5
,

B
(m)
θ = m(r2−2a2+ar cos θ) sin θ

η5
.

(99)
For future convenience we write

B = Brer + Bθeθ, where,

Br =
(
M
r3

)
α +

(
m
η5

)
β. α = 2 cos θ.

Bθ =
(
M
r3

)
γ +

(
m
η5

)
δ. γ = sin θ.

β = 2(r2 + a2) cos θ − (3 + cos2 θ)ar.
δ = (r2 − 2a2 + ar cos θ) sin θ.

(100)

From Eq. (97) the stress tensor is

T̂
(M)

=
1

µ0

(
BB−

1

2
E21̂

)

=
µ0

16π2

(
BB −

1

2
B21̂

)
=

µ0

16π2
T̃

(M)

where T̃
(M)

= BB −
1

2
B21̂. (101)

which we may refer to as the “reduced stress
tensor”. The non-zero components of this
tensor needed by us are

Trr = B2
r −

1

2
B2 =

1

2
(B2

r − B2
θ)

Trθ = Tθr = BrBθ. (102)

In order to illustrate the above equations,
and to see how the magnetic field vector B

and the Maxwell’s stress vector T̂
(M)

look like
on the surface of the imaginary sphere sur-
rounding the charge Q, we shall make a nu-
merical example, setting M = 2,m = 1, a =
3, r = 1 in Eqs. (100) and (102). For this
purpose we have prepared the following table,
after evaluating the corresponding quantities
in the columns 1-9 using Maxima. The an-
gles φB, φT appearing in this table have been
explained in Fig. 9(c). See also Eq. (90).
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Figure 9: Stress vector on a spherical surface.
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Table : B and T r vectors on the surface of the sphere

1 2 3 4 5 6 7 8 9
θ Br Bθ B φB Trr Tθr T φT

0o 4.25 0 4.25 0o 9.03 0 9.03 0o

30o 3.58 0.86 3.69 13.5o 6.05 3.09 6.80 26.9o

60o 2.00 1.64 2.59 39.3o 0.66 3.28 3.34 78.5o

90o -0.03 1.96 1.96 −89.4o -1.91 -0.06 1.91 1.7o

120o -2.03 1.71 2.66 −40.1o 0.60 -3.48 3.53 −76.8o

150o -3.5 0.99 3.63 −16.0o 5.62 -3.47 6.60 −31.5o

180o -4.03 0 4.03 0o 8.13 0 8.13 0o

(103)

We have plotted Trr, Tθr as functions of the
polar angle θ in Fig. 9(b), using Maxima,
and have drawn the vectors B and T r on the
sphere Σ in Fig. 9(d) and (e) (using two diff-
ferent scales for the two sets of vectors.)

All this tediuos work will have been fruitful
if we could show that the surface force den-
sity, when integrated over the entire surface
Σ, will yield the same force between the two
dipoles that we can calculate using the stan-
dard formulas of megnetostatics. Let us then
first apply the “standard formula”

The force FM on m is given by the formula
F = (m ·∇)B, in which B is the field created
by M. The m vector is in the Z direction.
Therefore,m·∇∇∇ = m ∂

∂z
, which means that we

can treat the (x, y) coordinates as constant

and equal to zero. Therefore,

Fm = m∂B
∂z
|x=y=0,z=a,

where, B(0, 0, z) = µ0M
4π

[
3z2−z2

z5

]
ez.

∂B
∂z
|x=y=0,z=a = −3µ0M

2π
1
a4
k.

Hence, Fm = −3µ0mM
2πa4

ez.

(104)

By Newton’s third law of motion,

FM = −Fm =
3µ0Mm

2πa4
ez. (105)

Now we shall calculate the same force us-
ing the stress tensor. The surface force den-
sity is the same as the stress vector on this
surface. We shall work with the “reduced”
surface force density, same as T r.
The force of attraction between the dipoles

will be along the line OA joining them, which
lies on the Z axis. Therefore we need the Z
component of the surface force density f̃z:

f̃z = ez · T r

= (cos θ er − sin θ eθ) · (erTrr + eθTθr)

= cos θ Trr − sin θ Tθr. (106)
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We shall break up this force density into
three components: (1) f̃z(M

2) representing
self term for M, (2) f̃z(Mm) representing
interaction term between M and m, (3)
f̃z(m

2) representing self term for m. From
Eqs. (100), (102) and (106):

f̃z(M
2) =

[(
α2 − γ2

)
cos θ − 2αγ sin θ

] M2

2r6
.

f̃z(Mm) = [(αβ − γδ) cos θ
−(αδ + βγ) sin θ]Mm

r3η5
.

f̃z(m
2) =

[(
β2 − δ2

)
cos θ − 2βδ sin θ

] m2

2η10
.

(107)
The “reduced” force F̃ transmitted across

the surface Σ, and hence acting on the dipole
M, is the surface integral of f̃z, which is the
sum of the integrals of f̃z(M

2), f̃z(Mm), and
f̃z(m

2). Each integral is difficult to evaluate,
because α, β, γ, δ are complicated functions
of r, a, θ. We have evaluated these integrals
using Maxima. The result is as follows.

F̃ =
∫∫
Σ

f̃z r
2 sin θ dθ dφ = 2πr2

∫ π

0
f̃z sin θ dθ

= 2πr2[I(M2) + I(Mm) + I(m2)], where

I(M2) =
∫ π

0
f̃z(M

2) sin θ dθ = 0.

I(Mm) =
∫ π

0
f̃z(Mm) sin θ dθ = 12Mm

a4r2
.

I(m2) =
∫ π

0
f̃z(m

2) sin θ dθ = 0.

Hence, F̃ = 24πMm
a4

.
(108)

Because of the relation (101) the true force
FM acting on the dipole M is µ0

16π2 times the

force F̃ . Hence

FM =
3µ0Mm

2πa4
ez. (109)

We have thus verified that the stress tensor
has given us the same force that we obtained

in Eq. (105) using standard formulas of mag-
netostatics.
We have worked out three examples to

bring out the meaning of Maxwell’s stress
tensor for electric and magnetic fields. The
reader may wonder why we should go through
such a tortuous road to get answers that can
be easily obtained using simpler formulas of
electrostatics and magnetostatics? Isn’t it
like demolishing a mud wall with a cannon?
Every cannon needs a mud wall to ensure

its trust-worthiness before deployment in a
true situation. Maxwell’s stress tensor is des-
tined to play a bigger role, in constructing
the conservation equation for field momen-
tum, and later under the watchful eye of Spe-
cial Relativity, in building up the covariant
expression for conservation of energy and mo-
mentum. The three examples we have worked
out were intended to be an intellectual exer-
cise to instil confidence in the mathematical

expressions of T̂
(E)

and T̂
(M)

before crowning
them for their majestic role.

6 Maxwell’s Stress

Tensor and Momentum

Conservation

We had introduced Maxwell’s stress tensor
for static electric and static magnetic fields,
with suitable applications, in Sections 4 and
5. These applications demonstrated that the
force acting on static distributions of electric
charges and currents lying within a bounded
volume V is equal to the stress vector inte-
grated over the surface S bounding this vol-
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ume. The attribute “static” implied that the
objects considered in our discussion. e.g., iso-
lated charges and isolated current carrying
loops, were fixed with a kind of “glue” mak-
ing them immobile inspite of the electric and
magnetic forces acting on them. We shall now
remove that glue and see what role can now
be played by the same stress tensors.

At this point we shall make a subtle dis-
tinction between force and stress. Force acts
on material objects which may be discrete

charged particles or a localized continuous
material media, e.g., a plasma. The stress
considered here acts on the field, which is
a kind of etherial medium, as conceived by
Maxwell and his contemporary physicists. In
the absence of any glue holding them, the
charges (e.g., electrons, nuclei) and currents
(e.g., current loops) will be free to move and
gain momentum. However, the momentum
need not be confined to material objects. It
can be shared by the field as well. Therefore
we shall make the following conjecture.

Conjecture 1 There exists a Maxwell’s Stress Tensor T̂
(EM)

for the Electromagnetic field,

and it is given as

T̂
(EM)

≡ T̂
(E)

+ T̂
(M)

= ǫ0

[
EE−

1

2
E21̂

]
+

1

µ0

[
BB−

1

2
B21̂

]
, (110)

such that

d

dt



∫∫∫

V

Π d3r


+

d

dt



∫∫∫

V

P d3r


 =

∫∫

S

T̂(EM) · n(r) da. (111)

where Π and P are, respectively, the field momentum density and the material momentum

density, the latter being governed by Newton-Minkowski-Lorentz-force equation

∂P

∂t
= ρE+ J×B. (112)

The right side of Eq. (111) gives the stress
transmitted across the boundary S. The
right side of Eq. (112) gives the density of
Lorentz force acting on all charged matter
lying within the volume V . We shall con-
vert the surface integral on the right side of

(111) into a volume intregral, using Gauss’s
theorem (see Sec. 3.3) so that each term in
this equation is a volume integral, and then
remove the integral sign reducing the same
equation to an equality among three density
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functions.

∂Π
∂t

+ ∂P
∂t

= ∇ · T̂(EM). Or,
∂Π
∂t

+ ρE+ J×B = ∇ · T̂
(E)

+∇ · T̂(M).
(113)

We shall now show that the above conjec-
ture is right, that starting from Maxwell’s
equations we are able to find an expression
for the field momentum density such that the
momentum conservation of matter and field
together falls into the scheme suggested in
Eq. (113). Our task is made simple by the
identity the identity (76) we had established
in Sec. 4. We shall do the work in two stages:
(1) set E for A in (76), and use Maxwell’s
equations: ∇ · E = ρ/ǫ0; ∇ × E = −∂B

∂t
,

(2) set B for A and use Maxwell’s equations:
∇ ·B = 0; ∇×B = µ0(J+ ǫ0

∂E
∂t
.

∇ · T̂
(E)

= ∇ · ǫ0

[
EE− 1

2
E21̂

]

= ǫ0 [(∇ · E)E− E× (∇× E)]
= ρE+ ǫ0E× ∂B

∂t
.

∇ · T̂(M) = ∇ · 1
µ0

[
BB− 1

2
B21̂

]

= 1
µ0

[(∇ ·B)B−B× (∇×B)]

= −B× (J+ ǫ0
∂E
∂t
) = J×B+ ǫ0

∂E
∂t

×B.

∇ · T̂
(EM)

= ∂
∂t
(ǫ0E×B) + (ρE+ J×B).

(114)
The last equation is obtained by adding

the first two, and using definition of T̂
(EM)

as given in (110). It confirms validity of our
conjecture and identifies the field momentum
density as

Π = ǫ0(E×B). (115)

We shall like to recast Eq. (113a) into the

general format of conservation equation

∂

∂t
(volume density)+∇ ·(fluxdensity) = 0.

(116)

In this case the momentum flux density Φ̂ is
to be identified as

Φ̂ = −T̂
(EM)

. (117)

Eq. (113a) now reads like a true momentum
conservation equation:

∂

∂t
(Π+P) +∇ · Φ̂ = 0. (118)

It may be easier to comprehend the mean-
ing of the above conservation equation by
writing its three cartesian components. For
example, the x-component of the above equa-
tion will be

∂Px

∂t
+ ∂Πx

∂t
+∇ ·Φx = 0,

where Φx = Φ̂ · ex = −T̂
(EM)

· ex
= −ǫ0[ex

1
2
(E2

x − E2
y − E2

z )
+eyEyEx + ezEzEx]
− 1

µ0
[ex

1
2
(B2

x −B2
y −B2

z )

+eyByBx + ezBzBx].

(119)

The first two terms in the first line give the
rate of increase of the x-component of to-
tal momentum (consisting of field momentum
and material momentum) per unit volume,
the third term gives the rate of outflux of the
x- component of the field momentum per unit
volume. Conservation of momentum implies
that the sum of the two must be zero.
Before leaving this topic let us take a look

at the field energy density U and the field en-
ergy flux density S (i.e. the Poyning’s vector)
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written in Eq. (??). It is immediately noticed
that

S = c2Π. (120)

When the electromagnetic field is a radia-
tion field, E = cB and E× cB = E2n where
n is the direction of the Poynting.s vector,
giving the direction of the flow of radiation
energy. For such radiation fields,

U = ǫ0E
2; S = cU n; Π =

U

c
n; U = cΠ.

(121)
The last equality is a reninder of the relation
E = cp between the energy E and the mo-
mentum p of a photon.

We are still not too clear about the true
meaning of the momentum flux density Φ̂.
To get familiarity with it let us consider a
plane electromagnetic wave propagating in
the x-direction, polarized in the y-direction.
For such a field E = Eey, cB = Eez. It

is a simple exercise to evaluate Φ̂ by set-
ting Ex = 0, Ey = E, Ez = 0; cBx =
0, cBy = 0, cBz = E in the expression for
Φx in Eq. (119c) and similar expressions for
Φy,Φz and obtain

Φ̂ = Φxex +Φyey +Φzez = (ǫ0E
2ex) ex

= cΠ exex = cΠex = Πc. (122)

Here c = cex represents the “velocity” of
light, being the speed c multiplied with a unit
vector in the direction of prpagation. If we
now consider a plane perpendicular to the X-
axis, so that n = ex, then the outflux of field
momentum per unit area across the plane will
be Φ̂ · n = Φ̂ · ex = cΠ.

Generalization of Eq. (122) is obvious. If
there is a source of radiation at the origin
(say, an antenna, or an accelereting charged
particle), then far away from the origin, the

momentum flux density tensor Φ̂ has the
form

Φ̂ = cΠ erer = Π c er = Πc, (123)

where er is the unit vector in the radial di-
rection, also midentified with the direction
of propagation of the electromagnetic wave.
The tensor Φ̂ gives the measure of how much
momentum is crossing a spherical surface per
unit area per unit time. The momentum den-
sity is Π = Π er, and it is propagating in the
radial direction with velocity c = c er.

References

[1] Sir Edmund Whittaker, Aether and

Electricity, The Classical Theories”,
Thomas Nelson and Sons Ltd, London
(1951).

[2] J. Clerk Maxwell,A Dynamical Theory

of the Electromagnetic Field, Philosoph-
ical Transactions of the Royal Society
of London, 155:459-512, (1864). See the
link in Ref 6 of the article ‘James Clerk
Maxwell’ in Wikipedia.

[3] J. Clerk Maxwell, A Treatise on Elec-

tricity and Magnetism, Vol 1, 3rd Ed,
Dover (1954). http://archive.org/details
/ATreatiseonElectricityMagnetism-
Volume1. See pp. 155-167.

Volume 30, Number 3 Article Number : 1 www.physedu.in



Physics Education 38 Jul-Sep 2014

[4] J. Clerk Maxwell, A Treatise on Elec-

tricity and Magnetism, Vol 2, 3rd Ed,
Dover (1954). http://archive.org/details
/ATreatiseonElectricityMagnetism-
Volume2.

[5] Arnold Sommerfeld, Electrodynamics,
Academic Pess, New York (1952), see
pp. 255-262. pp.22-24.

[6] Julian Schwinger (compiled by his stu-
dents), Classical Electrodynamics, West-
view (A member of the Perseus Books
Group), pp 23-24, (1998).

[7] Wolfgang K.H.Panofsky and Melba
Phillips, Classical Electricity and Mag-

netism, 2nd Ed, Addison Wesley, Read-
ing, Massachusetts (1962), pp.104-107.

[8] J.D.Jackson, Classical Electrodynamics,
3rd Ed., John Wiley & Sons, New York
(2004) p.261.

[9] David J. Griffiths, Introduction to

Electrodynamics, 3rd Ed., PEAR-
SON/Prentice Hall, New Delhi (2006),
pp. 369-371.

[10] L.Prandtl and O.G.Tietjens, Funda-

mentals of Hydro- and Aeromechanics,
Dover, New York (1934). See pp.78-94.

[11] Irving H. Shames, Mechanics of De-

formable Bodies, Prentice Hall, New
Delhi (1965), Ch. 2.

[12] K.R.Symon, Mechanics, 2nd Ed, Ad-
dison Wesley, Reading, Massachusetts
(1960), Sec.10-6.

[13] Richard P. Feynman, Lectures on

Physics, Vol 2, Addison Wesley, Read-
ing, Massachusetts (1964), Sec. 31-6.

[14] Julian Schwinger, op. cit., See Eq.(3.10).

[15] David J. Griffiths, op. cit., Eq.(5.87)

Appendix: Useful

Integrals

We shall write derive the values of some in-
tegrals required in this book. The integrands
of all the integrals will have in their denom-
inators integer/half-integer powers of the ex-
pression (r2+ a2− 2ra cos θ), the integration
variable will be θ, and the range of integration
[0, π]. We shall do some preliminary work by
changing the variable of integration from θ to
η, accompanied by the change of the limits of
integration, and conversion of the numerators
for the first two cases.

η2 = r2 + a2 − 2ra cos θ, (a)
η dη = ar sin θ dθ. (b)

a− r cos θ = a2−r2+η2

2a
(c)

(r2 + a2) cos θ − 2ra = (a2−r2)−(a2+r2)η2

2ra
(d)

Lower limit: θ = 0 ⇒ η = {(a− r), if a > r}; {(r − a), if r > a}. (e)
Upper limit: θ = π ⇒ η = a+ r. (f)

(124)
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6.1 Direct Evaluation

Using the above conversions hints it should
not be difficult for the reader to establish the

following integrals.

Integral # 1

Ψ1(a, r) ≡

∫ π

0

[
(a− r cos θ)

(r2 + a2 − 2ra cos θ)
3
2

]
sin θ dθ =





2

a2
if a > r;

0 if a < r.
(125)

Integral # 2

Ψ2(r, a) ≡

∫ π

0

[
(r2 + a2) cos θ − 2ra

(r2 + a2 − 2ra cos θ)3

]
sin θ dθ = 0. (126)

6.2 Evaluation using Maxima

We have evaluated the following three inte-
grals, using Maxima (version 5.13.0). We

shall first write down the values of the in-
tegrals, and then show the commands used
in Maxima to obtain these results.

Let us write

α = 2 cos θ; β = 2(r2 + a2) cos θ − (3 + cos2 θ)ar.
γ = sin θ; δ = (r2 − 2a2 + ar cos θ) sin θ.

(127)

Integral # 3

Ψ3(r, a) =

∫ π

0

[(
α2 − γ2

)
cos θ − 2αγ sin θ

]
sin θ dθ = 0. (128)

Integral # 4

Ψ4(r, a) =

∫ π

0

[
(αβ − γδ) cos θ − (αδ + βγ) sin θ

(r2 + a2 − 2ra cos θ)5/2

]
sin θ dθ =

{ 12r

a4
; (a > r)

0; (a < r).
(129)
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Integral # 5

Ψ5(r, a) =

∫ π

0

[
(β2 − δ2) cos θ − 2βδ sin θ

(r2 + a2 − 2ra cos θ)5

]
sin θ dθ = 0. (130)

6.3 Maxima Commands,
Inputs and Outputs

We shall write the interactive commands and
prompts between the user and the Maxima
so that the reader can verify the values of the
integrals #4 and # 5. Note the following:
1. Some output lines (e.g., %o5, %06 in
Ex.#4) are spread over two lines in which
the first line contains the “indices”, e.g., “to
the power 2”. These indices get displaced
and detached from the base when the out-

put is copied into any text file. To avoid this
anomaly we have brought them to one line
using mathematical mode.
2. If the output is an expression of a def-
inite integral, it is spread over seven lines
(e.g., as in %o9 in Ex.#4), and the integral
sign becomes unintelligible when copied. We
have replaced these outputs and other out-
puts that appear too long and complicated
with “...”. All outputs except the final one
are non-essential.
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Input/Ouptut for Integral #4

(%i1) aa: 2*cos(x);
(%o1) 2 cos(x)
(%i2) bb: 2 *( r̂ 2 + â 2) *cos(x) - ( (cos(x))̂ 2 +3)* a* r ;
(%o2) 2(r2 + a2) cos(x)− ar(cos2(x) + 3)
(%i3) cc: sin(x);
(%o3) sin(x)
(%i4) dd: (r̂ 2 -2* â 2 + a* r *cos(x) )*sin(x) ;
(%o4) (ar cos(x) + r2 − 2a2) sin(x)
(%i5) f: (aa*bb-cc*dd)* cos(x)-( aa*dd+bb*cc)* sin(x) ;
(%o5) cos(x) (2 cos(x) (2(r2 + a2) cos(x)− ar(cos2(x) + 3))

- (a r cos(x) + r2 − 2a2) sin2(x)) - sin(x)
((2(r2 + a2) cos(x)− ar(cos2(x) + 3)) sin(x)
+ 2 cos(x) (a r cos(x) + r2 − 2a2 ) sin(x))

(%i6) et: abs(sqrt(r̂ 2+â 2 - 2*r*a*cos(x)));
(%o6) sqrt(- 2 a r cos(x) + r2 + a2 )
(%i7) h: (f/(et̂ 5))*sin(x) ;
(%o7) ....
(%i8) assume (a-r > 0) ;
(%o8) [a > r]
(%i9) ’integrate (h, x) ;
(%o9) ...
(%i10) changevar (%, et - y, y, x) ;

Is y positive, negative, or zero?
pos;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%o10) ...
(%i11) %,nouns;

Is sqrt(r + 2 a r + a ) - sqrt(r - 2 a r + a ) positive, negative, or zero?
pos;
Is r + a zero or nonzero?
nonzero;

(%o11) - (
sqrt(r2 − 2ar + a2)(48a2r7 + 36a3r6 + 8a4r5 + 4a5r4)

r− a

−
sqrt(r2 + 2ar + a2)(48a2r7 − 36a3r6 + 8a4r5 − 4a5r4)

r + a

+sqrt(r2 + 2ar + a2)(−48a2r6 + 12a3r5 − 4a4r4)

- sqrt(r2 − 2ar + a2)(−48a2r6 − 12a3r5 − 4a4r4))/(16a6r6)
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To simplify the last output (%o11), set

sqrt(r2 − 2ar + a2) =

{
(a− r) if, (a > r)
(r− a) if, (a < r)

(131)

and get
4× 48a2r7

16a6r6
=

12r

a4
for the first case and 0 for the second.

Input/Ouptut for Integral #5

(%i1) bb: 2*(r̂ 2 + â 2)*cos(x) - ( (cos(x))̂ 2 +3)*a*r;
(%o1) 2 (r2+ a2) cos(x) - a r (cos2(x) + 3)
(%i2) dd: (r̂ 2 -2*â 2 + a*r*cos(x) )*sin(x) ;
(%o2) (a r cos(x) + r2- 2 a2) sin(x)
(%i3) f: (bb̂ 2-dd̂ 2)*cos(x) - 2*bb*dd*sin(x);
(%o3) cos(x) ((2 (r2+ a2) cos(x) - a r (cos2(x) + 3))2

- (a r cos(x) + r2- 2 a2)2sin2(x)) - 2 (a r cos(x) + r2- 2 a2)
(2 (r2+ a2) cos(x) - a r (cos2(x) + 3)) sin2(x)

(%i4) ets: r̂ 2+â 2 - 2*r*a*cos(x) ;
(%o4) - 2 a r cos(x) + r2+ a2

(%i5) h: (f/(etŝ 5))*sin(x) ;
(%o5) (sin(x) (cos(x) ((2 (r2+ a2) cos(x) - a r (cos2(x) + 3))2

- (a r cos(x) + r2- 2 a2)2sin2(x)) - 2 (a r cos(x) + r2- 2 a2)
(2 (r2+ a2) cos(x) - a r (cos2(x) + 3)) sin2(x)))/(- 2 a r cos(x) + r2+ a2)5

(%i6) assume (a-r > 0) ;
(%o6) [a > r]
(%i7) ’integrate (h, x, 0, %pi ) ;
(%o7) ...
(%i8) changevar (%, abs(sqrt(ets)) - y, y, x) ;

Is y positive, negative, or zero?
pos;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%o8) ...
(%i9) %,nouns;

Is sqrt(r2+ 2 a r + a2) - sqrt(r2- 2 a r + a2) positive, negative, or zero?
pos;
Is r + a zero or nonzero?
nonzero;

(%o9) 0
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Abstract

Physics teachers always face great difficulties in introducing the many component nature of
tensors to students. This article is intended to help the instructors with some convincing
examples of more than 3 component physical quantities. We will also show that tensor
nature of many physical quantities are both medium and interacting physical quantity
dependent.

1 Introduction

For many physics students physical quantities
having 30 components are scalars, 31 compo-
nents are vectors and physical quantities hav-
ing 32 or more than 9 components are tensors
each obeying different mathematics. In class
rooms we could suggest good and convincing
examples for scalars and vectors but exam-
ples for 9 or more component physical quanti-
ties are rarely discussed except moment of in-

ertia or conductivity[1][2]. Many books give
only explicit derivation for nine component
moment of inertia[1] and some other exam-
ples like Maxwell stress tensor[2](where ma-
trix form is not given) among non relativistic
systems. In relativistic cases electromagnetic
field tensor which is a second rank in 4 dimen-
sional world, is a comfortable physical quan-
tity to be introduced but we deal with it only
in postgraduate classes. Tensor form of stress
and strain[3] is always beyond the scope of
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undergraduate classes. Thus the teachers are
always forced to say that all anisotropic me-
dia are sources of tensorial nature of many
physical properties without good and con-
vincing examples. Here in this article we
show how anisotropy lead to the tensor na-
ture of many physical quantities by taking
the example of the passage of an electromag-
netic wave through an anisotropic medium.
We also show that the conductivity tensor
for an electron passing through a conductor
under electric and magnetic field will be dif-
ferent from the conductivity tensor when a
plane electromagnetic field is passing through
a conducting medium.The present approach
is novel by giving a direct technique in deriv-
ing the tensor nature of some physical quan-
tities.

A simple physical tensor

Consider a plane wave and let us find how
electric field of the plane electromagnetic
wave is related to magnetic field. We usually
say they are mutually perpendicular or they
propagate with velocity 3×108m/s etc. Now
let us check how they are related mathemat-
ically from Maxwell’s equations. Faraday’s
law gives the relation between changing elec-
tric and magnetic field as

∇× ~E = −∂ ~B

∂t

For a plane electromagnetic wave

~E = ~E0e
j(~k.~r−ωt)

and
~B = ~B0e

j(~k.~r−ωt)

where ~E is the electric field, ~B is the mag-
netic field, j represents complex number, ω
is the angular frequency, ~k is the wave vec-
tor, t is the time, ~E0 and ~B0 are the complex
magnitudes of electric and magnetic fields.
Then∇ operation will give j ~k and ∂

∂t
will give

−j ω. Substituting these operators Faraday’s
law becomes

~k × ~E = ω ~B

Expanding component wise we get

ωBx = 0 +−kz Ey + ky Ez

ωBy = kz Ex + 0− kx Ez

ωBz = −ky Ex + kx Ey + 0

This can be represented in matrix form as

ω





Bx

By

Bz



 =





0 −kz ky
kz 0 −kx
−ky kx 0









Ex

Ey

Ez





This shows that actually ~B is coupled to ~E in
a plane electromagnetic wave through a sym-
metric tensor. If the propagation direction is
one dimension say z-direction then we get

ω





Bx

By

Bz



 =





0 −kz 0
kz 0 0
0 0 0









Ex

Ey

Ez





and if we have a plane polarized wave with
electric field in x-direction we get

By =
Ex

c

the well known relation between the magni-
tude of electric and magnetic fields.

Volume 30, Number 3 Article Number : 2 www.physedu.in



Physics Education 3 Jul-Sep 2014

Tensors

Let us now find the tensor form of various
electromagnetic physical quantities. The ba-
sic equations where tensors come in electro-
dynamics are ~J = σ ~E, ~B = µ ~H, ~P = α~E,
~M = χ ~H and ~D = ǫ ~H, where ~J is the cur-
rent density, σ is the conductivity ~E is the
electric field, ~B is the magnetic field, µ is the
permeability, ~H is the magnetizing field, ~P
is the polarization, α is the polarisability, ~M
is the magnetization, χ is the susceptibility
, ~D is the displacement vector and ǫ is the
permittivity.

Maxwell’s equations for plane

waves

The Maxwell’s equations[ME] for a material
medium which is magnetic, dielectric and
conducting with sources are

∇. ~D = ρ

∇. ~H = 0

∇× ~E = −∂ ~B

∂t

∇× ~B = µ0

(

~J +∇× ~M +
∂ ~P

∂t
+ ǫ0

∂ ~E

∂t

)

where ~H =
~B
µ0

− ~M and ~D = ǫ0 ~E + ~P and ρ
is the charge density. We will require for our
purpose only last two equations which can be
modified as

∇× ~E = −∂ ~B

∂t

∇× ~H =

(

~J +
∂ ~D

∂t

)

For plane waves the ME’s will become

~k × ~E = ω ~B

j~k × ~H = ~J − jω ~D

From these two ME’s we can obtain the ten-
sor form of µ, σ, ǫ, χ and α. The technique
is that if we want µ which is linked with
the magnetic property, we will take dielectric
and electrical quantities ~P and ~J as zero and
rewrite the ME’s equations component wise
which will naturally yield the tensor form of
µ. Similarly we can find the components of
all the linking or bridging tensors by suitable
elimination of some unrelated quantities. We
will do them one by one. Let us first find
permeability tensor.

Permeability tensor

While finding permeability tensor we are only
interested in a magnetic medium. So ~P = 0
and ~J = 0. Then the Maxwell’s equations
become

~k × ~E = ω ~B

~k × ~H = −ω ~D

Here ~D = ǫ0 ~E. Then ME’s modify as

~k × ~H = −ωǫ0 ~E

which gives

~E = −
~k × ~H

ωǫ0
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Substituting we get

~B = −
~k × ~k × ~H

ω2ǫ0

Expanding component wise and taking µ =
µ0 µr we get the permeability tensor

µr =
1

ω2ǫ0 µ0





k2 − k2
x −kx ky −kx kz

−ky kx k2 − k2
y −ky kz

−kz kx −kz ky k2 − k2
z





Then each element of the permeability tensor
can be written as

µrij =
1

ω2 µ0 ǫ0
[k2δij − ki kj]

But for a magnetic medium the magnitude of
wave vector

k =
ω

c

√
µr

Then we get

µr =





µrr − µrx −µrx µry −µrx µrzy

−µry µrx µrr − µry −µry µrz

−µrz µrx −µrz µry µrr − µrz





Thus the nature of permeability tensor as a
nine component physical quantity is exhib-
ited naturally. Similarly we can very easily
get all other tensors related to electromag-
netism.

Permittivity Tensor

For a pure dielectric medium ~M = 0 and ~J =
0. Then we get

~D = −
~k × ~k × ~E

ω2µ0

which on expansion will give





Dx

Dy

Dz



 =

1

ω2µ0





k2 − k2
x −kx ky −kx kz

−ky kx k2 − k2
y −ky kz

−kz kx −kz ky k2 − k2
z









Ex

Ey

Ez





Then permittivity tensor will be

ǫr =
1

ω2ǫ0 µ0





k2 − k2
x −kx ky −kx kz

−ky kx k2 − k2
y −ky kz

−kz kx −kz ky k2 − k2
z





In general

ǫrij =
1

ω2 µ0 ǫ0
[k2δij − ki kj]

But for a pure dielectric medium k = ω
c

√
ǫr

and we will get

ǫr =





ǫrr − ǫrx −ǫrx ǫry −ǫrx ǫrz
−ǫry ǫrx ǫrr − ǫry −ǫry ǫrz
−ǫrz ǫrx −ǫrz ǫry ǫrr − ǫrz





Polarisability Tensor

Here ~M = 0 and ~J = 0. Taking ~D = ǫ0 ~E+ ~P

~k × ~H + ω(ǫ0 ~E + ~P ) = 0

and substituting for ~H

~P = −
~k × ~k × ~E

ω2µ0

− ǫ0 ~E

This gives the polarisability components as

αij =
1

ω2 µ0

[(k2 − ǫ0ω
2µ0)δij − ki kj ]
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Conductivity Tensor

Taking ~M = 0 and ~P = 0 we get

~J = j
~k × ~k × ~E

ω2µ0

+ ωǫ0 ~E

which on expansion will give

σij =
j

ω2 µ0

[(ω2ǫ0µ0 − k2)δij − ki kj]

Here conductivity tensor components will be
complex which accounts for the damping of
the plane wave inside the conductor[4]

Magnetic susceptibility Tensor

As done earlier taking ~P = 0 and ~J = 0 we
can find susceptibility tensor which will be
given by

χij =
1

ω2 µ0ǫ0
[(k2 − ω2ǫ0µ0)δij − ki kj]

Discussion

Thus we could obtain the tensor form of some
electrodynamic quantities. But these tensor
forms are not only medium dependent but
also depend on the interacting quantities and
external fields acting on the medium. For
tensors like moment of inertia, stress or strain
they are medium dependent. We will prove
this with an example given below. Consider
an electron traveling in a conductor under
the action of an electric and magnetic field.
When there is equilibrium electron will be

having a drift velocity v and the force act-
ing on the electron given by Lorentz force is

qE+ qv ×B =
mv

τ
where q is the charge of the electron and τ is
the time between two consecutive collisions.
Let ne2τ

m
= C where C is a constant. Replac-

ing v by J

−ne
and substituting for µ = eτ

m
we

get
E = C (J− µB× J)

Let us assume that magnetic field is applied
in the z direction and putting Bz = B we get




Ex

Ey

Ez



 = C





1 µB 0
−µB 1 0
0 0 1









Jx
Jy
Jz





This is
E = ρJ

where ρ is the resistivity tensor with nine
components. In the absence of magnetic field

ρ = C

the scalar conductivity. The conductivity
tensor is given by the inverse of this and is

σ =
1

C





1
1+µ2B2

−µB

1+µ2B2 0
µB

1+µ2B2

1
1+µ2B2 0

0 0 1





Comparing the two expressions for conduc-
tivity we find that the tensor components
are different and they dependent on both
material and the interacting quantity. To
conclude we wish to point out that there
are books[5],[6], [7], [8],[9] to understand and
study tensors but books which give good ex-
amples of tensors from physics point of few
are very rare. This article in an attempt
bridge the gap in that direction.
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Abstract 

Graphene is a single two-dimensional (2D) atomic layer of hexagonally packed carbon atoms. In field of 

material science all have vast interest on graphene for its numerous unique mechanical, chemical, electronic, 

optical and thermal properties. It has been observed that with increasing number of layers graphene show 

many interesting properties. In this article, we briefly discuss the structures, some properties and applications 

of monolayer, bilayer and trilayer graphene.  
 

1. Introduction 

Antoine Lavoisier coined the term “Carbone” first 
in his book “Traite Elementire de Chimie” as one of 
the newly identified chemical elements around 225 
years back [1]. Graphene is recently discovered 
two-dimensional allotropic from of carbon. Before 
graphene three-dimensional (diamond, graphite), 
one-dimensional (nanotubes) and zero-dimensional 
(fullerenes) allotropes of carbon were known. Two 
carbon allotropes – diamond and graphite – have 
been known to humans since many centuries ago. 
Fullerenes were discovered in1985, carbon 
nanotubes in 1991 and graphene in 2004. Carbon is 
the only compound which has four dimension 
structures. i.e., 0D, 1D, 2D and 3D. The theory of 
graphene was first explored by P. R. Wallace [2] in 
1947 as a starting point for understanding the 
electronic properties of more complex, 3D graphite. 
According to Landau and Peierls atoms in 2D 
crystals are displaced from its equilibrium position 
due to the thermal fluctuations [3,4] and this 
displacement is comparable with the interatomic 
distance at finite temperature.  Moreover 
experimentally it is prove that the melting 
temperature of thin films rapidly decreases with the 
decreasing thickness. So in a film when there exist 
near about 12 layers [5] it becomes unstable, so they 
should not exit. Hence, the existence of graphene is 
a miracle! [6,7]. 

In 2004 [8], Andre Geim and Kostya 
Novoselov managed to extract single atom thick 
crystallite called graphene. Prof. Andre K. Geim, 
University of Manchester, UK and Prof. Konstantin 
S. Novoselov, University of Manchester, UK 
received the 2010 Nobel Prize in physics “for 
groundbreaking experiments regarding the two-
dimensional material graphene”. Graphene is the 
building block for carbon materials of all other 
dimensions. Graphite is obtained by the stacking of 
graphene layers. Diamond can be obtained from 
graphene under extreme pressure and temperatures 
by transforming the 2-dimensional sp2 hybridization 
into 3-dimensional sp3 hybridization and pi ( ) 

bond into sigma ( ) bond. Carbon nanotubes are 
synthesized from rolled up graphene. Fullerenes can 
also be obtained from graphene by modifying the 
hexagons into pentagons and heptagons in a 
systematic way. Since its discovery graphene opens 
a new phase in the history of research and 
application in the field of material science. When 
graphene was discovered, it was monolayer. When 
several graphene layers are stacked on top of each 
other, the character of the charge carriers changes 
with the number of layers and type of stacking. 
Now-a-days research is going on multilayer 
graphene along with monolayer graphene (MLG).  
It has been observed that with increasing number of 
layers graphene show many interesting properties. 
For instance, monolayer graphene has zero band 
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gap whereas bilayer and certain types of trilayer 
graphene have an electrically tunable band gap [9-
11]. In this article, we briefly discuss the structures, 
some properties and applications of monolayer, 
bilayer and trilayer graphene.   

2. Monolayer graphene 

Graphene, the hexagonally structured two-
dimensional crystal, consisting of bipartite lattice of 
two triangular sublattices. One carbon atom of the 
hexagon is bonded by sigma () bonds with three 
nearest carbon atoms and having a bond angle 
between them of 120◦. The electronic configuration 
of carbon is 1s22s22p2. The three valance electrons 
of 2s, 2px and 2py orbital are bounded by sp2 
hybridization which results these sigma () bonds. 
The slippery, soft nature of graphene is due to the pi 
( ) bond created due to overlapping of the half 
filled 2pz orbital of one carbon atom with other 2pz 
orbitals of other carbon atoms. This pi () bond 
also imparts electrical and thermal conductivity and 
luster in graphene [12-16]. In a unit cell of 
monolayer graphene (MLG) there are two carbon 
atoms which form a honeycomb structure. It has 
three sites and can be denoted as A, B and C (Fig. 
1). 

 

Fig. 1: Structure of monolayer graphene with A, B 
and C sites [25]. 

 

Electrons in monolayer graphene are 
obeying a linear dispersion relation (i.e. the electron 
energy is linearly proportional to the wave vector, 

FvkE h= ) and behave as massless relativistic 
particles, called Dirac fermions. π2/h=h , h  is the 

Planck’s constant, k is the wave vector and Fv  is 
the Fermi velocity of electron in the graphene. This 
property implies that the speed of electrons in 
graphene is a constant, independent of momentum, 
like the speed of photons is a constant c. It is found 
that the velocity of electrons in graphene is 
about 1610 −sm . In monolayer graphene the 
interactions among electrons are extremely strong 
and graphene’s dimensionless coupling constant 

1/2 ≈= FRG ve hα  is larger than the dimensionless 

coupling constant of quantum electrodynamics 
(QED), 137/1/2 ≈= ce hα . Again the interaction 
of electrons in graphene is also different from an 
ordinary nonrelativistic 2D electron gas. The 
electrons in most of the conductors can be described 
by non-relativistic quantum mechanics but the 
electrons in graphene are treated as relativistic 
particles and are described by the Dirac equation 
rather than Schroedinger equation. This shows a 
possibility of studying phenomena of quantum field 
theory in condensed matter physics. All this makes 
graphene a new type of electronic system whose 
independent particles move relativistically, but 
interact nonrelativistically. 

At room temperature monolayer graphene 
has electron mobility is 2.5 × 105 cm2 V-1 s-1, 
Young Modulus of 1 TPa; Intrinsic strength 130 
GPa; High thermal conductivity of 3,000 W mK-1 or 
more [17]. It is stronger than diamond, more 
conductive than copper and more flexible than 
rubber.  Monolayer graphene is used in electronics, 
as high frequency transistor, logic and RF transistor. 
Graphene can be used as non-conventional 
graphene switches due to its high electron mobility 
and high thermal conductivity. 

3. Bilayer graphene 
 
Bilayer graphene (BLG) is Bernal AB-stacked. In 
bilayer graphene, the Bernal stacking two layers 
consists of two coupled honeycomb lattices with 
basis atoms. The atoms are named as (A1, B1) and 
(A2, B2) as shown in Fig. 2. (A1, B1) is placed in the 
bottom and (A2, B2) in the top layers respectively. 
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The arranged atoms are in (A2, B1) fashion. That is, 
the A-carbon of the upper sheet lies on top of the B-
carbon of the lower one [18]. The C-C bond 
distance is 1.42 Å and the distance between two 
adjacent layers is 3.35 Å. 
  
 

 
 

Fig. 2: Structure of bilayer graphene with Bernal 
AB stacking. 

Electrons in MLG behave as massless two-
dimensional fermions whereas electrons in BLG 
behave as massive two-dimensional fermions 
[19,20]. The density of states D as a function of 
particle number (or particle density) n is found to be 

2/1~)( nnD  for massless 2d fermions (electrons in 
MLG) and ~)(nD constant for massive 2d 
fermions (electrons in BLG). Formulae for density 

of states are 
π

ng

v
D

Fh

1=  (massless) and 

2

*

2 hπ
mg

D = (massive), where g = degeneracy, and 

*m  is the effective mass of electrons. Thus, density 
of states depends upon particle density in MLG but 
it is independent of particle density in BLG. 
Massless particles (e.g. photons) have energies 
which depend linearly on quantum number, while 
the energies of massive particles (e.g. free 
electrons) depend quadratically on quantum 
number. The massless and massive dispersion 
relations in MLG and BLG respectively are: 

kvE F

r
h=  (massless) and 

*

22

2m

k
E

h=  (massive), 

where π2/h=h , h  is the Planck’s constant, k
r

 is 
the wave vector and Fv  is the Fermi velocity of 
massless electrons in the MLG. Monolayer 
graphene is more transparent than two or more layer 
graphene. MLG is twice transparent than BLG. 
Graphene shows very interesting behavior in the 
presence of a magnetic field at very low 
temperature. Graphene shows an anomalous 
quantum Hall effect (QHE) with the sequence 
shifted by 1/2 with respect to the standard sequence. 
It is found [6,14,16] that the Hall conductivity 








 +±=
2

1
/4 2 Nhexyσ , where N is the Landau 

level index and the factor 4 accounts for graphene’s 
double spin and double band (valley) degeneracy. 
That is why; it is also characterized as half-integer 
quantum Hall effect. The QHE in bilayer graphene 
is more interesting. The quantized plateaus appear 
at the standard sequence heNxy /4 2±=σ  (same 

as the nonrelativistic electrons). The mobility of 
bilayer graphene (BLG) (~2.0 × 105 cm2 V-1 s-12.5 × 
105 cm2 V-1 s-1 ) is normally lower than the mobility 
of MLG [21–23]. Young’s modulus of bilayer 
graphene is estimated to be 0.8 TPa which is close 
to the value for graphite [24]. Room-temperature 
thermal conductivity would be as high as about 
5000 W m/K. Bilayer graphene can be used as a 
substitute of biological tissues, energy generation 
and storage, sensors and metrology. 
 
4. Trilayer graphene 
 

Trilayer graphene (TLG) has more complex (in 
comparison to monolayer and bilayer graphene) 
interlayer interactions that supply richer electronic 
structure. In trilayer graphene generally three types 
of stacking are possible. These are AAA, ABA and 
ABC stacking types corresponds to hexagonal, 
Bernal and rhombohedral graphene respectively 
(Fig. 3) [25]. Minor reflection symmetry about the 
centre layer among z-direction is observed in 
hexagonal and Bernal trilayer graphene. But 
rhombohedral trilayer graphene has inversion 
symmetry. It is observed that especially in low 
energy region, electronic structure of graphene is 
very sensitive to thickness and stacking sequence. 
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In case of AAA stacking all the atoms of the three 
layers lays one over another. For ABA stacking 
same atoms of the first and the third layer are 
exactly one over another but for the second layer 
that particular atom is not align. No particular type 
of atom in ABC stacking is in aligning with one 
another. The low energy band structure of ABA-
stacked trilayer graphene consists of one massless 
and two massive subbands, similar to the spectrum 
of one monolayer and one bilayer graphene, 
whereas ABC-stacked trilayer graphene band 
structure is approximately cubic [26]. The AAA-
stacked trilayer graphene band structure is a 
superposition of the band structure of its component 
monolayer graphenes. 

 

 

Fig. 3: Structure of trilayer graphene hexagonal 
(AAA), Bernal (ABA) and rhombohedral (ABC) 

stacking [25]. 

The thermodynamic properties of the 
electron gas in multilayer graphene depend strongly 
on the number of layers and the type of stacking 
[27,28]. At room temperature, it is observed that 
thermal conductivity of graphene decreases with 
increase in number of layers. When a strong 
magnetic field is applied perpendicular to the 
trilayer graphene planes, quantum Hall effect is 
observed in the material. It is found that [26] the 

Hall conductivity 






 +±=
2

/4 2 n
Nhexyσ , 

where n = 3 is the number of layers, N is the Landau 
level index, the factor 4 accounts for graphene’s 

double spin and double valley degeneracy, – e is the 
electron charge and h is the Planck’s constant. 
Further, the plateau structure in xyσ of trilayer 

graphene depends on the type of stacking. Trilayer 
graphene exhibits lower mobility (typically 800 cm2 
V/s at 4.2 K) compared to monolayer and bilayer 
graphene. Trilayer graphene can be used as LEDs, 
reinforcing materials, wirings, solar power aircrafts, 
aerospace etc. 

5. Conclusions 

Graphene – a two-dimensional nanomaterial, 
composed by covalently bonded carbon atoms in a 
honeycomb lattice, has been attracting the attention 
of the scientific community since its discovery in 
2004. Due to its outstanding electronic, thermal, 
optical and mechanical properties it has applications 
in wide variety of fields, for example, spintronics, 
electron optics, photonics and many others. We 
hope, in near future it will be used in construction 
and telecommunication field. 

 Bilayer and trilayer graphene are interesting 
because they possess different and unique properties 
with respect to monolayer graphene. For example, 
monolayer graphene has zero band gap whereas 
bilayer and certain types of trilayer graphene have 
an electrically tunable band gap. This would make 
them good candidates for application in electronic 
industry where the control of the band gap is 
desirable. 
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Abstract 

In this article, we discuss the time evolution of a square wave packet and a triangular wave packet. The 
approach followed in this study is to express a square wave packet and a triangular wave packet as a sum of 
several Gaussian wave packets. Specifically, the time evolution of a square wave packet has been derived here 
with three and five Gaussian wave packets; then the time evolution of a triangular wave packet has been 
derived with three Gaussian wave packets. Their evolution with time has been plotted using MatLabTM over 
appropriately chosen time intervals. The results are compared with those of a Gaussian wave packet. 

Keywords:- Wave packet, Schrödinger equation, Gaussian wave packet, Triangular Wave Packet, Time 
Evolution, MatLab

TM
.  

 

1. Introduction 

Wave packets are superposition of plane waves 

used in representing a particle. According to de 

Broglie’s matter-waves hypothesis, material 

particles such as photons and electrons exhibit wave 

nature and show wave phenomena such as 

interference and diffraction. For a localized particle, 

the superposition of many plane waves results in a 

function called the wave function ψ. The wave 

packets are decomposed by Fourier Transformation 

and their time evolution is found which is of 

physical interest. In this article, the time evolutions 

of non-Gaussian wave packets such as the ones 

mentioned in the abstract are found. The time 

evolutions of square wave packet and the triangular 

wave packet are of interest as they are often 

encountered in wave analyses. Using Green’s 

function approach, Mita (2007) shows that the 

probability amplitude of any non-Gaussian wave 

packet approximately becomes a Gaussian as it 

disperses [1]. Here we obtain the same result using 

a simpler approach of approximating a square wave 

packet and a triangular wave packet as a sum of 

several Gaussian wave packets. Mita (2007) points 

out the following advantages of using a Gaussian 

wave packet: 

a) A Gaussian function is easy to analyze in closed 

form 
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b) The Fourier Transform of a Gaussian is also a 

Gaussian and 

c) The Gaussian wave packet gives rise to a 

minimum uncertainty product at time t=0. [1] 

In order to study the time evolution, we use the 

following form of the Gaussian wave packet as 

given by Greiner, W (2004) [2]. At time t=0, 

                                                         
 

    
      

      

   
                                             (1) 

where the wave function depends on the position 

and time coordinates, σ is the standard deviation 

from the mean μ, the term 
 

    
 is the amplitude of 

the wave packet and k0 is the wave number.  

For the sake of comparison, we write the 

expressions or the time evolution and the 

probability distribution of the Gaussian wave 

packet. We have also plotted the time evolution of 

the Gaussian wave packet using MatLab
TM

 for the 

sake of comparison. The evolution of the Gaussian 

wave packet at time t is given by 
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The probability distribution is given by  

                                                   |       |2 
    

  

   
 
 
 
 
 
 

    
     

       
    
 

 
 

      
  

   
 
 
 
                          (3)      

where   = 
 

  
; h is the Planck’s constant. This is also 

a Gaussian distribution with width   

    
  

   
 
 

. We have assumed k0 to be zero in 

order to simplify the calculation implying that the 

wave packet is at rest. The following values were 

used to plot the expression (3) in MatLab
TM

: 

Planck’s constant             Js 

Mass of electron            kg 

Mean value for the Gaussian wave μ = 0 

Standard deviation of the wave σ = 0.5. 

The following graph was obtained when the 

expression (3) was plotted with the above 

mentioned numerical values was plotted for 

different values of time t. 
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Figure 1: Time Evolution of a Gaussian wave function 

 

2. Square Wave Packet 

Consider a square wave packet with amplitude A and width Δx as shown below.  

 

 

Figure 2: A square wave packet with amplitude A and width Δx 

 

If we try to find its time evolution by the standard 

method, the integrations encountered are hard to 

solve. Hence, in order to simplify the calculations, 

the square wave packet is expressed as a sum of 

Gaussian wave packets of same width and 

amplitude as shown below. In order to find the time 

evolution of the approximated square wave packet, 

we find the time evolution of the system of 

Gaussian wave packets. Let us assume that the 

square wave packet is comprised of three Gaussian 

wave packets. Let their wave functions be   ,    

and  ; let their mean values be   ,    and   and let 
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σ be the standard deviation. The forms of ψ at time 

t=0 and at a later time t for a single Gaussian wave 

packet is given by equations (1) and (2) 

respectively. Thus, the square wave packet is 

expressed as  

                                

       
 

    
      

      
 

   
       

 

    
      

      
 

   
       

 

    
      

      
 

   
                                                                                                                                                    

(4) 

and at a later time t>0, the square wave packet is expressed as  
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The probability distribution P(x,t) of the system of three Gaussian wave packets is given by  

                      
  

                      
    

    
  2       

   2       
   2       

                    (6) 

where the asterisk indicates complex conjugate. The 

probability distribution for a single Gaussian wave 

packet is given by equation (3). Therefore, we can 

write for   
 
,   

 
 and   

 
in equation (6) as 
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For the term 2       
   in equation (6), we write 
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Simplifying 
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We assume k0 to be zero and use the determined forms of the terms in the LHS of equation (6) and rewrite it in 

the final form as  
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                   (7) 

For the estimating with three Gaussian wave 

packets, a square wave function with some arbitrary 

amplitude within x=0 to x=2 and zero elsewhere 

was estimated. The Gaussian wave packets had a 

full width at half maxima equal to   2    . The 

three Gaussian wave packets had mean values at 

      ,      and        . For the purpose 

of approximation, a Gaussian wave packet of the 

form given in equation (1) was used with    . 

The plot thus obtained is as below 

 

Figure 3: Approximation of a Square wave packet by three Gaussian 
wave packets 

Now, with the same values of mean and standard 

deviation, the probability distribution of the 

approximated square wave packet given by equation 

(7) is plotted against x for different values of 

time‘t’. Here, again we use the same values of m 

and   as in section 1. The plot obtained is as below.  

 

Figure 4: Time Evolution of a Square Wave packet approximated by 
three Gaussian wave packets 

Thus, we see that as the square packet evolves with 

time, it spreads and approximately becomes a 

Gaussian. 

The square wave packet was also approximated by 

five Gaussian wave packets with standard 

deviation       . The mean values for the 

Gaussian wave packets were taken to be    
2    ,         ,      ,          and 

   2    . The width of the square wave packet 

was fixed to be a=2 and then the interval was 

divided into 5 parts a/15, 17a/60, a/2, 43a/60 and 

14a/15. The resulting figure is shown below. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

x----------->

P
S

I
-
-
-
-
-
-
-
-
-
>

Plot of PSI vs x

 

 
Gaussian with mean at 0.33

Gaussian with mean at 1

Gaussian with mean at 1.66

Estimated Square wave

-15 -10 -5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x----------->

P
ro

b
a
b
il
it
y
 A

m
p
li
tu

d
e

Plot of Probability Amplitude vs x

 

 

t=0 sec

t=0.01sec

t=0.02sec

t=0.03sec

t=0.1sec



Physics Education                   7                           Jul – Sep 2014 

 

Volume 30 No. 3  Article Number: 5                                                                                                                   www.physedu.in  
 

 

Figure 5: Estimation of Square wave packet by five Gaussian wave 
packets 

 

The probability distribution of the Gaussian 

approximation of the square wave packet above is 

then plotted and is shown below.  

 

Figure 6: Time evolution of Square wave packet with five Gaussian 
wave packets 

We note that the square wave packet estimated by 

five Gaussian wave packets gives a better 

approximation. See section 4 for a detailed 

discussion.  

 

3. Triangular Wave Packet 

In this section, we discuss the time evolution of a 

triangular wave packet expressed as a sum of 

Gaussian wave packets. Consider a triangular wave 

packet which is comprised of three Gaussian wave 

packets as shown below. Let the wave functions of 

the three Gaussian wave packets be  ,    and 

  and let their mean values be  ,    and  . Let the 

standard deviations of the three wave functions be 

σ1 and σ2. Here the two Gaussians on either side of 

the central Gaussian wave have the same standard 

deviation. The time evolution of a single Gaussian 

wave packet is given by equation (2). At time t=0, 

the wave function of the system of triangular wave 

packet resembles the form of equation (4). At a later 

time t>0, the wave function of the system is 

expressed as  

 

 

                                

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

x----------->

P
S

I-
--

--
--

--
>

Plot of PSI vs x

 

 
Gaussian with mean at 2/15

Gaussian with mean at 17/30

Gaussian with mean at 1

Gaussian with mean at 43/30

Gaussian with mean at 28/15

Estimated Square wave

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

1

2

3

4

5

6

x----------->

P
r
o
b
a
b
il
it
y
 A

m
p
li
tu

d
e

Plot of Probability Amplitude vs x

 

 

t=0sec

t=0.01 sec

t=0.02sec

t=0.03sec

t=0.1sec



Physics Education                   8                           Jul – Sep 2014 

 

Volume 30 No. 3  Article Number: 5                                                                                                                   www.physedu.in  
 

       
 

 2      
   
    

 

 
 

 

 
 
 

 
 

   

 

 
 
 
2  

      
     

   
 

  
2      
 

       
 

2      
   
    

 

 

 
 
 

    

 

 
 
 
2  

      
     

   
 

  
2      
 

       
 

2      
   
    

 

 

 
 
 

 
 
 

 
 

 
 

 2      
   
    

 

 
 

   

 

 
 
 
2  

      
     

   
 

  
2      
 

       
 

2      
   
    

 

 

 
 
 

 

The probability distribution of the system is given by  
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The first three terms on the LHS of the above equation are  

  
   

    
  

   
  
 
 

 
 
 

    
      

        
    
 

 
 

  
     

  

   
  
 
 

  

  
   

    
  

  2
  
 
 

 
 
 

   2
      

        
    
 

 
 

 2
     

  

  2
  
 
 

  

  
   

    
  

   
  
 
 

 
 
 

    
      

        
    
 

 
 

  
     

  

   
  
 
 

  

 



Physics Education                   9                           Jul – Sep 2014 

 

Volume 30 No. 3  Article Number: 5                                                                                                                   www.physedu.in  
 

In the above equation for  
 
, σ1 appears as we have 

assumed that the Gaussians on either side of the 

central Gaussian gave the same standard deviation 

i.e. σ1 = σ3. Also, the amplitude of   depends on 

the slope of the triangle. The remaining terms in 

equation (8) are written as 
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Once again, we assume the value of k0 to be zero and since we have also assumed σ1 = σ3, we rewrite equation 

(8) in the final form as 
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In our numerical analysis, the standard deviation of 

the central Gaussian wave packet i.e. σ2 was chosen 

to be 0.5 and σ1 and σ3 were chosen to be 1. The 

mean values were chosen to be -5/2.5, 0 and 5/2.5. 

The probability distribution of the approximated 

triangular wave packet is plotted against x for 

different values of time t. The values of m and   

were the same as the ones used in sections 1 and 3.  



Physics Education                   11                           Jul – Sep 2014 

 

Volume 30 No. 3  Article Number: 5                                                                                                                   www.physedu.in  
 

 

Figure 7: Estimation of Triangular wave packet by three Gaussian wave packets 

 

Figure 8: Time Evolution of Triangular wave approximated by 3 Gaussians 
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4. Results and Discussion 
When the Square wave packet was approximated 

with three Gaussians, its amplitude was found to be 

2 (fig. 4). Here the estimated square wave consisted 

of dips where the overlapping of Gaussian waves 

was not as significant. This is due to the 

intermediate terms in equation (7). Its probability 

amplitude was doubled, i.e. approx. 4 at time t=0, 

which is as expected. The probability amplitude at 

time t=0 consisted of some irregularities in the 

peak. With time, as the Gaussian waves evolved, so 

did the estimated square wave and thus the 

probability distribution of the square wave became 

smoother, broader and assumed an almost Gaussian 

shape which is clearly visible in fig. 5. In the case 

of Square wave approximated with five Gaussians, 

the dip in the final wave form reduced considerably 

due to significant overlapping thus estimating the 

square wave packet better than the one with the 

three Gaussian wave packets. Thus we see that the 

accuracy increases when the number of wave 

packets is increased. The probability distributions at 

t=0 and at later times are assumed to have the same 

behavior as mentioned earlier.  

Similar results were obtained in the case of a 

Triangular wave packet being approximated by 

three Gaussian wave packets. 

In the method adopted, care must be taken while 

choosing the standard deviation and mean values 

for the approximating Gaussian waves. The 

advantage of this method is that it is applicable for 

any wave packet in principle. The number of 

iterations can be improved by computer 

programming since there is an increase in the 

number of wave functions and also the number of 

times they are added 
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Abstract 

 

Conventional Newton’s rings experiment is generally used in undergraduate laboratory to determine the 

average wavelength of Na doublet. A minor modification of this setup enables us to view simultaneously 

Newton’s rings both in reflected as well as transmitted light. A movable glass plate with respect to the plano-

convex lens allows us to observe the variation of contrast/visibility of these fringes and thus allows us to 

determine the separation of the Na yellow doublet. 

 

 

1. Introduction 

 Newton’s rings experiment is a classic 
example of fringes of equal thickness or Fizeau 
fringes[1,2]. This is generally used in undergraduate 
optics laboratory, as it enhances conceptual 
understanding of internal and external reflections 
and associated phase shifts. It also requires fair 
degree of experimental skill to perform this. Even in 
the literature [3,4,5,6] we find it being used for 
classroom demonstrations, for determination of 
wavelength of  He-Ne laser etc. The apparatus can 
be rearranged by mounting the plano-convex lens 
and the glass plate vertically. This modification 
lends itself to observe the Newton’s rings in the 
transmitted light. Moreover, if the glass plate is 
made movable, as was done in this work, this could 
also be used to estimate the Na doublet separation 
apart from being used to determine the average 
wavelength.  

 
 
 
2.  Theory of formation of Newton's rings 

For a  plane parallel glass plate of thickness, 
t, the path difference between  two partially 
reflected light from top and the bottom surface of 
plate is given by [7]: 

   δ=2 nft cos(θt)                  (1) 

wherenf :Refractive index of glass plate, t:Thickness 
of glass plate, θt:Angle of refraction 

 If the glass plate is of varying thickness t, 
the optical path difference varies even without 
variation in the angle of incidence. Thus if the 
direction of the incident beam is fixed, say at 
normal incidence, a dark or bright fringe will be 
associated with a particular thickness for which λ 
satisfies the condition for destructive or constructive 
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interference, respectively. For this reason, fringes 
produced by a plate of variable thickness are called 
Fringes of equal thickness or Fizeau fringes. For a 
monochromatic and collimated light, it is only the 
thickness variation which can result in path 
difference variation. Therefore, Fizeau fringes are 
contours of constant thickness. 
 When an air film, formed between the 
spherical surface of plano-convex lens and an 
optical flat is illuminated from a laser or sodium 
vapour lamp, equal thickness contours for a 
perfectly spherical surface are formed. These 
circular fringes are called Newton's rings. These 
fringes are formed around the point of contact. At 
the centre, thickness of the air film is zero and 
hence the path difference between the two reflected 
rays is zero due to propagation. But the central 
fringe is dark as a consequence of phase shift of π 
due to one external reflection. 
 
3. Finding the Fine structure using 

Newton's rings 

We know that the sodium lamp emits two 
wavelengths: 5890A and 5896A. These two 
wavelengths form two sets of Newton's rings with 
coincident centres. If we examine a few rings near 
the point of contact of lens and glass plate, the two 
sets of rings appear to coincide; but if they are 
traced to a sufficient distance from the centre, the 
misalignment becomes more and more apparent. 
Consequently, after some distance, the bright fringe 
of one set of rings will occupy the same position as 
the dark fringe of the other set, and they will 
mutually annihilate to a uniform intensity. If on the 
other hand, the glass plate is moved away from the 
lens, mutual annihilation would take place at the 
centre itself satisfying equation of the type (2) 

where d is the distance between the glass plate and 
plano-convex lens. Continuing the same line of 
reasoning, it is evident that perfect coincidence and 
perfect misalignment of the two systems of rings 
would recur alternately at regular intervals[8].  

                2d = m1λ1 = (m2 + ½) λ2       (2) 

To observe this variation of contrast, the 
glass plate is made movable in a perpendicular 
direction with respect to plano-convex lens. When 
the glass plate is moved away, the higher order 
fringes appear at the centre.  Due to finite coherence 
length of source, the contrast variation can be 
clearly seen as the glass plate is moved. 

 The separation of two wavelengths in the 
Na doubletthat is used to observe interference is 
related to the path difference, as in the case of 
Michelson interferometer[7]. If ∆λ is the separation 
between two spectral lines and λ is the average 
wavelength, then 

 ∆λ  =
��

 � ��
                         (3) 

 
where∆d is the mirror movement required between 
two consecutive coincidences(bright fringe of λ1 

overlapping with bright fringe of λ2) in a Michelson 
interferometer. This formula can be used in 
Newton’s rings in the case where glassplate is 
moved with respect to the plano-convex lens. In this 
case, ∆d represents distance through which the glass 
plate is moved from zero pathdifference(glass plate 
touching the plano-convex lens) position to the 
subsequent region of  maximum contrast. 
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Fig(1) : Schematic diagram of Newton’s rings with glass plate, G and plano

T.M-1 and T.M-2: Travelling microscopes, W.C: Webcam con

4. Experimental details and Results

4.1 Determination of average wavelength 

of Na 

 The average wavelength of Na light is 
easily determined by measuring the diameters of a 
few rings. A plot of radius-square and the ring 
number gives a straight line. By finding the 
slopeand knowing the radius of curvature,R, we can 
get the wavelength of Na light using the formula,

λ  =
��	


� � ��
�

�

       

where,    rm and rm+p are radii of the m
(m+p)th ring, R is Radius of curvature of the lens
 
The conventional Newton’s rings experiment was 
performed and the graph of ring no. m versus 
plotted as shown in Fig(3). The slope of this graph 
is   (����

� - ��
� )/p.  Therefore the average wavelength 

of sodium source 
 

=  slope /radius of curvature (R)

=  0.297 x10-6 m2 / 0.5 m 

 =  595nm 

 3 
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) : Schematic diagram of Newton’s rings with glass plate, G and plano-convex lens, PL  mounted vertically and the Glass plate made movable. 

2: Travelling microscopes, W.C: Webcam connected to travelling microscope, BS: Beam splitter, S: Light source

4. Experimental details and Results 

Determination of average wavelength 

The average wavelength of Na light is 
easily determined by measuring the diameters of a 

square and the ring 
number gives a straight line. By finding the 

and knowing the radius of curvature,R, we can 
light using the formula, 

 (4)                       

are radii of the mth ring and 
ring, R is Radius of curvature of the lens. 

The conventional Newton’s rings experiment was 
performed and the graph of ring no. m versus ��

�was 
. The slope of this graph 

)/p.  Therefore the average wavelength 

/radius of curvature (R) 

 
Fig(2): Photograph of experimental setup showing the vertical 

mounting of plano-convex lens, PL and glass plate, G

 
 The expected value of average wavelength 
of Na is   589.3nm and the experimental value is 
accurate to about one percent. The average value is 
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convex lens, PL  mounted vertically and the Glass plate made movable. 

Beam splitter, S: Light source 

 

): Photograph of experimental setup showing the vertical 

convex lens, PL and glass plate, G 

The expected value of average wavelength 
of Na is   589.3nm and the experimental value is 
accurate to about one percent. The average value is 
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required to determine the separation of the Na 
doublet. 
 
 
 
 

 
Fig(3) : Graph of ring no versus diameter-square to determine the 

average wavelength. The linear regression is used to get the best-fit 

straight line, with a correlation coefficient of 0.99 

4.2 Estimation of Na doublet separation 

 The schematic diagram and the 
photograph of the experimental setup are shown in 

fig(1) and fig(2) respectively. The glass plate was 
mounted on a micrometer translation stage so that 
its distance can be varied in a controlled manner. 
Newton’s rings in the reflected light were captured 
using a webcam (without the lens) attached to 
travelling microscope without the eyepiece. 
Newton’s rings were captured for every 10µm 
distance. From the snapshot, the visibility of the 
fringes was calculated using ImageJsoftware (freely 
downloadable, image processing software 
developed by National Institutes of Health).Sample 
snapshots at different distances are provided in 
fig(5) to fig(9) which clearly show the contrast 
variation. Fig(10) & fig(11) show  the Newton’s 
rings in the reflected and transmitted light.Plot of 
distance versus visibility is shown in the fig(4).  As 
expected, there is a periodic variation of contrast 
starting with its maximum value at zero path 
difference.  From the graph, we get ∆d = 250µm, 
which is the separation between two successive 
maxima in the graph. 

 ∆λ  =
��

 � ��
=  (595nm)2/2(250µm)=  7 A 

 
This shows that the separation of the Na 

doublet whose expected value is 6A, could be 
estimated to an accuracy of about 17 percent using 
this analysis.  

 

 
Fig(4) : Plot of visibility as a function of distance of glass plate from the plano-convex lens. 
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Fig. (5):  Zero path difference 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (7): Path difference=100 micron 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. (6): Path difference = 50micron 

 
     

 
 
 
                Fig. (8): Path difference=150 micron 
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Fig.(9): Path difference=250 micron 
 

 
 
 

Fig. (10): Newton's rings: Reflected light 
 

 
 
 
 
 
 

 

 

 

 

 

Fig. (11): Newton's rings: Transmitted light 

 

 

 

5. Conclusion 

In this work, we have revisited Fizeau’s 
observations by modifying the conventional 
Newton’s rings setup. Both the glass plate and 
plano-convex lens are mounted vertically which 
enables us to view both the reflected and 
transmitted rings simultaneously, compare and 
contrast them with considerable ease. Moreover, 
the glass plate mounted on a micrometer 
translation stage, allows us to observe clearly the 
variation fringe contrast/visibility. From the graph 
of distance versus visibility, we were able to 
calculate the separation of Na doublet. This also 
enables us to make an estimate of coherence 
length of Na source by noting the distance to the 
first minimum in the graph. 

• Central Dark Fringe 

• High Contrast 

• Central Bright Fringe 

• Low Contrast 
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Abstract

What is the solution of the equation of motion of a single classical charged particle with
radiative damping? Contrary to the physical expectation, the mathematical solution is
anti-damped! Attempts to curb these runaway solutions lead to pre-acceleration. Worse,
despite a century of effort, there is still no way to obtain a proper solution in a general
context. This failure of classical electrodynamics is intrinsic, irrespective of the hydrogen
atom, and hence needs to be remedied. We outline a general method to resolve the
infinities of quantum electrodynamics (renormalization problem). The same method was
recently applied to resolve the infinities of classical electrodynamics. This involves a
modification of Maxwell’s equations at the microphysical level. The resulting equations of
motion of even a single charged particle with radiative damping are functional differential
equations (FDEs). These FDEs can and have been solved. The implications for quantum
mechanics are postponed to the next article.

1 Recap

In two earlier articles[1, 2] in this series,
we saw that functional differential equations
(FDEs) are fundamentally different from or-
dinary differential equations (ODEs). Hence,
doing physics with FDEs leads to a paradigm

shift in physics. To solve retarded FDEs, for
example, we need to specify past history, not
initial data alone, as is the case with the
ODEs of Newtonian mechanics. Again, with
FDEs, volume in phase space is not, in gen-
eral, preserved (so fine-grained entropy does
not stay constant), so we must reconsider sta-

1
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tistical mechanics. These significant quali-
tative differences between FDEs and ODEs
also mean that FDEs cannot, in general, be
validly approximated by ODEs.

We also saw that FDEs arise naturally in
physics, so that this new physics does not
involve any new physical hypothesis, but is
a matter of doing the math right. That is
because FDEs are equivalent to a coupled
system of ODEs and PDEs. Hence, FDEs
arise naturally in the context of the electro-
dynamic 2-body problem, which involves a
coupling between the Heaviside-Lorenz force
law (ODEs) (according to which each parti-
cle moves) and Maxwell’s equations which are
partial differential equations (PDEs) (accord-
ing to which each particle acts on the other).
This understanding of FDEs also explains

the need for past data. To solve Maxwell’s
equations we need to specify the appropriate
Cauchy data, which is the counterpart of ini-
tial data for PDE. That is, we need to specify
the electric and magnetic fields on a hyper-
surface (i.e., at an “instant” of time). If we
use retarded Green functions, actually spec-
ifying these fields on an entire hypersurface
requires data for the entire past world lines of
the particles which produce those fields. This
requirement of past data, subtly hidden by
the field picture, is only made manifest by
using the particle pictures and FDEs.
How exactly does this affect electrodynam-

ics? To this end we re-examined the ques-
tion of the classical hydrogen atom. Physi-
cists are taught in high-school that classical
electrodynamics cannot describe the hydro-
gen atom. The argument for this proceeds as
follows. It first supposes that in the absence

of radiation damping, central orbits are sta-
ble for the electrodynamic two body problem.
It then concludes, heuristically, that due to
radiation damping those orbits are actually
unstable.

With our new understanding of FDEs it is
clear that this conclusion is based on faulty
reasoning. The Coulomb force does not equal
the full electrodynamic force. The full electro-
dynamic force leads to FDEs, so approximat-
ing it by the Coulomb force involves approx-
imating FDEs by ODEs, a process known to
be incorrect in general. Therefore, the claim
that central orbits are stable in the absence
of radiation damping was never properly es-
tablished.

The first actual solution of the FDEs of the
electrodynamic 2-body problem, with the full
electrodynamic force, was carried out by this
author only in 2004.[3] It showed that the
solution with the Coulomb force is, in fact,
incorrect. Heuristically, we observed that re-
tardation leads to a delay torque, so that an
electron tends to fall out of the atom, in the
absence of radiation damping.

We concluded with the natural question:
what happens in the presence of radiation
damping? Are there motions (not necessar-
ily circular orbits) for which the delay torque
and the radiation damping cancel (either ex-
actly or on an average)?

Volume 30, Number 3 Article Number : 7 www.physedu.in
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2 The problem of

radiative damping

2.1 The formula for radiative

damping

A peculiar difficulty arises in trying to give
a rigorous answer to this question. First,
we obviously need a quantitative account of
radiation damping. Now, standard physics
texts (e.g., [4], equation 11.80, p. 467) give a
formula (Abraham-Lorentz formula) for the
force due to radiative damping

F rad =
µ0q

2

6πc
ȧ, (1)

where µ0 is the permeability of free space, q is
the charge, c is the speed of light, a is the ac-
celeration of the charge, and, as before, dots
denote derivatives with respect to time. The
physical understanding of this formula is that
an accelerating charge radiates energy, and
therefore its motion must be damped. This
formula describes the self-force on the elec-
tron responsible for the damping.

2.2 The equation of motion of

a charge

But this force has a peculiarity: it depends
upon the derivative or rate of change of ac-
celeration. Thus, the equation of motion of
an accelerated charged particle under the in-
fluence of an external force F ext is

ma = F ext + F rad

= F ext +
µ0q

2

6πc
ȧ. (2)

Because of the appearance of ȧ =
...
x this is

a third order ODE, unlike the ODEs of clas-
sical mechanics which are all of second order.
Hence, to solve for the motion of a single
charged particle, one must now prescribe also
ȧ(0) or the initial acceleration of the charge.

2.3 The runaway solutions

It is not clear on what principles the specifi-
cation of a(0) would be based, but let us see
what happens in the simplest case. That is we
consider a particle moving in one dimension,
without any external forces, so that F ext = 0.
In this case the equation (2) can be rewritten
as the simple equation

τ ȧ = a, (3)

where

τ =
µ0q

2

6πmc
. (4)

The equation (3) has an equally simple solu-
tion

a(t) = a0e
t

τ , (5)

where a0 is the initial acceleration.
But this is catastrophic! It is evident that

so long as a0 6= 0, no matter what its value,
the acceleration of the particle, a, increases
exponentially. Thus, an arbitrary non-zero
initial acceleration blows up, so these are
known as runaway solutions. Under its own
self-action, due to radiation damping, the
particle continuously accelerates! Instead of
damping (as expected on physical grounds),
the mathematics tells us what we have here
is unbounded anti-damping!

Volume 30, Number 3 Article Number : 7 www.physedu.in
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This difficulty has been known for so long
that physicists have become a bit blasé about
it, and easily satisfied with various partial so-
lutions which have been offered. To under-
stand these, let us first find a general solution
of (2).

2.4 General solution of the

equations of motion

To this end, let us rewrite (2) as

m(a− τ ȧ) = F ext. (6)

To help solve the equations, we introduce a
new variable a1(t) by

a1(t) = e−
t

τ a(t) or a = e
t

τ a1(t). (7)

Then

ȧ =
1

τ
e

t

τ a1 + e
t

τ ȧ1. (8)

Hence,
a− τ ȧ = −τe

t

τ ȧ1, (9)

so that (6) can be rewritten

ȧ1 = −
1

mτ
e−

t

τ F ext. (10)

Equation (10) can be solved just by inte-
grating it.

a1(t) = −
1

mτ

∫ t

0

e−
t
′

τ F ext(t
′)dt′ + a1(0),

(11)
where a1(0) is a constant of integration or the
initial value. Note that a1(0) = a(0) by the
definition (7). Hence, the general solution of
(6) can be rewritten

a(t) = a(0)e
t

τ −
1

mτ

∫ t

0

e
(t−t

′)
τ F ext(t

′)dt′.

(12)

2.5 Dirac’s proposal

Now, nothing in earlier physics tells us what
principles we should use to fix the value of
a(0). Therefore, Dirac[5] in 1938 suggested
we should fix it by the formula

a(0) =
1

mτ

∫

∞

0

e−
t
′

τ F ext(t
′)dt′. (13)

To see the point of this, let us plug in this
value of a(0) into (12). We now obtain

a(t) = e
t

τ

(

a(0)−
1

mτ

∫ t

0

e−
t
′

τ F ext(t
′)dt′

)

=
e

t

τ

mτ

(
∫

∞

0

e−
t
′

τ F ext(t
′)dt′ −

∫ t

0

e−
t
′

τ F ext(t
′)dt′

)

=
e

t

τ

mτ

(
∫

∞

t

e−
t
′

τ F ext(t
′)dt′

)

=
1

mτ

(
∫

∞

t

e
(t−t

′)
τ F ext(t

′)dt′
)

. (14)

Since (t − t′) < 0 for t′ ∈ (t,∞), the inte-
gral will converge for any reasonable exter-
nal force described by an integrable (or even
slowly increasing) function F ext. We can see
this more clearly, by making the change of
variables t′ = t+ τs, to rewrite (14) as

a(t) =
1

mτ

∫

∞

0

e−s
F ext(t+ τs)ds. (15)

Hence, the acceleration remains finite for all
time.

2.6 Pre-acceleration

However, Dirac’s proposal has a peculiar side-
effect. It is clear from (15) that the accelera-
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tion at time t is decided by a weighted average
over all future forces. Hence, if, for example,
an impulsive force is applied to a charged par-
ticle, it would start moving before the force
is applied.

To see this, consider the case of 1-
dimensional motion, and suppose a δ func-
tion force is applied at time t = 0. That is,
Fext(t) = δ(t). For the integral in (15) to be
non-zero, we must have t + τs = 0, and this
is possible only for t < 0. So, the solution is

a(t) =

{

1
mτ

e
t

τ if t < 0

0 if t ≥ 0.
(16)

That is, the particle accelerates before the
force is applied, and stops accelerating when
it is applied. Hence, this is called pre-
acceleration. This is considered “unphysical”
since non-causal.

The usual defence is that the “violation” of
causality takes place over a small time. For
the case of an electron, the constant τ in (4)
may be rewritten as

τ =
2

3
·

q2

4πǫ0mc3
=

2

3

re

c
, (17)

where re is the classical radius of the electron,
so that τ is of the order of the time it takes
for light to traverse the classical radius of the
electron; τ ≈ 10−23s is also called the relax-
ation time of the electron. So, the argument
is that the violation of causality takes place
over such small times that it is of no conse-
quence.

2.7 Discussion

Now, I have been advocating the rejection of
perfect “causality” for over 35 years,[6] and
for the last 20 years I have been arguing that
rejecting (mechanistic) “causality” in physics
is a matter of elementary commonsense,[7]
and the only way to explain mundane “causal-
ity” or the mundane experience of billions of
people repeated thousands of time each day.
So I cannot regard the failure of (mechanis-
tic)1 “causality” as some kind of a “violation”
to be concerned about.

However, the real problem with the above
solution is this: the formula does not do its
basic job. It is small consolation to know that
the acceleration is finite, because we cannot
calculate its value! This matter has been sub-
ject to a long debate, and several variants
on Dirac’s technique and the Lorentz-Dirac
equation have been proposed. But this ob-
jection also applies to other proposed “solu-
tions” such as the one suggested by Plass:[9]
the initial or boundary values are required to
hold exactly. The slightest variation from it
restores the runaways, so these methods of
supposedly taming the infinities of classical
electrodynamics are impractical for the prob-
lem at hand which is this: to calculate the
motion of the electron in a hydrogen atom
with radiative damping.

1The term “causality” is vague and can have dia-
metrically opposite meanings, which are often con-
founded in philosophical discussions. Specifically,
mechanistic “causality” as used by physicists as physi-
cists means the exact opposite of mundane “causal-
ity”, as used by physicists as human beings! Conflat-
ing these two causes great confusion see, e.g., [8].

Volume 30, Number 3 Article Number : 7 www.physedu.in
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A simple-minded way out is to say that
Maxwell’s equations anyway fail for the hy-
drogen atom where quantum mechanics ap-
plies. However, the failure of Maxwellian elec-
trodynamics, as analysed above, is intrinsic,
and makes no reference to the hydrogen atom.
Therefore, we need to understand why this
celebrated Maxwellian theory, which is oth-
erwise useful, fails so miserably that it can-
not describe the motion of even a single elec-
tron! More pragmatically, understanding the
reasons for the intrinsic failure of Maxwell’s
equations may suggest an appropriate cor-
rection which opens the path to a fresh un-
derstanding of quantum mechanics, which is
needed to resolve the problems facing quan-
tum computing today.
Therefore, let us press on with our enquiry

into the infinities which arise in the motion
of a single charged particle in Maxwellian
electrodynamics, their origin and their reso-
lution.

2.8 The finite size electron

The most obvious suspicion is that these in-
finities have something to do with the as-
sumption that charged particles must be like
idealised geometric points. Radiation damp-
ing is attributed to the self-action of a charge.
In the field picture, that self-action is de-
scribed by a charge interacting with its own
field. That field, however, blows up at the
position of the particle if that is assumed to
be a point.
The next obvious step is to suppose that

the point-charge description is a simplifica-
tion, and what we really have is a finite dis-

tribution of charge. That, in fact, was the
first proposed solution to this problem, ironi-
cally proposed by Lorentz.

However, this notion of a finite-size elec-
tron encountered several serious problems. In
the first place, suppose we simply smear out
the electron charge over a sphere or shell. The
Coulomb repulsion of one part of the charge
distribution acting on another would blow
apart the charge distribution. What holds
it together?

One could get around this problem by pos-
tulating some new forces which hold the elec-
tron together. There is, however, a far more
serious problem with this solution: it is not
Lorentz invariant. We can hardly abandon
Lorentz invariance because the requirement
of Lorentz-invariance is tied to the current
definition of time measurement, as I have ex-
plained in my book[10] and in an earlier ar-
ticle in this journal, and we cannot do any
physics without a way to measure time. A fi-
nite distribution of charge cannot easily be de-
scribed in a Lorentz invariant way. A sphere
in one frame would not remain a sphere in
another, for the Lorentz transform distorts a
sphere into an ellipsoid. The problem of a
Lorentz invariant or covariant extended elec-
tron has resisted attempts at a solution for
the past century.

2.9 Is the limiting procedure

valid?

We could get around this problem too, but
there is another subtle problem which has not
been noticed, but is rather serious. The usual
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derivation of the third order radiation reac-
tion force (1) does start by assuming a finite
distribution of charge (for example, [4] starts
with a dumb-bell charge distribution). Since,
however, this finite charge distribution can-
not be described in a Lorentz invariant way,
the usual derivation proceeds to the limit of
a point charge. The problem of Lorentz in-
variance disappears in the limit.

But is this limiting procedure valid? The
question was first raised by me long ago, in
this very journal.[11] The doubt about the
validity of the limiting procedure may be ex-
plained in simple terms as follows. In a fi-
nite charge distribution, when one part of the
charge distribution acts on another, there is a
retardation or delay involved. Therefore, the
equations involved are FDEs; we have seen
that. However, when we proceed to the limit
of a point charge, the final equation of mo-
tion with radiative damping is just an ODE,
as above.

So, mathematically, the limiting procedure
amounts to “Taylor” expanding in powers of
the delay, and then proceeding to the limit as
the delay goes to zero. This limiting process
converts an FDE into a higher-order ODE.
We have seen[1] that this is an incorrect pro-
cedure, therefore the limiting process is not
valid, even though it looks plausible, and is
followed by all texts in electrodynamics to-
day! Thus, there is a fundamental problem
concerning the derivation of very formula for
radiation damping (1).

3 Infinities of classical

and quantum

electrodynamics

3.1 A connection?

How to correct the derivation of radiation
reaction? Long ago, Wheeler and Feynman
thought that the infinities of quantum elec-
trodynamics might be fixed by correcting the
corresponding infinities in classical electrody-
namics. Today, physicists believe that the
infinities in quantum electrodynamics have
been fixed through what is called renormal-
ization. But the infinities of classical elec-
trodynamics still stay unfixed! Nevertheless,
the hunch of a connection between the two
infinites was right.

Thus, long ago, I suggested a novel method
of renormalization in quantum field the-
ory. The method was presented at my
guide’s festschrift, and published in the
proceedings,[12] but never advertised, or fur-
ther developed. Hence, it is hardly known,
and the following is a brief explanation.

3.2 The renormalization

problem

The propagators of quantum electrodynamics
are what mathematicians call fundamental so-
lutions of PDEs. The fundamental solution
of the Dirac equation is the spinor propaga-
tor, while that of the relativistic wave equa-
tion or Klein-Gordon equation is the photon
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propagator. These are also known as Green
functions.
These propagators involve entities like the

Dirac δ function, which are regarded as gen-
eralised functions or Schwartz distributions.
On the orthodox formalist exposition of the
Indian calculus, as found in university calcu-
lus texts today, the derivative is defined as a
limit. This definition forces a differentiable
function to be continuous. However, in a
situation like that of shock waves, the need
arises in physics to differentiate a discontinu-
ous function.
The Schwartz theory of distributions mod-

ifies the conventional calculus of limits, by al-
lowing discontinuous functions (like the Heav-
iside jump function) to be infinitely differen-
tiated. However, the limitation of the new
theory is that generalised functions or distri-
butions cannot be multiplied: the Schwartz
theory assigns a meaning to δ, but not to the
product δ · δ.
Some writers on shock waves, such as

Taub,[13] have wrongly maintained (on
“physical grounds”) that this is a trivial prob-
lem . Taub wrote “Fortunately the prod-
uct of such distributions (as arise) is quite
tractable.” He argues as follows. Let θ de-
note the Heaviside function,

θ(t) =

{

0 if t < 0

1 if t > 0,
(18)

(the value at 0 does not matter2). Then, θ2 =
θ, so that differentiation gives 2θ · θ̇ = δ. But

2since the Schwartz theory is based on the
Lebesgue integral where the value of a function at one
point is irrelevant, since a point has measure zero.

θ̇ = δ hence θ ·δ = 1
2
δ. The problem with this

is that we also have θ3 = θ, so that 3θ2δ = δ,
so that, since θ2 = θ, θ · δ = 1

3
δ. Another

example is that of (x−1 · x) · δ = δ 6= 0 =
x−1 · (x · δ). Thus, neither the product rule
for differentiation nor the associative law may
be safely assumed in dealing with products of
Schwartz distributions.

The infinities of quantum field theory have
long been believed to arise because (Fourier
transforms of) products of propagators (gen-
eralised functions) enter into the S-matrix ex-
pansion. Thus, for example, if ˆ denotes the
Fourier transform, (δ · δ)̂ = δ̂ ⊗ δ̂ = 1 ⊗ 1 =
∫

∞

−∞
1dx, where ⊗ denotes convolution, and it

is blindly assumed (as in quantum field the-
ory) that a Fourier transform carries products
to convolutions (even when the former is un-
defined!).

What I showed long ago was that this belief
is wrong: the problem does not lie with prod-
ucts of distributions alone. I defined a natu-
ral product of distributions[14], still the only
such definition which works for both classi-
cal physics and quantum field theory.[15] This
definition earlier used non-standard analysis,
but the definition actually works perfectly
well with a so-called non-Archimedean or-
dered field, such as the number system of “un-
expressed fractions” (rational functions) rou-
tinely used from the 5th c. by traditional
Indian mathematicians while developing the
calculus. Anyway, with my definition, all
propagator products arising in quantum field
theory are finite, in one dimension.[16] My
analysis[12] identified the problem as really
that of defining compositions not products.
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What difference does that make? The diffi-
culties which arise with compositions are dif-
ferent from those that arise with products.
Thus, I did define compositions along with
products,[14] but the issue is as follows. The
propagators need to be defined on the null
cone λ = 0. How should we define the com-
position δ(λ)? For any hypersurface Σ = 0,
we can naturally define δ(Σ) just as δ(n), lo-
cally, wherever there is a unique normal to
Σ and n denotes the coordinate normal to Σ
in Gaussian normal coordinates, so that the
equation of Σ locally is n = 0. That is we
can define δ(λ) everywhere on the null cone
except at its vertex. For the particular case of
the δ function, we can extend the definition of
δ(λ) even to the vertex of the null cone. But
in the case of a general distribution f , there
is a geometrical difficulty in defining f(λ) at
the vertex of the null cone because there is
no unique normal vector there.
This understanding immediately suggests

a very simple and elegant solution to the
problem of the infinities of quantum field
theory.[12] Namely, eliminate that vertex and
replace the support of the propagators by a
Lorentz-invariant hyperboloid. Unlike a cut-
off, this preserves the Lorentz invariance of
the theory, which is essential for all current
physics as already noted. Unlike a regularisa-
tion left on, the support of the propagators
is not fuzzy, so interactions do not creep out-
side the null cone, and positivity of energy is
preserved.
Changing the propagators is equivalent to

changing the underlying PDEs (Dirac equa-
tion, Klein-Gordon equation), of which these
propagators are fundamental solutions. That

does not really matter, since all calculations
are actually done only with the propagators.
For example, look at the way we use the
Green function to get solutions of Maxwell’s
equations. Once we have the propagator, or
the Green function, we also have the solution,
and we don’t really need to refer back to the
equation.

3.3 Back to classical

electrodynamics

The point of this long digression into quan-
tum electrodynamics is this. Can this solu-
tion to the problem of infinities in quantum
electrodynamics be applied to get rid of the
infinities of classical electrodynamics? Indeed
it can! This was done some time ago.[17] This
is described below using the covariant formu-
lation of electrodynamics to emphasize that
everything is done in a Lorentz covariant way.

As regards the Lorentz-invariant hyper-
boloid, which replaces the null cone, there
are two possibilities. A hyperboloid of one
sheet would give a Lorentz-covariant model
of a spatially extended particle, but this does
not give radiation reaction. To get radiation
reaction, we need a hyperboloid of two sheets,
or what one might call “particles extended in
time”. We denote the separation by d, as-
sumed to be a constant for the moment.
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4 Modified Maxwell

equations

4.1 Obtaining the new

equations of motion

Thus, the new retarded Green function for
classical electrodynamics is given by

Gr(x,y) = δ((x− y)2 + d2)θ(x0 − y0), (19)

where θ is, as before, the Heaviside step func-
tion, and δ is its derivative the Dirac delta.
Exactly how this changes Maxwell’s equa-
tions has been worked out, but is irrelevant
as explained above.
We follow the original article,[17] and use

the metric diag(−c2, 1, 1, 1), i.e.,

||x||2 = xµxµ = −c2(x0)2 +
∑

i

(xi)2. (20)

For vectors satisfying (x − y)2 = −d2, a
Lorentz transformation cannot change the
sign of x0 − y0. Hence, the Green function
in (19) is Lorentz invariant.
Scalar and vector potentials are obtained

as usual.

Aµ(x) =
1

2πǫ0c

∫

jµ(y)G(x,y)d4y + ∂µχ,

(21)
where χ is an arbitrary scalar function which
vanishes in the Lorenz gauge.

For a point charge q, with worldline αµ(s)
and proper time, s,

Fµν(x) =
q

4πǫ0c (ζ · α̇)
2

(

α̈[µζν]

−
α̇[µζν] (c

2 + ζ · α̈)

ζ · α̇

)

.

(22)

Dots now denote derivatives with respect to
proper time, evaluated at retarded/advanced
time, τr, τa, obtained as the solution of

||xµ − αµ(τ)||2 + d2 = 0. (23)

The retarded time τr is the solution for which
x0 > α0(τr), while the advanced time τa is
the solution satisfying the opposite inequality.
Further, the vector ζ is defined as the retar-
dation vector pointing from the retarded posi-
tion to the current position: ζµ = xµ−αµ(τr),
and similarly in the advanced case, using the
advanced time τa instead. For a slow moving
particle, the delay τd ≡ τ − τr ∼

d
c
.

The equation of motion of a charged parti-
cle obeying the modified Maxwell equations
is

α̈µ =
q

m
α̇νF

µν , (24)

where F µν is the net field strength and in-
cludes the field from the particle.
This equation looks the same as in the

Maxwellian theory, but because of the separa-
tion constant d there is retardation involved
even in the case of self-action, where F µν is
solely the self-field. Hence, the resulting equa-
tions of motion for even a single accelerating
charged particle is now an FDE, not a third-
order ODE.

4.2 Consequences of changing

Maxwell’s equations

What difference does that make? The dif-
ference is this. Unlike the runaway solu-
tions of the 3rd-order ODE, arising from
Maxwell’s equations, this FDE arising from
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the modified Maxwell’s equations has glob-
ally bounded solutions. However, locally
the value of the radiation reaction remains
roughly the same as that described by the
third order term. This is as expected, since
the modification of Maxwell’s equations is
“small”, since the delay involved, τd ∼ d

c
, is

very small, and roughly the same as the re-
laxation time of the electron defined in (17),
if we suppose that d ∼ re.

Most importantly, we reiterate that this
gives us a way to actually solve the problem
of the motion of a classical charged particle
with radiation reaction. Thus, unlike all the
previous attempts in the past century, this
modification of Maxwell’s equations resolves
the problem of how to actually calculate the
motion of a charged particle with radiative
damping.

There are no doubt technical difficulties in
obtaining a numerical solution. For example,
for the case of the hydrogen atom, the prob-
lem is numerically stiff: there are two widely
different time-scales in the problem: the time
scale of the radiation reaction and the time
scale of orbital motion. Nevertheless, there
does exist a code called RADAR to solve nu-
merically stiff FDEs,[18] and we have actu-
ally used it. The details are in the original
paper.[17]

However, it should be clear by now that
the rigorous solution of the classical electro-
dynamic 2-body problem, and even the 1-
body problem, is a complex matter. But, why
should we bother to find a solution to such
FDEs? Don’t we already know that quantum
mechanics is the right theory? Is it worth the

effort? Is any of this going to lead to quan-
tum mechanics?
We will see the answers to these questions

in the next part of this series of articles.
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