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EDITORIAL 

 

 

From this issue onwards, Physics Education will 
be administered from Indian Institute of Science 
Education and Research (IISER) Pune. I take this 
opportunity to thank the preceding editor Prof. 
Pramod Joag and all the earlier editors who have 
worked hard to make this journal what it is today. 
In particular, the enthusiasm shown by Prof. R. 
Ramachandran, Consulting Editor, in maintaining 
this journal is noteworthy. I must also thank 
Savitribhai Phule Pune University for hosting 
Physics Education since its inception. As part of 
impending changes to be implemented in the next 
few months, we hope to improve the visibility of 
the journal by including more sections, more 
dynamic content that is of interest to physics 
teachers and students and possibly multimedia 
content as well. 
 
As always, physics is in for exciting times. The 
ground breaking observation of gravitational 
waves reported last month is not really the end of 

a rather long search but a beginning of a new tool 
to observe the universe. We hope ultimately 
exciting new physics will emerge out of this new 
tool. The cover page of this issue carries an artist's 
impression of colliding massive bodies that 
generated the gravitational waves. We have also 
provided a pointer to an interesting and simple 
introduction to gravitational waves through 
animations by Arvind Gupta and his team from 
IUCAA Pune. We thank him for the permission to 
use this material. 
 

We hope you will enjoy reading this issue and 
count on your continued support. 

 
M. S. Santhanam 

Chief Editor 
Physics Education    

           
 

_______________________________________________________________________________________________  
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Abstract 

In this paper, we would like to illustrate the power of scaling analysis to estimate the order 
of magnitude of the size of Lilliputs, Giants and Normal humans. We further extend this 
scaling approach to estimate the typical life span of human being in terms of natural 
fundamental constants of physics.  

 
 

1. Introduction 
 Scaling laws [1-9] are observed in all over science. 
The simplest is the Kepler’s third law seen in the 
planetary motion governed by Newton’s law of 
gravitation. The square of the time period of 
revolution of the planets is proportional to the cube 
of the distance between the planets and the Sun. In 
fact, there is indeed a deep symmetry between space 
and time for this particular power law.  Considering 
Newton’s inverse square law, we can write down the 
force equation 

22

2

r

GMm

dt

rd
m            (1) 

A quick look between the power of space and time 

ensures that 32 rt  . However, instead of inverse 
square, for inverse cube law (arises when general 
theory of relativity is taken into account) gives 

us 2rt  .  
 
Assuming earth to be homogeneous sphere of radius 
R and density  , it is easy to notice that the 

acceleration due to gravity g varies with the 
variables as 
 

Rg                  (2) 

 
 
 
 
The important point of the above scaling relation 
is that it is free from the universal gravitational 
constant G and can be used in other astrophysical 
object such as moon. In fact, if we assume 
further that both earth and moon have the same 
density, then the ratio of acceleration due to 
earth’s gravity  is 3 times larger that due to 
moon. However, a correct factor of 6 can be 
visualized if one takes into the correct numerical 
value of the densities of moon and earth. 
Simple spring also satisfies a scaling relation 
between the time-period T and the mass of the 
spring m as 

k

m
T               (3) 

 
where k is the stiffness constant, The famous 
Richter scale (1-10) or Marshili scale (1-12) 
used in the earthquake [9] follows the power 
law. The probability p for quake releasing 
energy E due to generation of shock wave is 

seen to proportional to E , where   is the 

relevant exponent. It is evident that the above 
two scales are based on the logarithm of the 
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energy. Even the recession of speed v of the 
galaxy at a distance R away from the observer 

was given by Hubble as 1 Rv . 
 
Mathematically, all these power laws [4,5] can be 
expressed as  

CxxfY  )(          (4) 

If we scale bxx  , we get from the above equation 
that 

)()()( xfbxCbbxfbxY      (5) 

The above equation indicates that if we measure x in 
meters or inches, the form of Y-x relationship 
remains unchanged. This invariance of scale change 
justifies the name of scaling relation. In fact, taking 
the logarithm of both sides of equation (4), we can 
easily obtain the exponent   from the slope the 
straight line with log-log axis. Moreover, if the two 
functions )(xf  and )( yf  satisfy the following 

relation 
)()()( xyfyfxf          (6) 

one can show that the function must be xxf ~)( . It 

is easy to note from equation (6) that 







)(

)(

)(

)(

xf

xf
x

yf

yf
y      (7) 

Here,   is a constant because the LHS is a function 
of y while the RHS is a function of x only. Naturally, 
the solution of equation (7) can be easily guessed 

as xxf ~)( . In non-equilibrium as well as 

equilibrium statistical mechanics, the scaling relation 
[6-8] can be of the form 















x

w
gxwxY ),(              (8) 

Here, the observables Y depends on two parameters x 
and w. In such a case, one understands the scaling 

regime xY ~  in the range w is sufficiently small so 

that )0(~ g
x

w
g 










, a constant. In critical 

phenomena, the physical quantity at the critical point 
scales with a power law with anomalous rational 
exponent [7]. 
Sometimes, pure dimensional analysis can help 
one to deduce the scaling relation. For example, 
the typical phase velocity v of water waves in 

shallow water depends on the acceleration due to 
gravity g, and water depth h. Here, the surface 
tension and the viscous effects are neglected. A 
quick straightforward calculation reveals that 













h
fghv           (9) 

where  is the wavelength of the water wave. In 

the limit, h ,  0f
h

f 









, we find in a 

place that the velocity hv  , the well-known 
scaling relation in fluid dynamics. 
 
Even when x is independent of Y, we can regard 
that as a power law of exponent being zero. In 
fact from biology, it has been seen that the 
maximum height of animals scales with size (L) 

as 0L . This surprising result [10-13] can be 
understood physically as follows. The maximum 
height that an animal can achieve must be 
proportional to the achievable potential energy 
divided by its weight. The maximum applied 
force or the strength of the muscle of animal 
scale with the characteristic length/ size L of an 

animal body as 2L . Therefore, the achievable 
potential energy will scale as 

3L (Forcedistance). However, the weight of the 
animal (assuming the density of body remains 

constant) is proportional to its volume, 3L . 
Hence, the height to which an animal can jump 
turns out to be independent of the size L. 
 
The above scaling behavior can be used in 
another way. A bone’s strength increases as its 
cross-sectional area while an animal’s weight is 
proportional to its volume, so that to support its 
own weight an elephant’s legs need to be 
relatively stouter than a dog’s. The scaling law 
is that wL3/2, where w is the leg width and L 
its length. 

It is known from biological scaling [13] analysis 
that the strength of a muscle is proportional to 

2L while the weight of the muscle varies as 3L . 
Therefore, the ratio of the strength to weight is 
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proportional to
L

1
. This result has a remarkable 

consequence as follows. For example, an 
elephant bears the ratio as 1 m-1 while a tiny flee 
1000 m-1. This indicates the impossibility of 
jumping of an elephant over a flee. Moreover, a 
flee can support almost 100 times of its body 

weight while an elephant can something of 
10

1
 of 

its body weight. This is in accord with the fact 
that the characteristic dimension of an elephant is 
1000 times that of a flee. 

Scaling analysis along with dimensional analysis can 
be used to estimate the maximum height [14] of a 
tree. Each tree is characterized by two different 
length scales namely the radius and its length or 
height. In this case one has to compare the two 
energy scales – namely gravity energy and the elastic 
one.  We know that the typical potential energy of a 
tree of mass m and height h is simply ~gravE mgh = 

22hgr  with r being the radius of the tree. But the 

elastic energy elastE stored in a tree can be written in 

terms of elastic modulus as
h

Yr 4

, where Y is the 

Young’s modulus of the material of the tree. Now, 
for the stability of a tree i.e. no buckling, the 
condition is gravE elastE . Thus, for a given region 

with the same type of tree, we must have scaling 

relation with the radius r and the height h as 32 hr  .  
Thus, for a given radius r, the maximum height of a 
tree can be estimated as  

3

2

max r
g

Y
h 











                   (10) 

In case of a typical length L of an animal, the 

relation is modified as 32 Lr  . Moreover, the 
mass of an animal scales 

M 44
2

2 ~~ LL
Y

g
Lr


  . This eventually gives 

an important scaling between the mass and 

length of an animal as 4

1

~ ML , which is known 

as Kleiber’s law [13]. Hence, the radius scales 

simply 8

3

2

3

MLr  . It is interesting to note 
that this scaling is quite different from the 

isometric one where 3

1

~ ML , 3

1

~ Mr .This 
scaling can also be applied to the situation of 
exhausting to animals for climbing a hill. This is 
related to the metabolic rate of a typical animal. 
However, the metabolic rate essentially depends 
on the flow rate of oxygen. Note that the flow 
rate of O2 scales as the surface area of the lungs 

~ 4

3

M . Now the comparison of the two energy 

scales indicates that 4

3

~ MMgh  or 4

1

~


Mh . 

Estimation reveals that it is almost 13 times 
exhausting for a 1 ton horse than for 30 gm 
mouse to climb a hill. 

The paper is organized as follows. With the brief 
introduction, we would like to use the scaling 
analysis for the existence of Lilliput and Giants 
as depicted in Gullivers’ travel book. Finally, in 
section 3, we point out the order of magnitude of 
height and life-span of common man in terms of 
fundamental constants of physics. In section 4, 
we give our conclusions. 
 
 

2. Scaling Analysis of Lilliput 

To introduce the topic of scaling analysis, let us 
look at a classical example of the romantic 
literature, in which Dean Swift, in “The 
Adventures of Gulliver” describes the imaginary 
voyages of Lemuel Gulliver to the kingdoms of 
Lilliput and Brobdingnag. In these two places 
life was identical to that of normal humans; their 
geometric dimensions were, however, different. 
In Liliput, man, houses, dogs, trees were twelve 
times smaller than in the country of Gulliver, 
and in Brobdingnag, everything was twelve 
times taller. The man of Lilliput was a 
geometric model of Gulliver in a scale 1:12, and 
that of Brobdingnag a model in a scale of 12:1. 
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One can come to interesting observations of 
these two kingdoms through dimensional 
analysis. Much time before Dean Swift, Galileus 
already found out that amplified or reduced models of 
man could not be like we are. The human body is 
built of columns, stretchers, bones and muscles. The 
weight of the body that the structure has to support is 
proportional to its volume, that is, L3, and the 
resistance of a bone to compression or of a muscle for 
fraction, is proportional to L2. 

Let’s compare Gulliver with the giant of 
Brobdingnag, which has all of his linear dimensions 
twelve times larger. 

It is known that a person’s food intake capacity is 
related to his mass (volume). Gulliver was 12 times 
taller than Lilliputians. Let us assume that the linear 
dimension of Gulliver be LG with the volume VG. 
Similarly for the Lilliputian, the volume is VL with LL 
be the linear dimension. Then, we can write simply 
VG/VL=(LG/LL)3=123=1728. Therefore, Gulliver 
needs the food of 1728 times the amount of food of 
each as the Lilliputians. This simple problem has a 
quite good impact in modern days in drug dosage in 
humans. 

The resistance of his legs would be 144 times larger 
than that of Gulliver, and his weight 1728 times 
larger. The ratio resistance/weight of the giant would 
be 12 times less than ours. In order to sustain its own 
weight, he would have to make an equivalent effort 
to that we would have to make to carry eleven other 
men. 

Galileus treated this subject very clearly, using 
arguments that deny the possibility of the 
existence [6] of giants of normal aspect. If we 
wanted to have a giant with the same leg/arm 
proportions of a normal human, we would have 
to use a stronger and harder material to make the 
bones, or we would have to admit a lower 
resistance in comparison to a man of normal 
stature. On the other hand, if the size of the body 
would be diminished, the resistance would not 
diminish in the same proportion. The smaller the 
body, the greater is its relative resistance. In this 
way, a very small dog could, probably, carry two 

or three other small dogs of his size on his back; 
on the other hand, an elephant could not carry 
even another elephant of his own size. 

In figure 1, we show the schematic picture from 
Gullivers’ book to compare the typical length 
scales of a normal human being with Lilliput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 1: A picture from Gullivers’ book 

 

Let’s analyze the problem of the Lilliputians 
from the idea of heat loss. The heat that a body 
loses to the environment goes through the skin, 
being proportional to the area covered by the 
skin, that is, L2, maintaining constant the body 
temperature and skin characteristics. The food 
taken in must supply this amount of heat. 
Therefore the minimum food needs should scale 
as L2. 
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If Gulliver would be happy with a broiler, a 
bread and a fruit per day, a Lilliputian would 
need a (1/12)2 smaller food volume. But a 
broiler, a bread, a fruit when reduced to the scale 
of his world, would have volumes (1/12)3 
smaller. He would, therefore, need twelve 
broilers, twelve breads and twelve fruits to be as 
happy as Gulliver. Besides Lilliputians must be 
hungry enough, famine, restless, active and can 
become easily water-logged. It is easy to 
recognize that these properties with many small 
mammals such as mouse for example. It is 
interesting to note that there are not many warm-
blooded animals smaller than mouse, probably in 
light of the scale laws discussed above. Notice 
that in nature, fish, frogs and insects can have 
much smaller size because of the fact that this 

body temperature is not higher than their 
surroundings. As a consequence, large animals 
by the above scaling law require relatively a 
good deal of food in compared to smaller 
creatures to maintain a relatively higher body 
temperature. In fact, it is indeed very difficult for 
small animals to gather such an enormous 
amount of food. Not only that if the foods were 
collected, that could not be 

Therefore, in our 
earth it is thus 
impossible for 
Lilliput to survive 
with giants as 
compared to them. 

digested over a feasible time. Thus, it is clear that 

 the agriculture of the Lilliputians could not have  

supported a kingdom  like described by Gulliver. 

We also illustrate the scale factor from the famous  

book in Fig.2.                                                  

                     Fig 2. A Picture from the famous book 

It is also evident from the above scaling arguments 
that the heat loss/mass is proportional to L-1. In 
other words, small animals will lose more heat 
compared to bigger one and naturally, they will not 
survive in the polar region at that cold atmosphere. 
Let us give some numerical estimation on mouse 
and polar bear. Considering a small mouse of 
length 5 cm, heat loss is of the order of 20 m-1. 

However, polar bear of length 2 m, the heat loss is 
0.5 m-1. Therefore, the ratio of heat loss of mouse 
to polar bear is 20:0.5=40:1. 

From all the above observations, we come to the 
following conclusions that, although being 
geometric models of our world, Brobdingnag and 
Lilliput could never exist in our physical models, 
since they would not have the necessary physical 
similarity which is found in natural phenomena. In 
the case of Brobdingnag, for example, the giant 

would be able to support his own weight having 
the stature of humans, only if he would be living 
on a planet having a gravitational force of (1/12)g. 

 

2.1 Absence of giants of normal size 

To argue this, we know that the human body is 
built of columns, stretchers, bones and muscles. 
Naturally, the weight [1, 10-12] of the body that 
the structure has to support is proportional to its 
volume, L3. However, the resistance of a bone to 
compression or of a muscle for fraction is 
proportional to L2. Therefore, if we wanted to have 
a giant with the same leg/arm proportions of a 
normal human being, we would have two options. 
Either, we must have to use a stronger and harder 
material to make the bones, or we would have to 
admit a lower resistance in comparison to a man of 
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normal stature. If his/her height is proportionally 
increased, naturally he/she will fall and be crushed 
completely under his/her own weight. In fact, 
smaller is the body; greater is its relative strength. 
On the other hand, if the size of the body is 
diminished, then, the resistance will not diminish 
in the same proportion. Therefore, the smaller is 
the body, the greater its relative resistance. In this 
way, a very small dog could, probably, carry [2, 
10-12] two or three other small dogs of his size on 
his back. But, an elephant will never be able to 
carry even another elephant of his own size. 

3. Size and life span of a normal man 
It is known [10-13] that smaller animals have 
quick pulse rate and short lives while larger 
animals have slow pulse rates and long lives. The 
biological scaling analysis suggests that 
 

4/94/3

4/34/1

4/34/1

LmBMR

LmHR

LmLS






                     (11) 

 
where LS, HR  and BMR refer to life span, heart 
rate and Basal metabolic rate respectively. 
 
Below we follow an order of magnitude estimation 
of the size and life span of normal human being in 
accord with the model developed by William H. 
Press [15]. In brief, we attempt here to express the 

characteristic size HL  and life span Ht  in terms of 

natural fundamental constants such as Gce ,,,  etc. 

 

It is important to note that this simple estimation 

however, cannot distinguish between male and 

female; moreover, since it is based on the scaling 

arguments, the accuracy level is unable to 

distinguish between the size of elephant and 

human being. More, sophisticated model 

calculations are welcome to match with the 

experimental data. The model computation 

however, is based on three fundamental 

assumptions [15]. 

(i) Human being is composed of very complicated 

molecules. 

(ii) For the survival of human race, it is desirable 

that the atmosphere should not be primordial or 

cosmological in nature. This excludes eventually 

the presence of hydrogen and helium in the 

atmosphere. 

(iii) Lastly, it is supposed that the height will be 

sufficiently large to carry its huge (heavy) brain. 

The person, however, can stumble or fall, but 

should not break at all by doing so. 

 

With these three assumptions, let us look into the 
characteristic sizes of atoms, density and the 
binding energy. We choose the characteristic size 

of the atom as Bohr’s length  A
em

a
e

52.0
2

2

0


. 

This can be justified from simple dimensional 
analysis and uncertainty principle [14, 16]. If we 
assume that one proton in a cube of 1 Bohr 
diameter, the relevant density scale turns out to 

be
 

ccg
a

mp
/44.1

2
3

0

0  . Now, the scale of all 

molecular binding energy can be measured in 
terms of the hydrogen binding energy fixed at 

6.13
2 0

2


a

e
EB  eV. 

 

Now, according to the first assumption, since the 

involved chemistry of the molecules in human 

being is complex in nature, we can take the binding 

energy of these molecules to be a small fraction 

( 003.0 ) of BE . This eventually gives an order 

of magnitude of the environment around the 

human being as 

eV
k

T
B

env

6.13003.0 
            (12) 

This temperature will naturally provide the perfect 

environment for continuing the internal chemical 

processes and hence the survival.  
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Considering the second assumption, we know that 

the atmosphere of the human race is neither 

hydrogen or helium nor vacuum. This is possible if 

the escape velocity from the surface of the earth is 

greater than the thermal velocity of hydrogen 

at envT . Therefore, we must have 

pE

E

mR

GM 6.13003.0 
     (13) 

 

and again from density consideration, 

 

 30

3
2a

m

R

M p

E

E           (14) 

These two simple equations (13) and (14) can be 
used to estimate the radius ER and mass EM  of the 

earth as 

 

2/3

2

2
2/3

2

2

02


















p

pE

p

E

Gm

e
mM

Gm

e
aR





                 (15) 

The equation (15) also points out the emergence of 

a dimensionless constant 













2

2

pGm

e
 formed from the 

natural fundamental constants. 
 

Now, if the characteristic size of human being 
is HL , then we can estimate its order of magnitude 

from the mass HM  as 
3

0 HH LM                (16) 

The characteristic energy scale of the potential 
energy of the fall of human being is fixed as 











2
E

E
HHHH

R

GM
LMgLM .The typical number of 

atoms HN  in a human being is of the order 















p

H

m

M
.The breaking energy can be fixed at the 

scale 

3/2

0

2

2 





















p

H

m

M

a

e
 ,  the last factor originates 

from the two dimensional surface. Now, 
considering the third and final assumption, we can 
write an equation 

3/2

0

2

2 2 






























p

H

E

E
HH

m

M

a

e

R

GM
LM       (17) 

which after simplification, we obtain the size of the 
human being as 
 

 
4/1

2

2
4/1 2
















p

oH
Gm

e
aL            (18) 

The estimated height ( 6.2  cm) of the human being 
turns out to be 102 smaller than the actual data 
(180-212 cm) because of the assumption (iii). If 
one equates the excess breaking energy (which is 
104-105 times that used above) to the number of 
atoms in a protein, one gets a reasonable 
estimation of the length of the human being. 
 

The life span Ht of a human being can be estimated 

[15] from the solar radiation in an environment 
temperature envT  in terms of Stefan-Boltzmann 

constant
32
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
  . The life-span or shelter-

seeking time can be set if one equates the total 
energy of chemical bond in human being to the 

solar flux radiation on human’s surface area 2
HL  

multiplied by Ht . Thus, we get the desired equation 
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        (19) 
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The estimated value ( 4105  sec) however does 

not match with the observed data ( 9102.2   sec). 
 

4. Conclusions 
Even within the cutting edge support from the 
technology, the scaling arguments presented above 
are quite important. Sometimes, we design a new 
large object on the basis of knowledge gathered 
from the small one, we are warned that the new 
effects may become a serious issue to consider. 
One cannot just scale up and down blindly, 
geometrically; but by scaling in the light of 
physical reasoning, one can predict some new 
things about the unknown system. Like any other 
order of magnitude estimation, they are extremely 
important and helpful to study any physical 
system. This can in fact serve as a best guide to a 
detailed analysis of the physical system. 
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Abstract 

A novel graphical vector method in the solving of the standard 2-object with pulley on an 
incline problem was devised and has been taught in the classroom setting.  The case of 
pulley with inertia would not hinder the presented vector methodology in solving vector 
equations of motion in dynamics. The delivery plan would first prepare the class to use 
graphical vector method in solving relative velocity problems without the 90-degree velocity 
diagram convenience; and the visualization of causality through vector drawing has been 
emphasized.    Good Physics Education delivery would be vital for doing Physics Education 
Research on the collected student performance data to assess student learning.  Physics 
Education materials in spatial thinking training in relationship to the neuro-science learning 
research findings is discussed. 
   

 

1. Introduction 
Vector is a capstone concept in Mechanics and is 
usually taught in a College Physics I course.  On 
the other hand, the 2-object incline plane problem 
is usually taught using the scalar equations in the x 
and y coordinates associated with Newton’s 2nd 
Law of motion F = ma, which was taught with 
force and acceleration as vectors.  We have 
developed a set of graphical vector methods for 
solving these problems and they are presented in 
this report.  The discussed topics include walking 
map, projectile velocity with gravity puling, 
relative velocity, forces in equilibrium, 2-object 
incline problem, rotational problem, and 
momentum.  The goal is to merge vector into a 
student’s mindset and reinforce the causality  

 
 
 
relationship.   Like most college physics 
textbooks, the kinematics is a precursor to 
dynamics with newton’s Law of Motion; we have 
used walking map and velocity vector diagram as 
preparatory materials for the full use of vector 
method in dynamics.   
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home

college

diner

shopping

total displacement

work

 
FIG. 1: A schematic view of the walking vectors. 

 
The walking map in Figure 1 is usually a good 
introduction to the displacement vector concept 
without much demand on the math pre- requisite.  
A student would recognize the general polygon 
with its sides as vectors. The starting point 
connection to the final destination with an arrow-
drawing would be the total displacement vector.  
When the teaching continues to projectile motion, 
the Figure 2 illustration could build on Figure 1 
visualization with the realization that 
acceleration*time (9.8 m/s/s* time is a vector for 
gravity puling, which is the cause for the initial 
velocity v0 vector to become the final velocity vf 
vector.   
 

v0

vf

9.8*t

 
FIG. 2: A schematic view of the projectile velocity vectors. 

 

The use of vector addition in relative velocity 
problems without the 90-degree velocity diagram 
convenience would follow, as illustrated in Figure 
3.  The water current would push the boat off 
course such that the arrival would be the targeted 
destination when the boat direction is set properly. 
 

4 m/s

1.8 m/s, 320-deg

65-deg

CURRENT (1.8 m/s 320-deg)

BOAT (4 m/s,  q)
TOTAL (?? m/s, 65-deg)

 
FIG. 3: A schematic view of the velocity vectors. 

 

The graphical vector method would offer not only 
an easy visualization, but a guaranteed answer 
within drawing accuracy. The algebra method is 
not easy for every student as the steps involve 
trigonometry.  In fact our experience showed that 
only about 30% students in a calculus physics 
class could solve the associated scalar equations in 
x and y coordinates within 30 minutes.  As for our 
college physics class designed for the health 
sciences and pre- med majors, only about 10% 
could solve the scalar equations involving 
trigonometry terms.  As for our technology 
physics class designed for students aiming for 
technician jobs, the percentage would drop to 
about 2%.  But every student would understand 
the graphical vector solution presented in Figure 4.  
Here the concept of causality is reinforced because 
the sketch in Figure 3 dictates that the Boat vector 
must be drawn from the start-point of Current 
vector. 
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65-deg
radius = 4 m/s

(1) Draw the CURRENT 
vector (2) On the ending 
point of  CURRENT, draw a 

line  at 65 -deg as shown 
(3) On the starting point of 
CURRENT, draw an  arc 
with radius  4 m/s  cutting 

the step-2 l ine.

 
 
FIG. 4: An illustration of the construction of the velocity vectors in 

Figure 3..  
 

 

 

2. Force Related Problems 

The equilibrium condition is a typical problem in 
Mechanics.  Figure 5 displays a situation where a 
horizontal force is keeping an object at rest on an 
rough incline plane.  The friction could be any 
value below the maximum allowed by mthe 
coefficient of static friction..  There is more than 
one answer and the problem can be considered as 
ill-posed.  Nevertheless physics is about concept 
learning, and the fact that there could be several 
answers would not mean poor teaching technique.   
 

F

q

 
FIG. 5: A schematic view of the applied force. 

The forces are shown in Figure 6 and the solution 
is shown in Figure 7 for the case of maximum 
horizontal force.  
 

A horizontal force F 
keeping a block at rest on 
a  rough incline

R0 = mg* cos ( q ) 

R1

R2

W

f

F

q

 
FIG. 6: A schematic view of the force vectors in Figure 5 

 

  

Geometry Perspective:
BC*tan(q ) = BD = GE = 
GF*cos( q ) such that
(mR2 + mR1 + mR0)*tan(q )  = 
R2*cos( q) 
With m = 0.1 and  q = 30-deg, 
R2 = 0.0714*(R0+R1) so that 
GF would be about 7% of AG 
and CF = maximum  
horizontal  force

H

F

D

A

B

C E

G

 
FIG. 7: An illustration of the construction of the force vectors in 

Figure 6.   
 
The corresponding minimum force situation is 
shown in Figure 8.  
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Minimum horizontal force 
F keeping a block at rest 
on a  rough incline

R0 = mg*cos ( q ) 

R1

W

f0

F

f1

q

 
FIG. 8: A schematic view of the force vectors for the minimum 

horizontal force case where f0 = m * R0 and f1 = m *R1. 
 
The graphical vector method is shown in Figure 9.  
 

Geometry Perspective:

BC+ CD +  DF = BF = mR0 + 
mR1 + R1*cot(q) 
Dividing CF into two 

segments of ratio  m: 

cot(q) would fix point D . 
DE can be constructed by 
extendeing AF .

E
D

B C

A

F

 
FIG. 9: An illustration of the construction of the force vectors in 

Figure 8 
 
A standard 2-object on incline problem is shown 
in Figure 10.   
 

q

m1

m2

 
FIG. 10: A schematic view of the 2-object on an incline problem.  

 
The free body force diagrams for the m2 object 
driving the acceleration are displayed in Figure 11.   
 

m1*9.8

m1*9.8*cos(q )

f

TT

m2*9.8

Assume m2  was 
accelerating 
downward

 
FIG. 11: A schematic view of the force vectors in Figure 10 when 

the vertically hanging object is dropping..  
 
The graphical solution is displayed in Figure 12. 
The Segment AC would need to be divided into 
two portions in a ratio of m1 to m2.    
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A

B
C

Segment AB = 
m1*a & Segment 
BC = m2*a such 

that point B can 
be fixed by 
dividing  Segment 
AC into ratio of 

m1 to m2.

 
FIG. 12: An illustration of the construction of the force vectors in 

Figure 11 when the vertically hanging object is dropping. 

 
The free body force diagrams for the m1 object 
driving the acceleration are displayed in Figure 13.   
 

m1*9.8

m1*9.8*cos(q )

f
T

T
m2*9.8

Assume m1 was
accelerating down 
the incl ine

 
FIG. 13: A schematic view of force vector in Figure 10 when the 

inclined object is sliding downward. 
 
The graphical solution is displayed in Figure 12. 
The Segment BD would need to be divided into 
two portions in a ratio of m2 to m1.    
 

A
DB

Segment AB = 
m2*9.8 and 
Segment BC = m2*a 
Segment CD = m1*a

C

Note that the friction
drawn was at its 
maximum allowed 
value such that the 
object might be at rest.

 
FIG. 14: A An illustration of the construction of the force vectors in 

Figure 12 when the inclined object is sliding downward.. 

 
When the pulley has inertia, the free body force 
diagrams for m1 and m2 is shown in Figure 15, 
assuming that m2 falling s driving the 
acceleration.  Note that the T1 pulling up the m1 
object would be different from the T2 preventing 
m2 going a free fall. 
 

m1*9.8

m1*9.8*cos(q )

f

T1

T2

m2*9.8

T2- T1 = (I/radius/radius)*a

Pully has radius and 
Inertia = I

 
FIG. 15: A schematic view of the force vectors when the pulley has 

an inertia value.  
 
The graphical solution is displayed in Figure 16.  
The Segment AD would need to be divided into 
three portions in the ratio proportion of m1: 
I/radius/radius: m2.   
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A
B

C

AB = m1*a..  BC = 
(I/radius/radius.)*a  
CD = m2*a.  AD is 
divided into three 
parts as m1: I/ 
radius/ radius: m2.  

D

 
FIG. 16: An illustration of the construction of the force vector 

when the pulley has an inertia value in Figure 15.. 
 
It is interesting to point out that the graphical 
vector method can also be employed when the 
torque equation has two different moment-arm 
distances.  A double-pulley with two handing 
masses is shown in Figure 17.  The torque 
equation has two forces with two different 
moment-arm distances. 
 

10 kg10 kg

I-wheel = 12 kg sq-m R-inner = 1 m
R-outer = 2 m

Tension : TaTension: Tb

knowing that acceleration = radius* a

Tb - 10(9.8) = 10(1)* a ( Newton's 2nd law )

10(9.8) - Ta = 10*(2)*a ( Newton's 2nd law)

2*Ta - 1*Tb = 12*a (Torque equation   t = I*a)

 
FIG. 17: A schematic view of applied weights on a double-pulley 

system.  
 
The graphical solution is displayed in Figure 18.  
Note that the m2 equation of motion is multiplied 
by a factor of 2 to facilitate the vector drawing 
solution.  

10 a

12a

2*(10*2*a)

2*10*9.8    2Ta    Tb      10*9.8
 

FIG. 18: An illustration of the construction of the force vectors in 
Figure 17.  

 
The standard two-car intersection collision 
problem would also carry a graphical vector 
solution.  The total momentum P-total would 
equal to the wreckage momentum P-wreckage, 
with no external force or impulse.  The students 
would recognize that each momentum vector has 
different mass value.  This momentum vector 
diagram echoes the projectile velocity vector 
diagram shown in Figure 2 where each vector can 
be multiplied by the projectile mass resulting in a 
momentum vector diagram.  The mass*9.8*t 
would be the external impulse induced by gravity 
pulling.   
 
 

Pa

Pb

P-total

Car A with momentum Pa collided with Car B with 
momentum Pb. The resultant P-wreckage would be 
equal to P-total  when the two cars were fused 
together  after  the  collison.

 
FIG. 19: A schematic view of the momentum vectors in a collision.  

 



Physics Education                                              7                                              Jan – Mar 2016 

 

 Volume 32, Issue 1, Article Number: 2                                                                                         www.physedu.in  

3. Discussion 

A literature search on vector teaching showed a 
few references where vectors crossing each other 
in drawing [1] and would create confusion for 
below average students in our teaching 
experience, or no graphical construction method 
was presented in the writing [2], or the published 
numerical examples are on single-object situations 
[3].  Our above examples are aimed to improve 
vector teaching without lowering the syllabus. 
 
Good Physics Education delivery would be vital 
for doing productive Physics Education Research 
with the collected student performance data to 
assess student learning.  The inclusion of the 
graphical vector methods presented above would 
be consistent with the vector nature of force as put 
forward by Newton.  A directional change can be 
visualized easily unlike scalar equation approach 
in the solving of the vector F = ma equation.  
Force is the cause and the observed acceleration is 
the effect. Extension to the impulse vector concept 
with the knowledge of time duration would help 
the teaching of momentum as a vector concept in 
dynamics.  In fact, in the teaching of Schrödinger 
equation in modern physics, a typical course after 
the first year calculus physics course, the 
momentum operator is taught readily without any 
mathematical expression of a quantum force.   
 
A sound collection of physics education materials 
should also be consistent with neuro-science 
findings.  Handwriting where the letters must be 
free-form creations of the child herself/himself is 
an important tool to train a child’s brain reading 
circuit [4], and that motor execution would play an 
essential part, not perceptual feedback [5].  By the 
same token, graphical vector drawing could 
strengthen that part of the brain neural circuit 
responsible for spatial thinking, a vital aspect of 
understanding vector in physics.  Taking notes on 
laptops rather than in longhand has been reported 
as a less efficient method in classroom learning 

[6], and the graphical vector method would 
reinforce learning through tactile practice of 
drawing and longhand.  
 

4. Conclusions 

We have presented a novel graphical vector 
method in the solving of the standard 2-object on 
an incline problem. The case of pulley with inertia 
would not hinder the presented vector 
methodology in solving vector equations of 
motion.  The graphical vector materials would 
serve as a platform for physics education research 
and neuro-science learning research in future 
studies. 
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Abstract

An alternative method is presented for introducing the physical quantities that are
represented by vector products, namely, torque and angular momentum. The basis of the
definitions of these quantities becomes evident through this approach. The reason that the
position vector of a particle appears in these definitions is also clarified. The present
approach can be smoothly integrated into the concepts of generalized forces and
coordinates in analytical mechanics.

1 Introduction

Torque is an important physical quantity that
arises in regard to the circular motion of a
particle and the motion of rigid bodies. Even
today, the derivation of the rotational form of
Newton’s second law from the translational
form is discussed in the field of physics edu-

cation [1]. In standard textbooks on classical
mechanics [2, 3], however, a convenient vec-
tor expression for torque is introduced with-
out explaining the basis of the definition, al-
though the idea of torque is familiar at the
undergraduate level. There are two questions
that should be addressed from a pedagogical
standpoint. Why is the torque vector defined
using a position vector that has its origin at
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the fulcrum and that points towards the lo-
cation where the force is applied? How do
we understand the circumstances that result
in the torque vector being defined as a vector
that is orthogonal to both the position and
force vectors?

An example [4] of the way in which the
concepts of torque and angular momentum
are commonly introduced is as follows. First,
the torque and angular momentum vectors
are defined as the vector products of the po-
sition, force, and linear momentum vectors.
Suppose a force F acts on a particle whose
position with respect to the origin is the po-
sition vector r. Then, the torque acting on
the particle with respect to the origin located
at the fulcrum is defined as

T = r × F . (1)

Suppose the particle has a linear momentum
p relative to the origin. Then, the angular
momentum of the particle is defined as

L = r × p. (2)

Using the definitions of torque and angular
momentum, the relationship between them
can be derived. Starting from the equation
of motion

dp

dt
= F , (3)

the torque is

T = r × dp

dt
. (4)

By slightly rearranging this expression, the
torque can be expressed as

T =
dL

dt
. (5)

This method of explaining the relationship
between the torque and angular momentum
is clear, but no basis is given for why we
consider the vector products of the position,
force, and linear momentum.

In the present article, we propose an alter-
native method for introducing torque by let-
ting it develop smoothly from the relation-
ship between the work done by a force and
the kinetic energy; this is done by clarify-
ing the basis of the definition of the angu-
lar velocity vector. The rate of change of the
kinetic energy is familiar to beginning stu-
dents, although the mathematical treatment
of the transformation of the equations is not
necessarily simple. The mathematical notes
necessary to derive the expressions for torque
and angular momentum are good examples
for introducing students in advanced classes
to vector analysis. Misconceptions about the
dynamics of rigid bodies are also discussed
using the definition of torque expressed with
the position vector.

2 Introducing torque and

angular momentum

using the relationship

between work and

kinetic energy

2.1. Basis of vector representation of
angular velocity

Suppose the time rate of change of the posi-
tion vector of a particle is restricted to pure
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rotation. The position of the particle is

r = ix + jy + kz

in the frame in which the particle is at rest,
where x, y, and z are the coordinates of the
particle and i, j, and k are the three corre-
sponding orthogonal unit vectors that define
the Cartesian coordinate system. These co-
ordinates do not change with time; that is,
dx/dt = 0, dy/dt = 0, and dz/dt = 0, and
thus

v ≡ dr

dt
=

di

dt
x +

dj

dt
y +

dk

dt
z.

Following a textbook on mechanics [5], di/dt,
dj/dt, and dk/dt are expressed with the
given Cartesian unit vectors. We recall that
i · i = 1, j · j = 1, and k · k = 1, and thus

i · di

dt
= 0,

j · dj

dt
= 0,

k · dk

dt
= 0. (6)

These inner products imply

i⊥di

dt
, j⊥dj

dt
, k⊥dk

dt
.

Thus, di/dt, dj/dt, and dk/dt are in the yz,
zx, and xy planes, respectively. We also re-
call that i · j = 0, j · k = 0, and k · i = 0,
and thus

di

dt
· j + i · dj

dt
= 0,

dj

dt
· k + j · dk

dt
= 0,

dk

dt
· i + k · di

dt
= 0. (7)

Let di/dt, dj/dt, and dk/dt be expressed as
jc1+kc2, kc3+ic4, and ic5+jc6, respectively,
where ci (i = 1, 2, . . . , 6) are undetermined
coefficients. Note that these six coefficients
are not independent. From

di

dt
· j = c1

and

i · dj

dt
= c4,

we obtain
c4 = −c1,

because we have

di

dt
· j = −i · dj

dt

from Eqs. (7). Similarly,

c5 = −c2, c6 = −c3.

We represent c1, c2, and c3 as ωz, −ωy, and
ωx, respectively, giving

di

dt
= jωz − kωy,

dj

dt
= kωx − iωz,

dk

dt
= iωy − jωx, (8)

and thus we can represent the velocity vector
in the form of the vector product

v = i(ωyz − ωzy) + j(ωzx − ωxz)

+ k(ωxy − ωyx). (9)

Here, we define a vector ω whose three com-
ponents are ωx, ωy, and ωz and call it the an-
gular velocity vector from the standpoint of
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its physical meaning. This idea is the basis
of the vector product v = ω × r, as follows.
The magnitude of the velocity vector |v| is
the product of |ω| and |r| sin θ, where θ is the
angle between ω and r. The direction of the
vector ω is along the instantaneous axis of ro-
tation, and |r| sin θ is the radius of a circle in
the plane perpendicular to ω (see Appendix).

2.2. Basis of definitions of torque and
angular momentum

Based on the above preliminaries, we can con-
sider the rate of change of the kinetic energy
for a particle. Differentiating the kinetic en-
ergy gives

d

dt

(
1

2
m|v|2

)
=

d

dt

(
1

2
mv · v

)
= v · mdv

dt
,

where m is the mass of the particle. Suppose
a net external force F acts on the particle.
From Newton’s second law, the equation of
motion is

m
dv

dt
= F ,

where F = iFx + jFy + kFz. From Eqs. (8),
we have

di

dt
· j = ωz,

dj

dt
· k = ωx,

dk

dt
· i = ωy,

and thus we can write

v · mdv

dt

=

(
di

dt
x +

dj

dt
y +

dk

dt
z

)
· (iFx + jFy + kFz)

=
di

dt
· i xFx +

di

dt
· j xFy +

di

dt
· k xFz

+
dj

dt
· i yFx +

dj

dt
· j yFy +

dj

dt
· k yFz

+
dk

dt
· i zFx +

dk

dt
· j zFy +

dk

dt
· k zFz

=
di

dt
· j (xFy − yFx) +

dj

dt
· k (yFz − zFy)

+
dk

dt
· i (zFx − xFz)

= (yFz − zFy) ωx + (zFx − xFz) ωy

+ (xFy − yFx) ωz

= (r × F ) · ω. (10)

This result means that the change in kinetic

energy,
d

dt

(
1

2
m|v|2

)
, is caused by (r×F )·ω,

and thus this inner product indicates the
work done on the particle. The vector prod-
uct r × F is a measure of how much a net
external force acting on a particle causes that
particle to rotate, so we call this vector prod-
uct the torque.

The same result can also be confirmed in
the following way. For simplicity, we assume
that ω is constant. Differentiating the kinetic
energy yields

d

dt

(
1

2
m|v|2

)
=

d

dt

(
1

2
mv · v

)
=

d

dt

[
1

2
m(ω × r) · v

]
=

d

dt

1

2
m [(ωyz − ωzy) vx + (ωzx − ωxz) vy

+ (ωxy − ωyx) vz]

= (ωyvz − ωzvy) mvx + (ωzvx − ωxvz) mvy
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+ (ωxvy − ωyvx) mvz

+(ωyz − ωzy) m
dvx

dt

+(ωzx − ωxz) m
dvy

dt

+ (ωxy − ωyx) m
dvz

dt
= (ωyz − ωzy) Fx + (ωzx − ωxz) Fy

+ (ωxy − ωyx) Fz,

= (ω × r) · F
= v · F , (11)

which indicates the rate at which work is
done. To express a measure of the amount of
rotation and the tendency of a force to rotate
a particle about an axis, the power expressed
by Eq. (11) can be transformed into

(yFz − zFy) ωx + (zFx − xFz) ωy

+ (xFy − yFx) ωz

= (r × F ) · ω.

We recall that px = mvx, py = mvy, and
pz = mvz, so the rate of change of kinetic
energy can be expressed as

(ωyz − ωzy) m
dvx

dt

+ (ωzx − ωxz) m
dvy

dt

+ (ωxy − ωyx) m
dvz

dt

=

(
y

dpz

dt
− z

dpy

dt

)
ωx

+

(
z

dpx

dt
− x

dpz

dt

)
ωy

+

(
x

dpy

dt
− y

dpx

dt

)
ωz

=

[
d

dt
(ypz − zpy)

]
ωx

+

[
d

dt
(zpx − xpz)

]
ωy

+

[
d

dt
(xpy − ypx)

]
ωz

=

[
d

dt
(r × p)

]
· ω. (12)

By comparing [d(r × p)/dt] · ω in Eq. (12)
with (r × F ) · ω transformed from Eq. (11),
we obtain

d

dt
(r × p) = r × F ,

which is the same as Eq. (5). The physical
quantity r × p is a measure of the amount
of rotation, so we call this vector product the
angular momentum. This relationship indi-
cates that the rate of change of the angular
momentum is equal to the torque.

If students are familiar with the scalar
triple product, the above results can be de-
rived from (r × F ) · ω = (ω × r) · F and
(r × p) · ω = (ω × r) · p, which means that
the dot and cross products in the scalar triple
product may be interchanged without alter-
ing the value of the product. Pedagogically,
it is important for beginning students to re-
arrange the equation without relying on the
formulae.

From the point of view of analytical me-
chanics, we can understand the introductory
remarks by Feynman [7], which are based on
an analogy between linear and angular quan-
tities. The definition of work as the force
times the displacement is thus readily con-
verted to the torque times the rotational an-

Volume 32, Issue 1, Article Number : 3 www.physedu.in



Physics Education 6 Jan- Mar 2016

gle. Suppose that a force is applied to a
particle at a certain point (x, y) in the xy
plane, and the particle rotates by a very small
angle ∆θ in this plane. Slightly rearrang-
ing the expression of the work Fx∆x + Fy∆y
yields (xFy − yFx)∆θ, where ∆x and ∆y are
the change in x and y, respectively, because
∆x = −y∆θ and ∆y = +x∆θ [7] by refer-
ence to the kinematics of two-dimensional ro-
tation. The generalized force is the coefficient
of the variation of a generalized coordinate in
the formulation of virtual work. By replacing
the changes ∆x, ∆y, and ∆θ by the virtual
displacements, δx, δy, and δθ, xFy −yFx and
θ can be regarded as the generalized force and
the generalized coordinate, respectively. The
generalized force in this motion is a kind of
rotational force called torque.

The main results of the process described
above are summarized as follows. A peda-
gogical framework of elementary mechanics
can be developed from temporal and spatial
viewpoints [6].

1. From a spatial viewpoint, the change
in the kinetic energy of a rotating particle is
caused by the total work done on that par-
ticle by all the torques that act on it during
the process of rotation. In the simple case of
rotation in the xy plane, this theorem can be
expressed as

d

(
1

2
m|v|2

)
= T · kdθ,

where ω is along the z-axis and can be rep-
resented as (dθ/dt)k.

2. From a temporal viewpoint, the change
in the angular momentum of a rotating par-
ticle is caused by the total impulse of all the

torques that act on it during the process of
rotation:

d(r × p) = T dt,

where T dt is the vector product of r and F dt.
We can develop a framework of elemen-

tary mechanics from these temporal and spa-
tial viewpoints [6]. There are three alterna-
tives to the equation of motion that can act
as starting points for elucidating mechanical
phenomena: (1) The change in the linear mo-
mentum of a particle is caused by an impulse.
(2) The change in the kinetic energy of a par-
ticle is caused by the work done on that par-
ticle by an applied force. (3) The change in
the angular momentum of a particle is caused
by torque. Of these three propositions, (2)
is a theorem common to both translational
and rotational motion. We can consider that
these three propositions result in the equation
of motion. From this standpoint, we have in-
troduced the concept of torque to describe ro-
tational motion by (2) in the present article.
Temporal and spatial viewpoints are two per-
spectives on the same physical phenomenon.
Thus, we can translate between (1) and (3)
for translational motion and between (2) and
(3) for rotational motion. In this sense, we
can say that (3) has been translated from (2)
in the present article.

3 Misconceptions about

the dynamics of rigid

bodies

Unexpectedly, in the field of mechanical engi-
neering, there are misconceptions about the
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definitions of torque and angular momentum.
From this fact, we expect similar misconcep-
tions are found in college physics, and thus
we consider the following example. By gain-
ing an understanding of this issue, beginning
students can improve their ability to find mis-
conceptions and to correct them.

According to commentary [8] on the free
rotation of rigid bodies, the definitions of
torque and angular momentum as the vector
products of the position vector of the particle
relative to the origin, the net external force
on that particle, and the linear momentum
vector of the particle are not correct, because
the origin is considered, but the axis of ro-
tation is not. This commentary claims that
the definitions of torque and angular momen-
tum are the distance from the axis of rotation
times the transverse components of force and
linear momentum, respectively.

The above interpretation contains a mis-
understanding. The commentary [8] confuses
the definitions of torque and moment of iner-
tia. Beginning students may also share this
misunderstanding. We can explain the cir-
cumstances through a simple example. Sup-
pose that a thin slab lies in the xy plane and
rotates about the z-axis with an angular ve-
locity vector ω in the z-direction (Figure 1).
For the present purpose, it is convenient to
use a cylindrical coordinate system (Figure
2). The position vector ri for the mass ele-
ment mi can be expressed as

ri = ρ̂iρi + kzi, (13)

where ρ̂i is a unit vector perpendicular to the
z-axis and defined by coordinates ρi and ϕi,

and the relationships between the cylindrical
coordinates ρi, ϕi, and zi, and the Cartesian
coordinates are given by xi = ρi cos ϕi, yi =
ρi sin ϕi, and zi = zi.

O

x

y

z

.m i

ri

Figure 1. Mass element of a slab.

O

x

y

z

z

r

j

j

Figure 2. Cylindrical coordinate system.
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For the relationships between the Carte-
sian and cylindrical unit vectors, we have

ρ̂i = i cos ϕi + j sin ϕi, (14)

ϕ̂i = i cos
(
ϕi +

π

2

)
+ j sin

(
ϕi +

π

2

)
= −i sin ϕi + j cos ϕi, (15)

and thus

dρ̂i

dt
= (−i sin ϕi + j cos ϕi)

dϕi

dt

= ϕ̂i

dϕi

dt
. (16)

The height of the slab is constant, be-
cause the slab lies in the xy plane, and thus
dzi/dt = 0 for mass element mi. The radius
of rotation ρi is also constant, because the
slab is a rigid body in which deformation is
neglected, and thus the distance between any
two points on the slab remains constant in
time regardless of the external forces exerted
on the slab. The angular velocity is common
for all mass elements, so dϕi/dt = ω, where
ω is the magnitude of ω. From Eq. (16), the
velocity vector of mass element mi is

vi ≡ dri

dt

= ρi
dρ̂i

dt

= ϕ̂i ρi
dϕi

dt
= ϕ̂i ρiω, (17)

where ϕ̂i is a unit vector perpendicular to ρ̂i.
By reference to ρ̂i×ϕ̂i = k and k×ϕ̂i = −ρ̂i

obtained from Eqs. (14) and (15), we can
calculate the angular momentum Li for mass

element mi. Thus, from Eqs. (13) and (17),
we have

Li ≡ ri × mivi

= (ρ̂iρi + kzi) × ϕ̂imiρiω

= kmiρi
2ω − ϕ̂imiρiziω.

We sum over all elements, and the angular
momentum for the slab is then

L =
∑

i

Li

= k

(∑
i

miρi
2

)
ω

−

(∑
i

ϕ̂imiρizi

)
ω

= kIzω,

where, in the first term, we have defined the
physical quantity Iz, called the moment of
inertia, for the slab with respect to the z-
axis as Iz ≡

∑
i miρi

2. The physical quantity
of the second term is zero, because the slab
is symmetric with respect to the xy plane,
as shown in Figure 1. This result indicates
that the angular momentum is expressed as
a vector in the direction of the rotational axis.
The moment of inertia is determined by ρi

2,
the square of the distance from the z-axis to
the mass element mi, instead of by |ri|2, the
square of the distance from the origin to that
element.

Therefore, the angular momentum is prop-
erly defined as the vector product of the posi-
tion vector of a particle relative to the origin
and the linear momentum vector of that par-
ticle. As a result, we can say that a net exter-

Volume 32, Issue 1, Article Number : 3 www.physedu.in



Physics Education 9 Jan- Mar 2016

nal torque is needed for the angular accelera-
tion of the particle about the axis of rotation.
The angular momentum with respect to the
rotational axis described in the commentary
[8] is exactly the z-component of L expressed
as L ·k, which is Izω. The moment of inertia
Iz is determined by the distance from the axis
of rotation. Similarly, the net external torque
giving rise to the changing angular momen-
tum vector is exactly the z-component of T
expressed as T ·k, where T includes the sum
of the interactions between particles [9].

4 Concluding remarks

A physical law is extended by defining new
physical quantities such that the elementary
principles can be maintained. An extension
of a physical law to include a fundamental
law is similar to the mathematical principle
of the permanence of form and its transition
[10].

For the present subject, two approaches
can be used to introduce the concept of
torque through the kinetic energy and work
theorem. One is to maintain the analogy be-
tween linear and angular quantities through
the corresponding arrangement of the expres-
sion of work [7]. The amount of work is ex-
pressed as the rotational angle multiplied by
a combination of the force and the distance.
The other is to arrange the expression of the
kinetic energy of a rotating particle as shown
in Section 2.2.

Understanding the relationships between
physical quantities is essential to learning the
meaning of physical laws. It is pedagogically

important to explore the basis of the defini-
tions of physical quantities.

Appendix: Direction of
vector obtained by vector
product

For each direction, a line segment has two
senses, a positive and a negative sense. Sim-
ilarly, a plane has two sides. A directed area
element corresponds to the length of the di-
rected line segment. Given two vectors a and
b, the area of the plane determined by these
vectors is expressed as the exterior product
a∧b. When the vector a in the first position
in the expression is rotated by the smallest
angle that will cause it to coincide with the
direction of b, the area of the plane is defined
as positive.

The vector product a × b is defined by a
vector perpendicular to a and b and has a
magnitude of |a ∧ b|. The sense of the plane
determined by a and b is that of the motion of
a right-handed screw. Thus, a×b = (a∧b) n,
where n is a unit vector with a positive sense.

Following this rule, the senses of T , L, and
v are defined, and thus T is perpendicular to
r and F , and so on. When a particle rotates
in a plane, the direction of n is that of the
axis of rotation. The direction of ω is defined
as that of the axis of rotation, and thus the
velocity of a particle v is perpendicular to the
plane determined by ω and r.
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Abstract 

 
A correct understanding of basic physical quantities related to the rotational motion of 
a rigid body by undergraduates is important not only in mechanics but also for 
understanding of basic physical principles in other branches of physics. The rotational 
motion of a symmetric rigid body about an axis through its centre of mass and 
perpendicular to the Earth‘s surface can be examined in the experiment which is 
presented in this paper. An optical gate connected to the system IP-Coach makes it 
possible to record the angular displacement as a function of time from which the angular 
velocity and angular acceleration can be calculated at any instant of time. Using these 
kinematic dependences, the influence of the moment of inertia as well as the influence of 
resistance forces on the rotational motion of a rigid body can be evaluated. The proposed 
experiment can be included as a demonstration or laboratory experiment in the basic 
physics course in technical bachelor's degree programmes. 
 

 

1. Introduction 

Rotational motion of a rigid body about a fixed 
axis is difficult for students to grasp mainly from 
the point of view of understanding the quantities 
which are used to describe this motion. This can 
be improved by the demonstration of this motion 
using apparatus which makes it possible to record 
simultaneously the values of angular displacement 
and time. The apparatus consists of the rotation 
apparatus and the system IP-Coach (optical gate, 
CoachLab panel and computer with IP-Coach 
program). The advantage of using the system IP-

Coach is immediate displayof the measured 
kinematic quantities – angular displacement ( ) 

and derivedquantities – angular velocity ( ) and 

angular acceleration ( ) as a functions of time ( ). 

These quantities are then used for elucidation of 
basic dynamic characteristics of rotational motion 
of a rigid body –torque (moment of force) ( ) and 

moment of inertia ( ). Moreover, the system IP-

Coach when used in laboratory practicals makes it 
more effective and faster to processthe measured 
data.  
The above-mentioned apparatus can be also used 
in the laboratory practicalsin the specialized 
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technical study programmes since it enables to 
study the influence of frictional forces as well asto 
observe subtle effectof viscous resistance forces of 
surroundings (air) on the motion.  
 

2.Experimental 

Rotation apparatus (3B Scientific) used in 
experimentis shown in Fig. 1. Itconsists of plastic 
weight fastener (1), 100 g weight discs (2), 10 g 
slotted weights (3), string (4), 20 g slotted weight 
(5), hanger for slotted weights (6), 200 g weight 
discs (7), spindle (8), base and mount (9) and 
hollow aluminium rod (10).  
 
 

 
 

FIG. 1: Rotation apparatus. 
[https://www.3bscientific.com/rotation-apparatus-

u8405715,p_853_18606.html] 

 
The apparatus is set into motion by the weight of 
slotted weights (3,5) placed on a hanger (Fig. 2) 
fixed at the end of the string(4) wound around 
a spindle (8) with diameter of 1.8 cm. The 
stringruns over the deflection pulley of negligible 
mass (Fig. 2). The weight discs (2,7) can be placed 
on the crossbarin various positions using weight 
fasteners (1) changing the moment of inertia of the 
crossbar and in this way also the characteristics of 
the rotational motion [1]. 
 

 

FIG. 2:  Rotation apparatus with a weight placed on a weight 
hanger. 

 
The CoachLab panel (Fig. 3) with the optical gate 
connected (CMA Photogate code0662I) makes it 
possible to record the dependence of the number 
of half-revolutions on time during the rotational 
motion and to display the datasimultaneously on 
the screen as a graphandas a table[2]. 
 

 

FIG. 3: Rotation apparatus with the system IP – Coach:  
1 – CoachLab panel (interface), 2 - optical gate. 

 
 

3. Results and discussion 

3.1 Uniformly accelerated rotational 
motion – kinematics 

Generally, if a rotational motion takes place in 

plane, the following equations hold   
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Uniformly accelerated rotational motion is 

performed by the body rotating about fixed axis 

with constant angular acceleration . Angular 

velocity  and angular displacement  as 

functions of time can be expressed by the 

following equations 

 

 

where  is initial angular velocity and  is 

initial angular displacement.  

The measured experimental dependence of angular 

displacement on time is depicted in Fig. 4. In our 

experiment, the weight discs with mass of 200 g 

were placed symmetrically at the distance of 15 

cm from the axis of rotation (labelling I2in graphs) 

and apparatus was set into motion by the slotted 

weights with mass m = 30 g.  

TheIP-Coach programme makes it possible to 

record and to analyse the measured dependence of 

angular displacement on time. Using the option 

“Analyse” the function  can be 

fitted to the data. As can be seen, this function 

describes the measured dependence satisfactorily. 

Based on the comparison with the theoretical 

function (4) it can be assumed that the apparatus 

performed uniformly accelerated motion and the 

values of parameters correspond tothe values 

of angular acceleration , initial angular 

velocity  and initial angular displacement 

. The values of obtained from the 

fitting procedure are listed in the inset in Fig. 4.  

 
FIG. 4: Angular displacement as a function of time for uniformly 

accelerated rotational motion: blue dots – experimental data, red 
line –fittedfunction (Eq.(4)) 

 
Derivative of the experimental dependence of 

angular displacement with respect to time 

calculated using the option “Processing” in the IP-

Coach programmeprovides the dependence of 

angular velocity on time (Fig. 5). It can be seen 

that angular velocity increases nearly linearly with 

time which is in agreement with the assumption of 

uniformly accelerated rotational motion for which 

equation (3) holds.  

 
FIG. 5: Angular velocity as a function of time for uniformly 

accelerated rotational motion obtained by numerical calculation of 
the first derivative of angular displacement with respect to time:  

blue dots – values from experimental data, red line –Eq. (3) 
 
 

The first derivative of angular velocity (Fig. 5), 

i.e. the second derivative of angular 
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displacement,with respect to timeprovides 

constant angular acceleration as was already 

assumed (red line in Fig. 6, i.e., 

), the obtained dependence 

is displayed in Fig. 6. However, the first derivative 

of the experimental data of angular velocity with 

respect to time results in a more complex 

dependence of angular accelerationon time with 

the values whose dispersion is approximately 20 

% with respect to the above-mentioned value of 

angular acceleration . This dispersion is brought 

about by repeated calculations of the derivatives of 

experimental dependences since they increase 

uncertainties of calculated values. A slight 

deviation of the values of the first derivative of 

experimental dependence of angular displacement 

with respect to time from a straight line (Fig. 5) 

results in a small negative slope of a trend line of 

the second derivative of angular displacement with 

respect to time (green line in Fig. 6). The more 

detailed discussion concerning this issue will be 

presented in section 3.3. 

 
FIG. 6: Angular acceleration as a function of time for uniformly 
accelerated rotational motion obtained by the calculation of 

derivatives: blue dots –the second derivative of angular 
displacement with respect to time, green line –function 

polynomial fit (cubic)to the calculated values (to the set of blue 
dotsin this graph), red line –  

 
 

3.2Uniformly accelerated rotational 
motion – dynamics 

Rotational motion of a rigid body about a fixed 

axis from the point of view of dynamics (acting 

forces) can be described by the following equation 

of motion  

 

where  is torque (sum of acting moments of 

forces),  is moment of inertia of the body and  is 

angular acceleration. This equation says that the 

change in angular acceleration of rotational 

motion can be achieved by the change in torqueM 

at constant moment of inertia I or by the change in 

moment of inertia Iat a constant torque M[3].  

It has to be noted that the equation of motion of 

the rotation apparatus is more complex than 

equation (5) because we deal with a system of 

rigid bodiesin motion:rotating crossbar with 

weight discs (a rigid body with the moment of 

inertia )and a ‘falling’ slotted weight of mass . 

The equations of motion for this system of bodies 

provides the following equation 

 

where 

 

whereris the radius of the spindle and torque 

 in our experiment comes from resistance 

forces acting on the rotating apparatus ( can 

be considered approximately constant for our 

equipment, see discussion in Sec. 3.3).  

Since for the used rotation apparatus it holds 

 equation (5) can be considered to be 

correct.  
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Torque M(7) in our experiment can be changed by 

placing the slotted weightswith different masses 

mon a hanger fixed at the end of the string. The 

mass increaseΔm leads to anΔmgr increase of 

M.Theequation (5) implies that the increase in 

torque results in the increase in angular 

acceleration.The dependence of angular 

displacement on time will be steeper (Fig. 7). 

 

FIG. 7: Angular displacement as a function of time for two 

different values of torque at constant moment of inertia  

 

Moment of inertia I can be markedly changed by 

changing the distance of weight discs placed on 

the crossbar from the axis of rotation. According 

to the equation (5) the increase in moment of 

inertia results in the decrease in angular 

acceleration and increase in angular displacement 

in time will be smaller. The smaller moment of 

inertia results inthe steeper dependence of angular 

displacement on time. The plots of angular 

displacements versus time for two different 

moments of inertia  are displayed in Fig. 8, 

torque was produced by the weight of the slotted 

weight with mass of 30 g. Moment of inertia was 

changed by the changing the positions of weight 

discs on the crossbar, which were 21 cm and 11 

cm from the axis of rotation for and , 

respectively.  

As can be seen, the increase of angular 

displacement in time is slower for  than for .  

 

 
FIG. 8: Angular displacement as a function of time for two 

different values of moment of inertia ( ) and constant 

torque.  

 

3.3.The influence of resistance 
forces on rotational motion 

 
In sections 3.1 and 3.2 the influence of resistance 

forces on experimentally obtained data has not 

been discussed yet. The so far presented 

experimental procedure and data processing can 

be used in the basic physics course in which the 

knowledge of basic quantities and equations 

related to rotational motion should be deepened.   

If this experiment is used in physics courses for 

specialized technical programmes, it is necessary 

to include the influence of resistance forces 

(frictional and viscous resistance forces) in the 

description of rotational motion in order to 

evaluate dynamic quantities in a correct way. 
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If frictional forces are taken into account then 

equation of motion of rotational motion of a rigid 

body (5) will have the following form  

 

wherethe torque of frictional forces  is explicitly 

expressed  now. 

We will assume that torque of frictional forces is 

constant for our apparatus since the weight of 

slotted weights with acts on the axle in 

perpendicular direction with respect to the axle 

axis and it does not increase the force which acts 

on the agate bearings and it does not increase the 

torque of frictional forces . Its value can be 

determined in an experiment without driving 

weight: . The crossbar will be set 

into motion manually by a stroke. The motion will 

be retarded due to the frictional forces between 

vertical axleand agate bearings. Torque of 

frictional forces  can be then determined from 

experimental dependence of the number of half-

revolutions on time (Fig. 8).  

Fitting function  to the 

experimental data and taking into account 

equation (4), the value of angular deceleration 

( ) can be obtained which is 

 for the data plotted in Fig. 

9. Moment of inertia can be calculated using the 

following expression  

                                                (9) 

where is moment of inertia of the crossbar 

( ) and is moment of inertia of 

weight discs placed at distance  from the axis of 

rotation.  

If the mass of weight discs is  and 

their distance from axis of rotation is , 

the mass of the crossbar is , its 

length is then moment of inertia of 

rotating apparatus can be calculated using (9) and 

it is . 

 
FIG. 9: Number of half-revolutions as a function of time for 

uniformly decelerated rotational motion: dots – experimental 

data, red line –correspond to function (Eq. (4))divided by fitted to 
the measured data. 

 

Using experimental values for angular 

deceleration and moment of inertia, the moment of 

frictional forces can be calculated using equation 

(6) for  ( ) 

 

The experimental data provided the value 

.  

It has to be noted that the rotational motion of 

rigid body is also slightly influenced by viscous 

resistance forces of the surrounding air which 

depends on the velocity of the body. This is the 

cause of slight deflection of the values of angular 

velocity from a straight line in Fig. 5. The 

dependence of angular acceleration on time (Fig. 

6) is not constant but decreases in time (with 

increasing angular velocity). Decrease is 
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successively smaller since the torque of viscous 

resistance forces is function of velocity which 

increases in time and more and more compensates 

the torque of driving weight.The total torque 

which accelerates the apparatus is gradually 

smaller and smaller. We do not discuss frictional 

and viscous resistance forces acting on the other 

parts of the system (pulley, weights of mass 

m)since theycan be considered negligibly small in 

comparison with resistance forces discussed 

above.  

7. Conclusion  

Rotational motion of a rigid body about a fixed 

axis can be easily demonstrated using the rotation 

apparatus and the system IP–Coach. The 

advantage of the proposed experimental setup is 

the possibility of immediate displayof basic 

kinematic quantities – directly measured angular 

displacement, and derived quantities -angular 

velocity and angular acceleration as functions of 

time. These quantities can be related to basic 

dynamic characteristics of the rotational motion of 

a rigid body through the equation of motion for 

rotational motion. The influence of torque and 

moment of inertia on kinematic quantities of 

rotational motion can also be demonstrated. The 

influence of frictional and viscous resistance 

forces can also be observed. The proposed 

experiment can be used not only in laboratory 

practicalsbut also as a video demonstration or live 

experiment during the lecture since students can 

observe directly uniformly accelerated and 

decelerated rotational motions and kinematic 

quantities related to this motion as functions of 

time. 
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Abstract 
We present a newly designed modulefor a General Physics course helping to reinforce the concept of harmonic 
motion through examples from electrostatics.

 
 

1. Introduction 
Harmonic motion is one of the most important 

topics in general physics, particularly since 

understanding such motion is crucial for grasping a 

number of important processes in physical 

chemistry, such as absorption and emission of 

electromagnetic radiation, non-linear optics, or 

vibrotational molecular spectra [1]. Within the 

framework of a typical American university 

curriculum, harmonic oscillatorsare introduced in 

the first semester of a two-semester general 

physics sequence [2]. However, the amount of 

material and available choices for topics are so 

wide that occasionally introduction ofthe harmonic 

motion is delayed until the second semester of this 

sequence, the one traditionally devoted to 

electricity and magnetism.  Below I describe a 

module(a series of activities and exercises) I 

designed for this specific purpose, namely for 

familiarizing students with harmonic motion 

through electrostatics-related problems and for 

reinforcing the relevant concepts.  

 

 

 

 

Throughout this module I tried to keep the 

needed mathematics as simple as possible, thus 

allowing one to concentrate on the physics of 

things. 

Less than a week into electrostatics [3], I start 

with a brief description of harmonic motion, both 

in terms of the definition and the 

transformations of energy during the oscillations 

of an object attached to a spring. I also present 

the main formulafor the period of such 

oscillations,  

 2 m k/ ,     (1) 

with m being the mass of the oscillator and k the 

spring constant.  Then I assign, for the class work, 

the following problem:  

Problem 1.A positively charged bead (charge q, 

mass m) is placed between two identical positive 

point charges Q which are separated by a fixed 

distance 2a (Figure 1).  The bead, confined to move 

along the line connecting charges Q, is displaced a 

certain distance ε along the axis and released. 
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Determine the condition upon which the subsequent 

bead oscillations are simple harmonic motion and 

determine the frequency ν of these oscillations. What is 

the significance of this result with regard to the general 

features of harmonic vs. non-harmonic oscillations in the 

nature? 

 

Figure 1. Geometry of Problem 1. 

A number of students arrive at the solution successfully. 

The total force acting upon the bead is (see Fig. 1): 

 

where  , magnitudes of the forces 

acting due to the right-hand-side and the left-hand-side 

point charges respectively. Clearly, when  Eq. (2) 

yields 

  (3) 

thus the oscillations in this case are harmonic, and 

according to Eqs. (1), (3), 

 

In order to solve this problem, students needed to 

figure out that the force acting upon the bead is, for 

 directly proportional to its displacement  

from the position in the center of the gap 

between the charges Q. And, as Richard Feynman 

once said (and an article on mechanical harmonic 

motion [4] reminded), “the same equations have 

the same solutions” – in other words, electric 

forces in our system work exactly like a spring 

with a spring constant of , thus yielding 

the solution Eq. (4).  

Discussing the answer to the latter part of 

Problem 1, I describe to the students the analogy 

with oscillations of electronic clouds inatoms 

under the action of ordinary light, when the 

magnitude of oscillations is small and thus the 

oscillations are harmonic. However, when a 

powerful enough laser is used for irradiating the 

medium, deviations from harmonic behavior 

become significant, which gives rise to the whole 

new class of phenomena of non-linear optics, 

particularly to frequency doubling (see, for 

example, Ref. [1], p. 776). 

 

As a homework, I assign students a problem on 

determining the field of a semi-infinite charge 

line (problem 24 [3]), along with the following 

problem dealing with a similar system:  

Problem 2. A positively charged bead (charge q, 

mass m) is placed between two identical semi-

infinite line charges extending one from negative 

infinity to x=-x0 , and another one from x=x0 to 

positive infinityas shown inFigure 2. The lines 

carry positive charges with uniform charge 

density λ0. The bead, confined to move along the 

x axis, is displaced by a small distance ε  along 

the axis (where ε <<x0 ) and released (Figure 2). 

Show that the particle oscillates in simple 

harmonic motion and determine the frequency 

of these oscillations. 
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Figure 2. Geometry of Problem 2. 

 

This latter problem is usually solved by a majority of 

students. They learn upon solving the (simultaneously 

assigned) problem 24 [3] that the magnitude of the force 

 acting due to the right-hand-side line charge is 

 

 

where  is the distance between the particle and the 

edge of the line charge. Thus, for a bead deviated from 

x=0 by ε, the total force acting on it would be: 

 

forε <<x0. Therefore, as in Problem 1, 

electrical field acts as a spring with a constant of  

  ,                                                                             

(7) 

and thus  

 

.(8) 

 

True to my usual routine [5,6], I assign a similari, 

but somewhat more open-ended, problem as a 

bonus problem for the test: 

Problem 3. In a recent class we saw an example 

of an oscillator (pendulum) where the oscillations 

are harmonic only when their magnitude is small. 

Using the topics from electrostatics that we have 

just studied, design an oscillator for which the 

oscillations would remain harmonic for the finite, 

not just small, magnitude of oscillations. Express 

the frequency  ν  of these oscillations through the 

parameters of your designed system (size, etc). 

Surprisingly, only very few students arrive at the 

correct solution this time – even though they all 

have studied the related system less than a week 

ago! In class, we consider the application of 

Gauss’s law to an insulating,uniformly charged 

solid sphere (Ref. [3], pp. 641-642). For r < a 

(where r is the distance from the sphere’s center 

and  a  is its radius), it yields: 

 

 

whereEis the electric field and  is the total 

charge of this sphere. Thus, if we drill a narrow 

hole through the center of this sphere and let a 

small charged bead (with  
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a mass m and charge q opposite to ) travel through 

that hole (see Figure 3), it will undergo harmonic 

oscillations for as long as their amplitude 

ccording to the above, the 

frequency of these oscillations is 

 

.(10) 

Figure 3. Geometry of Problem 3 

In the author’s opinion, the above activities/exercises 

allow one to “kill two rabbits with a single bullet”, 

namely to reinforce the application of the principles of 

electrostatics in non-standard context and to teach 

students to recognize the harmonic motion in an 

unfamiliar setting, thereby providing the necessary 

reinforcement to the new concept. Besides, it allows for 

another reinforcement of the topic of frequency 

doubling ([1], p. 776), an example with which I always 

conclude the discussion of the solution to Problem 3 

during the next class meeting, emphasizing the 

qualitative difference of the laser radiation’s effect on 

the molecules from that of the traditional light source. 

Last, but not least, these exercises help the students to 

see one of the most beautiful aspects of physics – the 

universality of the characteristics of seemingly 

unrelated effects [4].  

Remarkably, even though the module is fairly brief, 

it appears to do the trick – now, when students 

come to my physical chemistry class next year, 

absolute majority of them clearly recognize the 

relevant concept and easily transition to the study 

of non-linear optical phenomena [1]. 
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i Another similar problem that could be assigned 

here is the one dealing with oscillations of a 

particle near the center of a ring (problem 76 

[3]). Unfortunately, in order to solve that 

problem, greater sophistication in mathematics 

(particularly, vector analysis) is needed. As a 

result, students are unable to solve the problem 

on their own, and the physics of the solution 

(when presented to them) gets buried under the 

math. 
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Abstract 

A novel method in the solving of the College Physics II standard 2-capactor parallel 
reconnection problem was presented with a focus on the motion of the transferred charges.  
The reduction in electrostatic field energy of the higher voltage capacitor would be equal to 
the work required to move the charges to the lower voltage capacitor.  A spring with a 
movable gap capacitor model would connect the teaching of College Physics II field energy 
concept to College Physics I stored energy concept with some introduction to radiation.  The 
addition of a pulley and mass to a movable gap capacitor in the Atwood machine configuration 
would serve as a numerical model for the teaching of oscillation, starting with an example of 

computation using energy conservation principle in a spring-mass system with a simple 
period formula.  The discovery spirit in electrodynamics development was modeled as 
extensions of mechanics topics in Physics I and was taught to the students in Physics II.  Good 
Physics Education delivery would be vital for doing Physics Education Research on the 
collected student performance data to assess student learning in physics problem solving skill 
and discovery spirit.   
   

 

1. Introduction 
The College Physics standard 2-capacitor parallel 
reconnection problem is shown in Figure 1.  The 
usual method have been focusing on the final 
charges on each capacitor with unknown charges 
as Q1 and Q2 respectively, coupled with the 
conservation of charge  that Q1 and Q2 would be 
equal to the sum of the initial charges.  Solving the 
simultaneous equations would give Q1 and Q2.   

C1 = 1.5 Farad with 3 
Coulombs @ 2 Volts 
C2 = 2 Farad with 8 
Coulombs @ 4 Volts

Parallel Reconnection
Q1/1.5 = Q2/2
Q1 + Q2 = 11

C1

C2

 
FIG. 1: A schematic view of connecting two capacitors in parallel.   
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The drawing in Figure 2 shows a solution method 
where the focus is on the transferred charge, Qt.  
Setting up the voltage equality would immediately 
generate the numerical answer for Qt in a single 
equation.   

C1 = 1.5 Farad with 3 
Coulombs @ 2 Volts C2
= 2 Farad with 8 
Coulombs @ 4 Volts

Parallel Reconnection
Qt = Q-transfer
(3 + Qt)/1.5 = (8- Qt)/2

C1

C2

 
FIG. 2: An illustration of the Q-transfer relationship when two 

capacitors are connected in parallel.   

 

2. Work-Energy Theorem 

The energy used to transfer the charges can be 
calculated as the product of Qt and voltage 
difference.  However the numerical value for the 
voltage difference is not obvious since the voltage 
on either capacitor is changing until both 
capacitors reach the final voltage, 3.142857 Volts.  
The standard formulation of ½QV can still be used 
with the ½ factor being explained in Figure 3.  The 
area bounded by the triangle would be ½ * base * 
height = ½ * (4-2) * 1.71 = 1.71 Joules, with Qt= 
1.71 Coulomb. 
 

 
FIG. 3: Voltage (y-axis) versus Coulomb (x-axis) 

The energy of the system can be computed using 
the expression ½*Q2/C or ½*0*E2*Volume when 
focusing on the electric field energy in the gap 
space of a capacitor with  as the permittivity.  
The energy before reconnection would be 19 
Joules (32/2/1.5 + 82/2/2 numerically).  After 
reconnection, the energy would then become 
17.29 Joules (3+1.71)2/2/1.5 + (8-1.71)2/2/2 
numerically) such that the loss energy 1.71 Joules 
is equal to the work which is illustrated in Figure 
3, thus verify the Work-Energy Theorem.  The 
work in Joules is also related to the voltage drop 
of C2 and the voltage increase in C1, as illustrated 
in Figure 3.  In fact the voltage change concept 
can also be used to compute the transferred 
charge, as shown in Figure 4.  In other words, the 
voltage difference of 2 Volts needs to be divided 
into the ratio of 1/C1 to 1/C2, that is, 0.67 to 0.5.  
Given a magnitude of 2, the division would be 
1.15 to 0.85 such that C2 would have (4 – 1.15) = 
3.15 Volt and C1 would have (2 + 0.15) = 3.15 
Volt, with small round-off errors as shown in 
Figure 4. 
 

C1 = 1.5 Farad with 3 
Coulombs @ 2 Volts 
C2 = 2 Farad with 8 
Coulombs @ 4 Volts

Parallel Reconnection
C2 V-drop = C1 V-
increase
4 - Qt/C1 = 2 + Qt/C2
4 - Qt/2 = 2 + Qt/1.5
(4- 2) = (0.67 + 0.5)Qt

C1

C2

 
FIG. 4: An illustration of the voltage change relationship when two 

capacitors are connected in parallel 
 

 

3. Capacitor-Pulley Problems 

The case of a capacitor plate connected to a spring 
in a variable gap distance design has been worked 
out in open literature [1].  The electrostatic 
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attraction force between the capacitor plates would 
be Q*Q/ (2*A*) and the spring compression via 
Hooke’s Law would be Q*Q/ (2kAwith k 
represent the spring constant, and A represented 
the plate area.  The electrostatic field energy is 
coupled with the stored mechanical spring energy.  
A small displacement with energy ½*k* 
Amplitude*Amplitude would enable oscillation 
with damping governed by the dipole field 
radiation loss. Working on a simple postulation 
that an accelerated charge will radiate, the 
radiation should be proportional to acceleration-
squared because the Cartesian representation of 
acceleration in the negative axis should not give 
different result from acceleration in the positive 
axis without symmetry breaking.  Knowing that 
acceleration is proportional to frequency-squared 
in an oscillation, then the radiation of this 
capacitor-spring system should be proportional to 
frequency^4, thus capturing an essential feature in 
the Rayleigh scattering model.  When a variable 
gap capacitor is connected to another mass via a 
pulley as shown in Figure 5, the standard Atwood 
Machine configuration would become an 
oscillatory system when the capacitor charges are 
changing with time. 
 

m1

Large 
Capacitors

E-field

 
FIG. 5: A schematic view of the capacitor-pulley system.   

 
The Figure 5 scenario can be illustrated with a 
numerical simulation using Microsoft Excel.  The 
numerical simulation technique can be learned 

with relative ease for the case of the simple 
harmonic motion as illustrated in Figure 6.   
 
 

Table

spring 

Wall

v (x) =  2 [total energy - 1/2*k*(x - x-max)^2]/m
time =  dx / v(x)   from  0  to x-max  = period/4

 
FIG. 6: A schematic view of the simple harmonic motion system 

used in the simulation with spring constant = 500 N/m, block mass 
= 40 kg, and pulley has negligible mass. 

 

The simple harmonic motion of a spring-mass 
system simulation, with period T = 2   (mass/ 
spring constant), was based on dividing the 
amplitude into small distance increments.  An 
application of the energy conservation principle 
for a small distance would give the velocity or 
speed, as illustrated in Figure 6.  The time for that 
small distance interval was then obtained by 
dividing the distance by the calculated speed from 
energy conservation principle.  The total time 
would be obtained by summing all the small 
distance increment durations numerically such that 
 can be computed.  The number of iterations 
would be the number of distance intervals used in 
the simulation.  In fact, an approximation of  can 
be computed using this energy conservation 
principle simulation, which is similar to the 
polynomial expansion of  in calculus, as 
illustrated in Figure 7.  We know that Arc-tan (1) 
= In Calculus the Arc-tan(1) value can be 
computed with   dx/ (1 + x2) with x from  0 to 1, 
and that is also equal to the infinite series of   1 - 
1/3 + 1/5  - 1/7 + 1/9 ………. via the Leibniz 
formula for  computation.  Whether the Leibniz 
formula or energy conservation principle is more 
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computational efficient would be a good Excel 
exercise for software engineering majors. 
 

 
FIG. 7: A graphical illustration of the  calculation versus the 

number of iterations in the simple harmonic motion simulation. 

 
Note that the capacitor-pulley simulation used a 
non-linear voltage variation along the gap of the 
capacitor (Figure 8).  The voltage sources are 
constant and the simulation assumed that the 
charge transfer needed negligible time.  The 
electrostatic force supplied by the 4,000 Volt 
constant voltage source plus the weight of the 2.7 
kg electrode on the pulley right side would exceed 
the weight of the 4 kg block on the pulley left side 
initially.  When the 2.7 kg electrode passes the 10 
Volt source, charge transfer would diminish the 
electrostatic force such that the pulley left side 
effective weight would be heavier and stop the 2.7 
kg electrode from falling.  Similarly when the 2.7 
kg electrode passes the upper 5,000 Volt constant 
voltage source, the charge transfer would increase 
the electrostatic force such that the pulley right 
side effective weight would be heavier and stop 
the 2.7 kg electrode from raising.  This alternating 
effective weight scheme would result in an 
oscillatory phenomenon until the 2.7 kg electrode 
touches the bottom electrode eventually. 
 

4 kg

0.06 meter@ 10 V

E-field

2.7 kg
0.07 meters @40,000 V

0.08 meter @ 50,000 V

cap-plate area 10 sq meters

 
FIG. 8: A schematic view of the parameters used in the simulation. 
 

The result showed an oscillation with increasing 
amplitude since the mechanical work by the (4 – 
2.7) kg mass difference would exceed the 
electrical energy gain.  The displayed cycle 
between the time intervals from 2 sec to 5 sec in 
Figure 9 carries a mechanical work of 2.578 
Joules and an electrical energy gain of 2.433 
Joules. The final situation where the upper 
capacitor plate will eventually reach the lower 
plate with zero gap distance will stop the 
oscillation when the charges become neutralized.  
Then the 4 kg block will fall and the 2.7 kg 
electrode with no charge will rise.  The expected 
Casimir effect for the sub-micron gap parallel 
plate geometry with no charge could be mentioned 
briefly.  Anyway the changing dipole filed would 
still generate a radiation field, though extremely 
weak and was not included in the simulation. 
 

 
FIG. 9:  Upper plate position versus time  
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4. Discussion 

Good Physics Education delivery would be vital 
for doing productive Physics Education Research 
with the collected student performance data to 
assess the use of discovery strategy in teaching 
physics.  The understanding of the reciprocal 
relationship in capacitor gap distance and the 
compensation of a faster growing function in 
voltage such as quadratic feature would generate 
multiple numerical examples for students to 
engage in designing different situations.  The 
numerical simulation example in using the 
capacitor-pulley system is just one example 
among many others.  For example two capacitors 
connected in series could be configured as an 
uplift device as shown in Figure 10.  This 
engineering physics model would help students to 
think about the energy storage issue for wind and 
solar power alternatives without the electric power 
grid.  The force and electric field application 
details are also available in the open literature. 
 

Voltage
motion

movable-plate

movable-plate

fix-plate

fix-plate

E-field

 
FIG. 10: A schematic view of an uplift device. 

 
 
The engineering physics example illustrates the 
importance of hinting/pointing to higher physics 
class materials, and help students to decide if they 
are ready as electrical engineering majors when 
transferring to a 4-year college from our 

community college pre-engineering program.  
When in doubt, a student with a discovery spirit 
usually would appreciate an instructor’s guidance 
and search the web for ideas.  For example, the 
Townsend Brown work on capacitor is available 
on popular media [2], and Wikipedia also has an 
explanation on the Biefield-Brown Effect [3].  
Technical sites like NASA has a publication on 
propulsion using asymmetrical capacitor design 
[4], and that US Army Research Laboratory also 
has a related article in archive [5].  Recent 
research for space propulsion system via the 

Biefield-Brown Effect is also available in pen 
literature [6].  An instructor knowledgeable with 
these information resources would be able to 
sustain the discovery spirt of a student with 
various problem solving skills linking Physics II 
explicitly to Physics I; and be vital to providing a 
good physics education. 
 
 

5. Conclusions 

We have demonstrated the charge movement 
concept in teaching capacitor related problems, 
and capacitor-pulley system oscillation with 
numerical simulation was found to be successful 
to encourage student discovery spirit.   
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Abstract

A simulation of Rutherford’s experiments of 1911 about the scattering of α particles is
presented using Fortran. The number of collisions (number of particles scattered) were
considered per unit solid angle and the curve obtained was fitted with a new function.

1 Introduction

A hundred years ago Lord Ernest Rutherford
conducted a series of experiments performed
by Geiger and his student Marsden that lead
him to discover atomic nucleus[1]. Bombard-
ing a thin Au foil with α-particles emitted
by RaC (Bi214), they measured the scattering
angle, and Rutherford deduced an expression
for a coulomb field that was later confirmed
quantum mechanically by N. Bohr. Ruther-
ford recognized that the energy and direc-

tion of the emitted particle was a random
event and a consequence of a single encounter
particle-nucleus and not a result of multiple
scatterings. The formula he deduced for the
dfferential scattering cross section σ(θ) is well
known and can be found in any Classical Me-
chanics text book [2, 3]. The α-particle is
subject to a coulombian central force field
whose potential is

V (r) =
K

r
, K =

1

4πε0
q1q2 (1)
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The impact parameter s and the scattering
angle θ are related by:

s = κ cot(
θ

2
) (2)

where κ = K/(2T ′0), and T ′0 is the α-particle’s
energy in the center of mass system [2, 3].
Goldstein [3] defines the differential scatter-
ing cross section as

σ(θ)dΩ =
n

I
=

s

sin θ

∣∣ds
dθ

∣∣
where n is the number of particles scattered
within the solid angle dΩ per unit time and I
is the intensity of the incident particles. Sub-
stituting s from eq (2) we obtain Rutherford’s
law:

σ(θ) =

(
K

4T ′0

)2

· sin
(
θ

2

)−4
. (3)

2 Particle count

The number of particles scattered within unit
solid angle dΩ, that is, between θ and θ+ dθ,
is determined by[3]:

σ(θ)IdΩ = 2πσ(θ)I sin θ|dθ| (4)

The area of the shaded region is 2πs·∆θ. The
total area is obtained considering the whole
range of θ values which is π rad or 180o; that
is, area = 2π2s · 180/π = 360πs. ([3], p. 107)

The absolute value is taken because to an
increase of θ corresponds a decrease in the
scattering angle. The intensity of the inci-
dent beam I is calculated as the number of
particles per unit area per unit time:

I =
number of particles/sec

area

= =
N

2πR2 sin θ∆θ
=

N

90sr2

Integrating eq (4)

n = 4πIσ0 sin(
θ

2
)−2

=
Nσ0
90sr2

sin

(
πθ

360

)−2
(5)

because θ is expressed in degrees. We found
that this new function fits the data of the
simulation.

3 Data

The next table shows the energies of the α-
particles emitted by Bi214 and their relative
intensities [4]:

Volume 32, Issue 1, Article Number:7 www.physedu.in



Physics Education 3 Jan-Mar 2016

Energy Intensity
(keV)

4941 5.3E-5
5023 4.4E-5
5184 1.28E-4
5273 0.00122
5452 0.0113
5516 0.0082

T
′
0 was taken as the expected value of these

energies:

Total Energy = Energy1 · p1 + Energy2 · p2
+ · · · = 5.4628 MeV

where pi = relative intensity. Nuclear radius
was calculated according to[5]:

r = (r0+
r1
A2/3

+
r2
A4/3

)·A1/3 = 5.4499×10−15m

being A the atomic number and the param-
eters take the values: r0 = 0.9071 fm, r1 =
1.105 fm y r2 = -0.548 fm, and 1 fm = 10−15

m. κ and s in ec(2) are expressed as multi-
ples of the nuclear radius r (κ = 3.8210 r =
2.0824×10−14 m).

4 Fortran

We vary two quantities: l0 and N . The im-
pact parameter s is generated at random be-
tween 0 and l0, being l0 an arbitrary value (l0
= distance from the scattering nucleus ex-
pressed as a multiple of the nuclear radius).
Rutherford reports that Geiger made some
N = 250 000 counts at each mesurement ses-
sion, so we decided to generate this number of

“events”. Next, the scattering angle θ given
in eq (2) is generated, and then, expressed
in degrees (the factor 2 in eq (2) becomes:
2*180/Pi = 114.59.) Each scattering angle
is rounded to the nearest integer because we
are interested in the number of particles scat-
tered degree by degree. Afterwards we count
the particles scattered in each degree. Note
that since s < l0, the scattered angles sat-
isfy: θ > 2 ∗ arctan[κ/l0] ∗ 180/π. The data
is dumped in the file “dataC.dat” and read
by Gnuplot to obtain the plot shown in fig
4. The code of the Fortran program is in ap-
pendix A.

 0

 100

 200

 300

 400

 500

 20  40  60  80  100  120  140  160  180

N=250000, s0=763

Graph of n vs θ made with Gnuplot of the
data generated by Fortran. θ is expressed in
degrees and in the vertical axis is n. The con-
tinuous line corresponds to eq (5) while the
data generated with Fortran are represented
with crosses. In this case, s0 = 763 nuclear
radii, and 250 000 events were simulated. The
code of this graph is in appendix B.
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5 Conclusions

According to the results, the new expression
eq (5), correctly explains the number of parti-
cles found in each degree, since, as we can see,
it fits well the data generated. The results
also show that it is possible to use Fortran
to reproduce Rutherford’s experiments of the

scattering of α-particles by a nucleus, by a
simple-code program. We would like to add
that the random number generator[6] can be
considered a good generator because it per-
mitted us to obtain data that resembles the
data observed of a phenomenon (emission of
particles) which, by its very nature, we know
it is completely aleatory.

A Fortran Code

Program scattering

implicit none

integer, dimension(180) :: counter

real(8) :: e, epsilon0, k

real(8) :: r0, r1, r2, AA, r

real(8) :: s0

real(8) :: T0, kappa, sigma0

real(8) :: rand

real(8) :: s, theta, sigma

real(8), parameter :: pi = 3.141592653589793d0

integer :: error, i, n, v, d, Z

!----------------------[ Parameters of the problem ]----------------------80

e = 1.6022d-19

epsilon0 = 8.8542d-12

Z = 79.

k = .5 * Z * e / (pi * epsilon0)

AA = 1.9697d2

r = (0.898 + 1.376/AA**(.6666666) - 2.262/AA**(1.333333) ) * 10 **(-15.) &

* AA**(.3333333)
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T0 = 5.4628d6

kappa = .5 * k / (T0 * r)

sigma0 = ( .25 * k / T0 )**2.0

!-----------------------------[ data ]------------------------------------80

print*, "# of events ’N’:"

read*, n

print*, "Choose a value ’s0’:"

read*, s0

open(unit=20,file="dataC.dat",status="replace",action="write")

write(unit=20,fmt="(i8)") n !

write(unit=20,fmt="(f6.0)") s0 ! Write these values

write(unit=20,fmt="(es13.6)") sigma0 ! for Gnuplot

write(unit=20,fmt="(es13.6)") r !

!------------------------[ Initializing the counter ]---------------------80

counter = 0

!--------------------------------[ loop ]---------------------------------80

call init_random_seed()

do i = 1, n

call random_number(rand)

s = s0 * rand

theta = 2.0 * atan( kappa / s )

d = nint(theta * 180.0 / pi)

if ( d <= 1.0 ) then !

counter(1) = counter(1) + 1.0 !

else !--------[ counter ]--------80

counter(d) = counter(d) + 1.0 !

endif !
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enddo

!--------------------------[ save the counter ]---------------------------80

do i = 1, 180

write(unit=20,fmt="(i3,i8)",iostat=errorC) i, counter(i)

enddo

close(unit=20)

!-----------------------------[ messages ]--------------------------------80

print"(a,i4)", "error in ’counter’ = ", error

!*****************************

contains

!*****************************

!-------------------[ subroutine init_random_seed ]---------------------80

subroutine init_random_seed()

! implicit none

integer, allocatable :: seed(:)

integer :: i, n, un, istat, dt(8), pid, t(2), s

integer(8) :: count, tms

call random_seed(size = n)

allocate(seed(n))

! First try if the OS provides a random number generator

open(newunit=un, file="/dev/urandom", access="stream", &

form="unformatted", action="read", status="old", iostat=istat)

if (istat == 0) then

read(un) seed

close(un)

else

! Fallback to XOR:ing the current time and pid. The PID is

! useful in case one launches multiple instances of the same

! program in parallel.
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call system_clock(count)

if (count /= 0) then

t = transfer(count, t)

else

call date_and_time(values=dt)

tms = (dt(1) - 1970) * 365_8 * 24 * 60 * 60 * 1000 &

+ dt(2) * 31_8 * 24 * 60 * 60 * 1000 &

+ dt(3) * 24 * 60 * 60 * 60 * 1000 &

+ dt(5) * 60 * 60 * 1000 &

+ dt(6) * 60 * 1000 + dt(7) * 1000 &

+ dt(8)

t = transfer(tms, t)

end if

s = ieor(t(1), t(2))

pid = getpid() + 1099279 ! Add a prime

s = ieor(s, pid)

if (n >= 3) then

seed(1) = t(1) + 36269

seed(2) = t(2) + 72551

seed(3) = pid

if (n > 3) then

seed(4:) = s + 37 * (/ (i, i = 0, n - 4) /)

end if

else

seed = s + 37 * (/ (i, i = 0, n - 1 ) /)

end if

end if

call random_seed(put=seed)

end subroutine init_random_seed

endprogram scattering

B Gnuplot Code

reset

N = system("awk NR==1 dataC.dat")

s0 = system("awk NR==2 dataC.dat")

sigma0 = system("awk NR==3 dataC.dat")

Volume 32, Issue 1, Article Number:7 www.physedu.in



Physics Education 8 Jan-Mar 2016

r = system("awk NR==4 dataC.dat")

f(x) = N * sigma0 /(90 * s0 * r**2.) * sin(x*pi/360.0)**-2.

plot [1.:180.][0.:500.] ‘dataC.dat’ every ::6 notitle, \

f(x) title sprintf("N=%.0f, s0=%.0f", N+0, s0+0) \

lw 1.5 lc 3
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Abstract

Divisibility of a non–zero coefficient of an integer polynomial, by the binomial coefficient
associated with the degree of the polynomial and the corresponding index of the power of
the argument, is established for a Legendre Polynomial, multiplied by the exact power of 2
which divides the factorial of its degree, and a modified Hermite polynomial. These two
coefficients have the same parity and their ratio is always an odd integer. Together the
coefficients of each one of these two integer polynomials produce a perfect palindrome with
respect to their parity. In spite of divisibility, the parity of a coefficient of a Laguerre
polynomial, multiplied by the factorial of its degree, and the parity of a coefficient of a
Hermite polynomial, cannot be predicted perfectly by the associated binomial coefficient.

1
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1 Introduction

The Legendre polynomials are extremely
useful in Special Functions, Mathematical
Physics, Numerical Methods, Electromag-
netic Theory, Quantum Mechanics, Quantum
Theory of Angular Momentum, and Nuclear
Physics [1, 2, 3, 4]. The power series expan-
sion of the Legendre polynomial of degree n
in x is given by [1, 2, 3]

Pn(x) =

[n/2]∑
s= 0

(−1)s (2n− 2s)! xn−2s

2n s! (n− s)! (n− 2s)!
. (1)

Here [ρ] is the greatest integer ≤ ρ. The
common denominator of all the coefficients
of Pn(x), when reduced to their lowest terms,
is 2B, the greatest power of 2 which divides n!
[5, p. 352] (Pearl # 1). Our Legendre poly-
nomial, from now onwards, is a rational func-
tion (the symbol “,” standing for “is equal
to by definition”),

Pn(x) , Kn(x)/2B, n+ 1 ∈ N,

n!/2B = odd #, (2)

such that all the coefficients of Kn(x), a poly-
nomial of degree n in x, are integers. Thus,
by the numerator of Pn(x) we always mean
Kn(x), and the denominator of Pn(x) is al-
ways 2B. The coefficients of Kn(x) are 2B

times the Legendre coefficients. It is nice to
note that Kn(x) is an integer polynomial, i.e.,
a polynomial whose coefficients are integers
[6]. Let us remember that Kn(x) has a defi-
nite parity (−1)n [1, 2, 3]. It is an even (odd)
polynomial when the degree n is even (odd).
See Eqs. (1) and (2). Focussing on xn−2s in
Eq. (1), let us note that both n − 2s and n
have the same parity: odd (even) when n is
odd (even), since our 2s is an even integer.

The purpose of our paper is to show that
the coefficient of xn−2s, 0 ≤ s ≤ [n/2], n+1 ∈
N, in Kn(x), is always divisible by the asso-
ciated binomial coefficient nn− 2s (Pearl #
2), and that the ratio of these two coefficients
is an odd integer forever (Pearl # 3):

nn− 2s
∣∣∣ coefficient of xn−2s inKn(x), (3)

(−1)s × coefficient of xn−2s inKn(x)

= odd positiveinteger × nn− 2s. (4)

We also establish the parity–palindromic
nature of the coefficients of Kn(x) (Pearl #
4).

Our paper is organized as follows: Section
2 deals with the contributions of Legendre
and Kummer [7, 8, 9] on the p − adic valua-
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tion of certain interesting integers. In Sec-
tion 3, we prove Holt’s result [5, p. 352]
(Pearl # 1) concerning the common denom-
inator of the Legendre coefficients, when re-
duced to their lowest terms. That Pascal (bi-
nomial coefficient) is able to predict perfectly
the parity of Legendre (coefficient multiplied
by 2B), is established. We show that each
coefficient in the numerator of a Legendre
polynomial is divisible by the associated bino-
mial coefficient, DegreePower, always result-
ing in an odd integer upon division. We also
prove that the coefficients in the numerator
of Pn(x) produce a palindrome with respect
to their parity (parity–palindrome) perfectly.
Section 4 contains other lovely and pleasant
results concerning the Legendre coefficients.
In Section 5, we appreciate the beauty of
the Pascal’s Triangle and consider its appli-
cation to the Legendre polynomials. Deal-
ing with the Laguerre, Hermite, and modified
Hermite polynomials [1, 2, 3, 10] in Section
6, we prove that the (non-zero) coefficient of
xs in Φn(x), an integer polynomial [6], is di-
visible by the binomial coefficient ns, when
Φn(x) = n!Ln(x), Hn(x),Hen(x);n + 1, s +
1 ∈ N, 0 ≤ s ≤ n. Here Hen(x), n ≥ 0, are
the modified Hermite Polynomials [1, p. 189],
[10].

2 Remembering and

Honouring Legendre

and Kummer

Let P be the set of prime numbers, p ∈ P, and
µ be an integer ≥ 2. Then νp(µ), the p−adic

valuation of µ, is the exponent of p in the
canonical decomposition in prime factors of
µ. It has been elegantly shown by Legendre
[7, 8, 9] that

νp(n!) = (n− σp(n))/(p− 1),

n ≥ 2, n ∈ N, p ∈ P, (5)

where σp(n) is the sum of the digits in the
base–p expansion of n, with

σp(np) = σp(n), n ∈ N, p ∈ P. (6)

Example # 1: Since 2015 = 5 × 13 × 31
and since 5, 13, and 31 are prime numbers,
ν5(2015) = 1 = ν13(2015) = ν31(2015);
ν3(2015) = 0 = ν11(2015) = ν23(2015).
Xcfc (=Checked and found correct!! ). We
are extremely grateful to our revered Guruji,
Prof. Dr V Devanathan [4], who always in-
sists: “Check, Recheck, Cross-Check, Double-
Check, Multi-Check!!” Let us develop the
culture of checking the correctness of what-
ever we do [11]!! As his faithful students,
we always ask our students to check the cor-
rectness of their own calculations in various
ways.

Let a be a positive integer and let
ak, ak−1, . . . , a0 be the digits of a, when writ-
ten in base p. Hence the base–p expansion of
a is

a , (ak ak−1 . . . a0)p

=
k∑

s= 0

ak−s p
k−s,

0 ≤ ak−s ≤ p− 1, p ∈ P. (7)

Similarly, let b ∈ N with b , (bk bk−1 . . . b0)p
and let εq = 1 if there is a carry–over in the
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qth digit when a and b are added; otherwise
εq = 0. Then (see [8, p. 1113], [9, p. 7])

c = a+b = pk+1εk+pkck+· · ·+pc1+c0, (8)

with

c0 = a0 + b0 − p ε0, (9)

ct = at + bt + εt−1 − p εt,

1 ≤ t ≤ k, (10)

σp(a)+σp(b)−σp(a+b) = (p−1)
k∑
r=0

εr. (11)

When we perform the addition of a and b (in
base p ≥ 3), let us remember that ar, br ≥
(p + 1)/2 leads to εr = 1 (i.e., a carry–over,
irrespective of whether there is a carry–over
in the previous digit or not (see Eqs. (7) −
(10))); ar, br ≤ (p − 3)/2 leads to no carry–
over (i.e., εr = 0), even if there is a carry–over

in the previous digit; ar, br = (p− 1)/2 leads
to εr = 1, only when there is a carry–over in
the previous digit (i.e., εr−1 = 1; a conditional
carry–over).

Kummer (1852) [7, 8, 9] beautifully and
cheerfully unveiled the following result for the
binomial coefficient: νp(nm) is equal to the
number of carry–overs when m and n − m
are added in base p.
Example # 2: We want to establish that
the number 9060 is not divisible by 5. Now
the representation of 60 in base 5 is (220)5;
that of 30 is (110)5. Since no carry–over oc-
curs when we add 220 and 110 (in base 5),
Kummer [7, 8, 9] is pleased to tell us that
the exponent of 5 in 9060, a 24–digit number
ending in 4, is just zero. See also [8, p. 1114]
and Example # 5.

3 Pascal predicts the parity of Legendre perfectly!

It follows from Eqs. (5) and (6) that

ν2 (2n− 2sn× ns) = σ2(n) + ν2 (nn− 2s) . (12)

Since a factor 2σ2(n) is common to all 2n− 2sn× ns, 0 ≤ s ≤ [n/2], n− 1 ∈ N, we have

(2n− 2s)! / {2n s! (n− s)! (n− 2s)!} = 2n− 2sn× ns
/

2n

= 2σ2(n) × Integer/2n = Integer/2n−σ2(n) = An−2s/2
B, (13)

where (see Eqs. (5), (12), and (13))

B , n− σ2(n) ≡ ν2(n!), (14)

An−2s , (2n− 2s)! /{2σ2(n)s! (n− s)! (n− 2s)!}, (15)

ν2(An−2s) = ν2 (nn− 2s) . (16)
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Equations (1), (2), (13), and (14) demand
that the denominator of Pn(x) is 2B = 2ν2(n!).
Thus, we have proved Holt’s result [5, p. 352;
Pearl # 1]. It is clear from Eqs. (1), (2),
and (13)−(15) that (−1)sAn−2s is the coeffi-
cient of xn−2s in Kn(x). Equation (16) shows
that the (non-zero) coefficient of xPower in
KDegree(x) and the corresponding binomial
coefficient DegreePower have the same par-
ity!! These nice results lead to more such nice
results, as shown below. The same exponent
of 2 appears in the canonical decomposition
in prime factors of the coefficient of xn−2s in
Kn(x) and that of the corresponding bino-

mial coefficient nn− 2s. We will not forget
that in the case of this binomial coefficient,
both Degree and Power have the same parity
(∵ n− (n− 2s) = 2s = even # ≥ 0).

It follows from Eqs. (15) and (16) that

L(n, s) , An−2s

/
nn− 2s

=
2n− 2sn− s× 2ss

2σ2(n) × ns
= L(n, n− s), (17)

ν2(L(n, s)) = 0. (18)

Equation (17) exhibits a nice symmetry with
respect to an interchange of s and n− s.

From Eqs. (5) and (17), we have

(p− 1) νp(L(n, s)) = σp(n) + σp(n− s) + σp(s)

− {σp(2n− 2s) + σp(2s)}
− (p− 1) νp(2

σ2(n)), p ∈ P. (19)

Application of Kummer’s Theorem [7, 8, 9] to Eq. (17) leads to the following result (p is an
odd prime; εβ,ηr = 0, 1; see also Eqs. (11) and (19)):

νp(L(n, s)) =
rmax∑
r=0

{(εn−s,n−sr + εs,sr ) − εn−s,sr } ∈ Z, p ≥ 3, p ∈ P. (20)

Equations (19) and (20) reveal a nice symmetry: νp(L(n, s)) = νp(L(n, n−s)). See Eq. (17).

In Eq. (20) εn−s,n−sr , εs,sr , and εn−s,sr are re-
spectively the number of carry–overs (zero
or one, in the rth digit), when n − s and
n − s are added, s and s are added, n − s

and s are added (see [7, pp. 63–65], [8, p.
1113], [9, p. 7]), all additions done in base
p. Using Eqs. (7) − (10) and the discus-
sions following Eq. (11), we can show that
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there can be a carry–over in n − s added to
s, only if there is a carry–over either from
n − s added to itself or from s added to it-
self (or from both). It is now clear that the
right–hand side of Eq. (20), an integer, is
never negative for all values of p ∈ P. Hence
νp(L(n, s)) + 1 ∈ N, p ∈ P, and thus the co-
efficient of xn−2s, 0 ≤ s ≤ [n/2], n + 1 ∈ N,
in Kn(x), is an integer divisible by nn− 2s
(Pearl # 2). As ν2(L(n, s)) = 0 (see Eq.
(18)), L(n, s) is now an odd integer (Pearl
# 3). Both 2B times a Legendre coeffi-
cient and the associated binomial coefficient,
DegreePower, sing joyfully in unison thus:
“You are an integer, so am I! If you are odd,
I am also odd!! (The contrapositive [12] of
this true statement is also true: If I am even,
you are also even!!) When I am odd, you
too are odd! Truly, we are lovingly made for
each other!! Whether we are odd or even, our
ratio (“Legendre / Pascal”) is always odd!
Are we not the Adam and Eve of the Par-
adise of the Legendre Polynomials!?!” Yes,
Pascal (*1623, †1662) predicts the nature of
Legendre (*1752, †1833)!! “Tell me who your
friends are and I’ll tell you who you are.” So
goes a Mexican Proverb. Ask any coefficient
of Pn(x). The reply will be the (correspond-
ing) Binomial Coefficient (Pascal) and the
Largest Power of 2 which divides the factorial
of the degree n (Holt [5, p. 352])!! (LP for
Legendre Polynomial, LP for Largest Power,
P for Pascal.) See Eqs. (2) – (4).

Example # 3: p = 3, n = 10 =
(101)3, s = 4 = (11)3. ∴ n − s = 6 =
(20)3, 2(n− s) = 12 = (110)3, 2s = 8 = (22)3.
Now σ3(n) + σ3(n − s) + σ3(s) = 2 + 2 +
2 = 6, σ3(2n − 2s) + σ3(2s) = 2 + 4 = 6,

∴ ν3(L(10, 4)) = (6− 6)/2 = 0. See Eq. (19).
Moreover,

∑
r ε

n−s,n−s
r ,

∑
r ε

s,s
r ,
∑

r ε
n−s,s
r are

respectively 1, 0, 1. ∴
∑

r(ε
n−s,n−s
r + εs,sr −

εn−s,sr ) = 0. These two numbers must be
equal. Xcfc. Therefore, 3 cannot be a factor
of L(10, 4). Mathematica says (see also Table
2) that the coefficient of x2 in K10(x) is 3465.
∵ 102 = 45, L(10, 4) = 3465/45 = 77, an odd
integer. Lo! Behold! 3| 77. Xcfc. Yes, 3 does
not divide L(10, 4). Since 104 = 210 = even,
the coefficient of x4 must be even and divisi-
ble by this binomial coefficient, the quotient
being an odd integer. Actually (see Table 2),
−30030/210 = −143, an odd integer. Xcfc.

Example # 4: p = 5, n = 13 =
(23)5, s = 3 = (3)5. ∴ n − s = 10 =
(20)5, 2(n − s) = 20 = (40)5, 2s = 6 = (11)5.
Now σ5(n)+σ5(n−s)+σ5(s) = 5+2+3 = 10,
σ5(2n − 2s) + σ5(2s) = 4 + 2 = 6.
∴ ν5(L(13, 3)) = (10 − 6)/4 = 1.
See Eq. (19). Moreover,

∑
r ε

n−s,n−s
r ,∑

r ε
s,s
r ,

∑
r ε

n−s,s
r are respectively 0, 1, 0.

∴
∑

r(ε
n−s,n−s
r + εs,sr − εn−s,sr ) = 1. These two

numbers must be equal. Xcfc. Using Mathe-
matica, we have found that the coefficient of
x7 in the numerator of P13(x) is −2771340.
∵ 137 = 1716, L(13, 3) = 2771340/1716 =
1615 = 5×17×19→ ν5(L(13, 3)) = 1. Xcfc.
Yes, the exponent of 5, in the canonical de-
composition in prime factors of L(13, 3), an
odd integer (Pearl # 3), is unity! One of its
factors is 5.

Example # 5: Consider the binomial
coefficient 2311. Kummer [7, 8, 9] gently
reminds us that there is only one carry–over
when we add 12 and 11 in base 2, since
12 = (1100)2, 11 = (1011)2. Therefore, the

Volume 32, Number 1, Article Number : 8 www.physedu.in



Physics Education 7 Jan- Mar 2016

exponent of 2 in the canonical decomposition
in prime factors of this binomial coefficient is
simply unity. (See also Example # 2.) It is
just even, not even divisible by 4. Hence the
coefficient of x11 in the numerator of P23(x)
must be simply even, not at all divisible by
4. Mathematica tells us that this coefficient,
the above binomial coefficient, and their
ratio are respectively 1 805 044 411 170 (a
13–digit number; even, but not divisible by
4 since the last two digits are 70), 1 352
078 (7–digits; not divisible by 4, though
even, because of the last two digits: 78), and
1 335 015. Hence their structure is: (Even,
Even, Odd)!!. Xcfc.

Using the elementary result,

nr = n!/{r!(n− r)!} = nn− r, (21)

and Eq. (5), we have

ν2 (2n+ 12n+ 1− 2s) = ν2 (2n+ 12s)

= ν2 (2n+ 12s+ 1) .

(22)

Hence, due to the (odd or even) parity of
the binomial coefficients (see [13, p. 156],
[14, pp. 18–19]), the coefficients of x2n+1−2s

and x2s+1 in K2n+1(x) have the same par-
ity (Sum of Powers = Degree + 1; remem-
ber DegreePower). Similarly, since 2n2s =
2n2n− 2s, the coefficient of x2s in K2n(x)
has the same parity as that of the coeffi-
cient of x2n−2s (Sum of Powers = Degree).
This then is the reason for the palindromic
behaviour of the coefficients of Kn(x) with
respect to their (odd or even) parity (Pearl

# 4). The coefficients of Kn(x) nicely pro-
duce a parity–palindrome!! Together the co-
efficients in the numerator of Pn(x) gener-
ate a perfect parity–palindrome (P for Pascal,
Pn(x), p− adic, Parity, Palindrome, Polyno-
mial, Power, Prime, Pearl, Product, Play)!!
When we play with the number of letters in
the words in the title, we get the palindromic
number 628826, pointing at the palindromic
behaviour of the coefficients of Kn(x), with
respect to their parity (odd or even).

4 More Pearls

As nn = 1 = odd, the leading coefficient of
Kn(x) is always odd, irrespective of the degree
n. When n is odd, Kn(x) is an odd polyno-
mial in x [1, 2, 3]. Since the coefficient of x
corresponds to n − 2s = 1 (see Eq. (1)) and
since n1 = n = odd, this coefficient is also
odd. If n is even, Kn(x) has an even parity
[1, 2, 3]. As the constant term comes from
2s = n (see Eq. (1)) and as n0 = 1 = odd,
the constant term of Kn(x) is also odd. Not
only the leading coefficient but also the last
coefficient of Kn(x) are always odd, indepen-
dent of the (odd or even) nature of n (Pearl #
5). Since the denominator of Pn(x) is 2ν2(n!)

(see Eqs. (2) and (14)), you can now prove
that P2k(x) and P2k+1(x), k ∈ N, have the
same denominator (Pearl # 6; see Eq. (2)).
As Pn(1) = 1 [1, 2, 3], the sum of the coeffi-
cients of Kn(x), n ≥ 2, is exactly the denom-
inator of Pn(x) (Pearl # 7; see Eq. (2)). As
this sum is even when n ≥ 2 (see Eq. (5)),
the odd–valued coefficients in the numerator
of Pn(x), n ≥ 2, must occur an even number
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of times (Pearl # 8; see Eq. (2))!

5 Beauty of the Pascal’s

Triangle and Binomial

Coefficients

In 1899 Glaisher [13, p. 156] proved the
following very interesting result (see also [8,
Corollary 2.8, p. 1118], [9, p. 4], [14, p.
24]): Each one of the Binomial Coefficients
n0, n1, n2, . . . , nn is odd iff n has the form
2Q − 1, Q ∈ N. Thus we have four “lovely
lines” from Pascal’s Poem / Triangle (see
Table 1)!! It follows from Table 1 that when
n = 2Q, Q − 1 ∈ N, but for the leading co-
efficient and the constant term of Kn(x), all
the other coefficients (consistent with parity
and degree) must be even only (Pearl # 9).
In the case of KL(x), L = 2Q − 2, 2Q − 1,
Q ≥ 2, Q ∈ N, all the non-zero coefficients of
KL(x) must be odd only (Pearl # 10)!
Table 1. The structure of the beautiful
binomial coefficients nr [8, 9, 13, 14], with

Q ≥ 2, Q ∈ N, belonging to n = 2Q−2 is: (1,
even, odd, . . . , even, 1). Alternately, odd and
even! The form of the pleasing binomial coef-
ficients corresponding to n = 2Q−1 is (thanks
to Glaisher [13, p. 156]): (1, odd odd, . . . ,
odd, 1). Always odd!! The arrangement of
the nice binomial coefficients corresponding
to n = 2Q is: (1, even, even, . . . , even, 1).
They are even when they are greater than
unity. These results follow from the way the
Pascal’s Triangle is constructed (3rd Column
onwards; r ≥ 1), “Down (Bottom Row) =
(Immediate Up + Immediate Left) (Immedi-
ate Top Row)” (n+ 1r = nr + nr − 1) and
the elementary fact that odd # + even
# = odd #. Since the binomial coeffi-
cient nn− 2s = nn− (n− 2s) = n2s, with
2s = even # ≥ 0, divides the coefficient of
xn−2s in Kn(x), yielding an odd integer upon
division, Pascal’s prediction of the parity of
Legendre is perfect!! Note: G for Glaisher’s
result [13, p. 156]; I for Inference from G; C
for Corollary to G; E for Even #; Φ for Odd
#; Q ≥ 2;Q, n− 1, r + 1 ∈ N; 0 ≤ r ≤ n.

n ⇓ \ r ⇒ 0 1 2 . . . . . . . . . . . . . . .
(I) 2Q − 2 1 E Φ . . . E 1
(⇓ G ⇑) 2Q − 1 1 ⇓ Φ ⇑ ⇓ Φ ⇑ . . . ⇓ Φ ⇑ ⇓ Φ ⇓ 1

(C) 2Q 1 E E . . . E E E 1

Example # 6: Let us gladly check [11]
Glaisher’s beautiful result [13, p. 156] by
playing with Q = 3, n = 2Q − 1 = 7. The
eight binomial coefficients in this case are

1, 7, 21, 35, 35, 21, 7, 1, and all of them are
odd, honouring Glaisher! Xcfc. Let us next
check our inference from Glaisher (see Table
1). In the case of n = 2Q − 2 = 6, the seven
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binomial coefficients are 1, 6, 15, 20, 15, 6, 1.
They are alternately odd, even!! Once again
Glaisher is honoured!! Xcfc. As far as our
Corollary is concerned (see Table 1), in the

case of n = 2Q = 8, the nine binomial coef-
ficients are 1, 8, 28, 56, 70, 56, 28, 8, 1. As long
as they are not unity, they are even only.
Xcfc. Hail Glaisher [13, p. 156]!!

6 Divisibility by the Binomial Coefficient extended to

Laguerre, Hermite, and modified Hermite

Polynomials!

In the case of the Laguerre Polynomials [1, 2, 3], we have

Ln(x) =
n∑

r = 0

(−1)n−r n! xn−r

r! (n− r)!(n− r)!
, (23)

n!Ln(x) =
n∑

s= 0

(−1)s nsns(n− s)!xs. (24)

Hence the coefficient of xs, 0 ≤ s ≤ n, n + 1 ∈ N, in n!Ln(x), is an integer divisible by ns.
Let us not forget that our binomial coefficients and factorials are positive integers (see Eqs.
(24), (25), (27), (28)). Remember that n!Ln(x) is an integer polynomial [6].

Since the power series expansion of the Hermite polynomials is given by [1, 2, 3]

Hn(x) =

[n/2]∑
s= 0

(−1)s n! (2x)n−2s

s! (n− 2s)!

=

[n/2]∑
s= 0

(−1)s 2n−2s nn− 2s2ss s!xn−2s, (25)

it is clear that the coefficient of xn−2s, 0 ≤ s ≤ [n/2], n + 1 ∈ N, in Hn(x), is an integer
divisible by the binomial coefficient nn− 2s. All the Hermite coefficients are even when
n ≥ 1.
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However, Pascal cannot predict the parity
of Laguerre (coefficient multiplied by n!) and
Hermite (coefficient) perfectly!

By playing with the modified Hermite
Polynomials [1, p. 189], [10], we have

Hen(x) , 2−n/2Hn(x/
√

2). (26)

Using Eqs. (25) and (26), we find that

Hen(x) =

[n/2]∑
s=0

(−1)s × nn− 2s

× Ψs × xn−2s, (27)

where

Ψs , (2s)!/(2s s!) =

{
1 = odd #, s = 0, 1,
1× 3× 5× · · · × (2s− 1) = odd #, s− 1 ∈ N. (28)

As a simple check on Eq. (28) (for s ≥ 2),
ν2(Ψs) = 0 ⇒ Ψs is odd. See Eqs. (5) and
(6). It follows from Eqs. (27) and (28) that
(a) the modified Hermite polynomials are in-
teger polynomials [6], (b) the coefficient of
xn−2s in Hen(x), an integer, is divisible by
the binomial coefficient nn− 2s, (c) both of
them (modified Hermite and Pascal) have the
same parity, (d) their ratio is always odd; for
s ≥ 2, this ratio is a product of s consec-
utive odd positive integers, starting from 1
(multiplied by a phase factor, ±1), and (e)
the nature of the modified Hermite is pre-
dicted by Pascal as in the case of Legendre!!
Hence Legendre too can predict the nature of
modified Hermite (*1822, †1901)!! Pascal is
equally friendly with Legendre and modified
Hermite!! Let us not fail to note the French
Connection: French by birth, Pascal, Legen-
dre, Hermite, and Laguerre are world citi-
zens / world–class mathematicians!! Know
Pascal (Legendre), know Legendre (modified
Hermite)!! What Pascal can do for Legendre,

Legendre can do for modified Hermite!! Even
though Pa (pascal) is a unit of pressure in
Physics, Pascal is unable to put pressure on
Laguerre and Hermite mathematically!!

7 Completeness can

come with a Table

For the sake of completeness, we present a Ta-
ble of Kn(x), the numerator of the Legendre
Polynomial Pn(x), for 2 ≤ n ≤ 11 (see Eq.
(2); Table 2). Let us note the following: (a)
K0(x) = 1, K1(x) = x, (b) the adjacent coef-
ficients of Pn(x), n ≥ 2, alternate in sign [15]
(Pearl # 11), (c) there are no missing powers
[15], consistent with the degree and definite
parity of Pn(x) [1, 2, 3] (Pearl # 12). Here
is a nice chance for you to enjoy the beauty
of our 12 Pearls and check the correctness of
our results [11]!! Since the nature of Legen-
dre is predicted by Pascal, we can confidently
conclude, from K11(x), that 119 is odd, but
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not divisible by 3, nor by 52, nor by 7; 117
is even, but not divisible by 4. Mnemonic:
Legendre by Pascal is always odd!! The na-
ture (odd or even) of the coefficients ofK10(x)
and K11(x) is palindromic (Pearl # 4): (Odd,
Odd, Even, Even, Odd, Odd). Xcfc. P8(x)
and P9(x) have the same denominator (Pearl
# 1, Pearl # 6; see Eq. (2)). Xcfc. The sum
of the coefficients of K8(x) is exactly the de-
nominator of P8(x) (Pearl # 1, Pearl # 7; see
Eq. (2)). Xcfc. The odd–valued coefficients

of K6(x), K7(x), K10(x), and K11(x) are even
(= 4) in number (Pearl # 8). Xcfc. But
for the last and the leading coefficients, all
the coefficients of K2(x), K4(x), and K8(x)
are even (Pearl # 9), thanks to Glaisher
(1899) [13, p. 156]! Xcfc. All the coeffi-
cients of K2(x), K3(x), K6(x), and K7(x) are
odd (Pearl # 10); thank you Glaisher!! Xcfc.
The adjacent coefficients of P10(x) alternate
in sign (Pearl # 11) [15]. Xcfc. All the odd
powers of x, right from 1 up to 11, are present
in P11(x) (Pearl # 12) [15]. Xcfc.

Table 2. Table of the Polynomials Kn(x) = 2ν2(n!)Pn(x), 2 ≤ n ≤ 11. Kn(x) is the nu-
merator of Pn(x). Column 2 is the ratioKn(x)/Pn(x), the denominator of Pn(x) (see Eq. (2)).

n 2ν2(n!) Integer Polynomial Kn(x), the numerator of Pn(x)
2 2 3 x2 − 1
3 2 5 x3 − 3 x
4 8 35 x4 − 30 x2 + 3
5 8 63 x5 − 70 x3 + 15 x
6 16 231 x6 − 315 x4 + 105 x2 − 5
7 16 429 x7 − 693 x5 + 315 x3 − 35 x
8 128 6435 x8 − 12012 x6 + 6930 x4 − 1260 x2 + 35
9 128 12155 x9 − 25740 x7 + 18018 x5 − 4620 x3 + 315 x
10 256 46189 x10 − 109395 x8 + 90090 x6 − 30030 x4 + 3465 x2 − 63
11 256 88179 x11 − 230945 x9 + 218790 x7 − 90090 x5 + 15015 x3 − 693 x

You can also nicely play similarly with a
Table of the modified Hermite Polynomials
[10]. You can definitely enjoy how modified
Hermite follows Legendre faithfully!! Thus,
the nature (odd or even) of the coefficients
of He10(x) and He11(x) is palindromic (Pearl
# 4): (Odd, Odd, Even, Even, Odd, Odd).
X cfc. The odd–valued coefficients of He6(x),

He7(x), He10(x), and He11(x) are even (= 4)
in number (Pearl # 8). As a simple corollary,
Hen(1), n ≥ 2, is even!! Mathematica says:

He10(x) = x10 − 45x8

+ 630 x6 − 3150x4

+ 4725x2 − 945. (29)

Example # 7: He10(1) = 1216 =
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even. X cfc. With n = 10 and n − 2s =
2, coefficientof x2/102 = 4725/45 = 105 =
1×3×5×7, a product of s (= 4) consecutive
odd integers. X cfc. See Eqs. (28) and (29).
Modified Hermite by Pascal is always odd!!

Using the Differential Recurrence Relation,
DHem(x) = m Hem−1(x), D , d/dx, m ∈ N,
you can generate, from Eq. (29), a Table of
Hen(x), 0 ≤ n ≤ 9, and enjoy the beauty of
our Pearls. Thus, all the even powers of x,
right from 0 up to 8, are present in He8(x)
(Pearl # 12). All the coefficients of He7(x)
are odd (Pearl # 10), thanks to Glaisher [13].

8 Conclusion

The (non-zero) coefficient of xs in Φn(x),
an integer polynomial [6], is divisible by
the associated binomial coefficient, ns, when
Φn(x) = 2ν2(n!)Pn(x), n!Ln(x), Hn(x),Hen(x).
The Chebyshev Polynomials [2, 3], Tn(x), n ≥
4, do not satisfy this divisibility property in
general. If you want to search for more pearls,
you have to dive below the (common) de-
nominator and the divisibility of (common
denominator times) Legendre (coefficient) by
Pascal (binomial coefficient)!! D for Dive, D
for Denominator, D for Divisibility !! We have
checked the correctness of our results [11]
for Pn(x), using Mathematica (for 2 ≤ n ≤
150; 2 ≤ p ≤ 97); in the case of Hen(x), we
have checked [11] the divisibility for 2 ≤ n ≤
150. We can relish Legendre (Polynomials)
with Legendre (Eq. (5)), Pascal, Kummer,
Holt [5], and Glaisher [13]!! Blessed are those
who are friendly with the Legendre Polynomi-
als and the modified Hermite Polynomials!!
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Abstract 

The Sloan Digital Sky Survey (SDSS) is an ambitious astrophysical survey that has obtained 
photometric and spectroscopic data for millions of objects in the universe. In this article we 
explain the use of SDSS to obtain astrophysical data. We also introduce an indispensable tool 
for astronomers – H-R Diagrams, in particular, Colour-Magnitude Diagrams (CMDs). Using 
SDSS data, we plot three CMDs each for star clusters Messier 3 and NGC 2420 and 
qualitatively analyse their properties. The entire process of our analysis is explained in this 
article. We hope it will interest undergraduate students particularly the ones interested in 
astronomy and astrophysics. 

 
 

1. Introduction 

The Sloan Digital Sky Survey (SDSS) is one of 
the largest astronomical surveys ever undertaken. 
Photometric and spectroscopic observations were 
made over a period of eight years using a 2.5 
metre wide-angle telescope along with an array of 
CCDs and a pair of spectrographs, at the Apache 
Point Observatory in New Mexico, United States. 
The CCDs captured high resolution images in 5 
different colours, while the spectrographs allowed 
the spectra of 640 objects to be studied 
simultaneously. 

Though the survey obtained individual 
astrophysical data on millions of objects including 
stars, galaxies and quasars, the ultimate task of the 
survey was to connect this data and create a 3D 
map of a part of the universe. An advanced image 
processing software was used to analyse the 
properties of hundreds of millions of objects to 
provide insights into the large scale structure of  

the universe. This is necessary to understand the 
evolution of the universe over billions of years 
since the big bang.  

SDSS has made all collected astrophysical data 
public via the internet and data from their newer 
projects is being released till date. It is free to use 
for non-commercial purposes by anyone from 
school students to scientists and is accessible 
through a variety of tools including an internal 
SQL server. SDSS has also provided a variety of 
suggested research projects for interested students. 
As a demonstration, in this paper we use SDSS 
data to plot CMDs for two well-known star 
clusters - Messier 3 and NGC 2420. The entire 
process of acquisition of data from the SDSS 
database is explained. A brief qualitative analysis 
of the CMDs is also included. 

2. Hertzsprung-Russell Diagrams 

Astronomers have speculated about the life cycle 
of a star since centuries. Despite having access to 
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large amounts of meticulously recorded data, the 
first real progress in our understanding of the 
nature of the life processes of a star came only in 
the early parts of the 20th century when Ejnar 
Hertzsprung and Henry Norris Russell 
independently devised what are today known as 
Hertzsprung-Russell Diagrams (H-R Diagrams). 
These diagrams are powerful tools and remain to 
be one of the most widely employed devices in 
modern astronomy for understanding stellar 
evolution. 

An H-R Diagram, in essence, is a 2-dimensional 
plot of temperature and luminosity for a group of 
stars. An individual star is represented as a point 
in the diagram. However, every star is a dynamic 
object and undergoes significant changes in its 
lifetime. As it does so, the point moves around in 
the diagram. By observing these changes, there is 
a lot that can be understood about the internal 
mechanisms of a star. Such processes, however, 
happen over billions of years and hence, instead of 
plotting a single star and studying its evolution, 
several hundreds of stars at different stages in their 
life cycles are plotted on the same diagram and 
analysed. 

To plot the position of a star on an H-R Diagram, 
its temperature and luminosity need to be 
measured. However, the temperature cannot be 
measured directly. Instead, the spectrum of the 
star is first obtained by measuring the flux at each 
particular wavelength. Then by approximating the 
star to be a blackbody, its effective temperature 
can be determined. For measuring the luminosity, 
the combined flux received by us on the earth for 
all the wavelengths is measured to determine the 
star’s apparent brightness. This is combined with 
the distance measured to the star, through parallax 
measurements, to get its true luminosity. 

In practice, it is easier to obtain the flux for only a 
few wavelengths rather than for the entire 
spectrum. The SDSS, for instance, employs only 5 
filters: two in visible; g(4770Å) and r(6231Å),two 
in infrared; i(7625 Å) and z(9134 Å) and one in 

ultraviolet; u(3543 Å). The data obtained can 
beused to prepare a variant of an H-R Diagram. 
On the luminosity axis, the 
Magnitude1(represented by capital letters; for 
example G for filter g) associated with an 
individual filter is taken and on the temperature 
axis, the Colour Index2. The diagram obtained, 
though not exactly the same, is equivalent to an H-
R Diagram and is called a Colour-Magnitude 
Diagram (CMD). Similarly, other variants of H-R 
Diagrams exist too and are widely employed. 

H-R Diagrams find their greatest utility when used 
for studying star clusters. Several factors 
contribute to this. Firstly, all the stars in a cluster 
are assumed to be formed from the same 
interstellar gas cloud and thus are assumed to have 
the same chemical composition. Further, they are 
all formed within a few million years (an 
insignificant period at the time scales involved) of 
each other and hence can be assumed to be of the 
same age. Thus, stars in a cluster differ 
significantly in only one aspect: their mass. Thus, 
an H-R Diagram for a cluster can help 
astronomers understand how the mass of a star 
affects its life processes.  Another factor that 
makes H-R Diagrams of star clusters so important 
is the fact that all the clusters in the galaxy seem 
to have the same relative distribution of stellar 
masses described by the stellar Initial Mass 
Function (IMF). Thus, by studying one star 
cluster, we gain insight about others as well. This 
can be used to determine important information 
about a given cluster such as its age, its distance, 
etc. Finally, from a practical viewpoint, star 
clusters are useful because all the stars in a cluster 
are roughly at the same distance from us. This 
eliminates the need to determine the absolute 
magnitude of brightness for the stars. Instead, the 
apparent magnitudes may directly be used. Thus, 
there is no need to measure the distance to 
aparticular star which often proves to be the most 
difficult quantity to obtain. In this paper, we shall 
be studying two star clusters: Messier 3 and NGC 
2420. 
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Having seen why star clusters are so important, we 
briefly digress from our discussion about H-R 
Diagrams to discuss certain important points about 
such clusters. From observations, it is found that 
there are broadly two categories of star clusters - 
globular clusters and open clusters. The members 
of each category are held together through 
theirmutual gravitational attractions. However, 
significant differences exist. Messier 3 represents 

a typical globular cluster and NGC 2420 belongs 
to the class of open clusters. Given below are 
inverted colour images3 obtained from the SDSS 
Navigation Tool of the two clusters for 
comparison. 

 

 
 

Figure 1:  Inverted Colour Images of Messier 3 (left) and NGC 2420 (right) obtained using SDSS Navigation Tool 

 

A typical globular cluster is massive, containing 
hundreds of thousands of stars tightly bound 
together forming a relatively dense spherical 
distribution as can be seen in the imagefor Messier 
3 in Figure 1. An important feature of globular 
clusters is their age. From spectroscopic analysis it 
is observed that the members of a globular cluster 
have a low abundance of heavy elements. In its 
early stages the universe was mostly made up of 
Hydrogen and Helium (it still is dominated by 
them) and so the earliest stars were mainly 
composed of only these elements; the heavy 
elements were only formed later through fusion 
reactions in the cores of stars. Therefore, the low 
abundance of metals in stars in globular clusters 

suggests that these stars were formed when the 
universe was relatively young. In fact, globular 
clusters are believed to be amongst the oldest 
observable structures of the universe.For a typical 
globular cluster, an age of at least 10billion years 
is estimated.  

Open clusters differ in several important ways. 
Typically they only contain a few thousand stars 
and do notpossess any definite shape. They are 
only loosely held together and hence as they get 
older, the members tend to drift apart and the 
cluster “dissolves”. Thus, an open cluster is not 
expected to be too old. This is confirmed by 
spectroscopic studies which show that the 
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members of these clusters are vastly richer in 
heavier element abundances. These stars couldnot 
have been formed along with the earliest 
generations of stars. Typically, an open cluster is 
estimated to be only a few hundred million years 
old, though some have been shown to be a few 
billion years old.  

These differences between the two clusters lead to 
interesting characteristic features in the H-R 

Diagrams for each. We shall see this clearly once 
we have plotted our diagrams. 

We now return to our general discussion about H-
R Diagrams. In Figures 2(a) and 2(b), we 
represent broadly the important features of a 
typical H-R Diagram. Figure 2(a) labels the most 
important regions and Figure 2(b) depicts how the 
H-R Diagram of a given cluster evolves with time. 

 

Figure 2(a): Important Regions of an H-R Diagram
4
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Figure 2(b): Evolution of the H-R Diagram of a cluster (time evolves as we go from left to right)

 

 

 

 
1. The most noticeable feature of any H-R 
Diagram is that a large numberof the stars seem to 
be located on a diagonal curve across the graph. 
This region is called the main sequence. There are 
steady and continuous nuclear reactions in the 
main sequence stars and energy is produced by 
conversion of hydrogen into helium. The radiation 
pressure so generated prevents the star from 
collapsing under its own gravity. Along the main 
sequence, the position of a star depends mostly on 
its initialmass with the more massive ones lying 
higher up the diagonal. Also, the position of an 
individual star changes only negligibly during this 
stage. So, as long as a star is on the main sequence 
(a period that constitutes a majority of its 
lifetime), it remains practically stationary on the 
H-R Diagram. However, this cannot carry on 
forever - stars evolve and the details depend 
mainly on the initial mass M of the star. The 
energy stored in a star is roughly proportional to 
M and the rate at which it expels this energy is 
roughly proportional to M4. This means that the 
time a heavy star would spend on the main 
sequence is much less than time a light star would 
(the approximate variation is t α M-3). The M4 
variation breaks down for extremely massive or 

extremely light stars but the general rule that more 
massive stars evolve more rapidly still stands. 
Depending on the initialmass of the star, its main 
sequence lifetime can vary from just a few million 
years to hundreds of billions of years. 
 
2. When hydrogen is depleted in the stellar core, 
because of the reduced nuclear fusion, the internal 
production of thermal energy can no longer 
balance the gravitational interaction and the main 
sequence star begins to contract. This in turn 
causes the core to heat up. The increased core 
temperature causes the outer layers of the star to 
expand. This leads to the star entering the “Red 
Giant” phase. As it expands, the temperature drops 
due its larger surface area, and thus its peak 
wavelength shifts towards orange. Despite being 
cooler than main sequence stars, red giants, due to 
their greater size, are much more luminous than 
the red stars on the main sequence. They lie on the 
upper right corner of the diagram. Compared to 
the main sequence lifetime of a star, its transition 
period to the red giant phase is quite small. As we 
can see in Figure 2(b), as time evolves more and 
more stars begin to enter this stage and there is an 
abrupt turning point to the main sequence diagonal 
leading into the red giant region After plotting H-
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R Diagrams for Messier 3 and NGC 2420, we 
shall see how the age of a cluster can be estimated 
by noting the position of this turning point. 
 
3. When nuclear fuel is completely depleted from 
a star’s core, the gravitational attraction is no 
longer balanced by the production of thermal 
energy. The star contracts. Since electrons obey 
the Pauli Exclusion Principle, an electron 
degeneracy pressure builds. It balances out the 
gravitational attraction if the mass of the star is 
less than Chandrasekhar’s limit. These stars are 
much less luminous than the blue stars in the main 
sequence and thus are much smaller in size. They 
are called White Dwarfs and lie on the bottom left 
of Figures 2(a) and 2(b).  
 
We note that apart from these three main stages of 
stellar evolution, there are several other sub-stages 
that an individual star may go through. For 
example, Figure 2(a) shows the Horizontal Branch 
region and the Supergiant region. Both of these 
are occupied by stars that are in between the red 
giant and the white dwarf phases.Similarly, the 
Subgiant stage occurs just before the red giant 
phase. Other regions, not shown in Figure 2(a), 
such as the Planetary Nebula region, Asymptotic 
Giant Branch, etc. are also of interest. For details, 
refer to [1]. 
 
It is important to mention that our discussion 
above is only valid for stars with average masses. 
In massive stars, helium ignition causes them to 
expand, reducing the temperature. The red 
supergiant thus formed collapses in a supernova. 
Depending upon the initial mass of the star, a 
neutron star or a black hole may be formed. 
 
 

3. SDSS Search Tools 

A variety of tools are available on the SDSS 

website that allow users to extract data on any of 

the hundreds of millions of objects that have been 

covered by the survey. These are: 

1. Navigation Tool[10]: It allows users to navigate 
in the vicinity of a point in the sky by entering its 
coordinates (RA and Dec5). An image of the 
vicinity of that point is seen on the screen. One 
can obtain all the available data for any object in 
the frame by selecting it and clicking on ‘explore’. 
Spectra of select objects are also available. A 
disadvantage of this tool is that data has to be 
collected individually for all objects. Figure 3 
shows the SDSS Navigation Tool. 
 
2. Radial Search Tool[11]: It allows users to 
search for data on all objects around a certain 
point, within a certain radius. A major advantage, 
of course, is that data for hundreds, even 
thousands of objects can be obtained through just 
a single search. Search for data is restricted by 
setting a particular radius and limiting values of 
colour magnitudes (U, G, R, I, Z). A major 
disadvantage of this tool is that it searches for any 
object in the vicinity of the given point. So, the 
data it provides may contain unwanted objects. 
For example,in a search for stars in a cluster, it 
may add galaxies that appear in the vicinity of the 
given point. Figure 4 shows the SDSS Radial 
Search Tool. 
 
3. SDSS SQL Search Tool [13]: It allows the user 
to write SQL queries to search for the required 
data. It can be used to make very precise searches 
that only return the data the user wants without 
including unwanted results. This is the tool that 
we used to obtain the data required for the CMDs 
of Messier 3 and NGC 2420. The details are 
explained in the next section. 
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          Figure 3: DR10 Navigation Tool Showing M3 

 
 

  Figure 4: DR10 Radial Search Tool with M3 coordinates entered 

 



Physics Education                                          8                                            Jan – Mar 2016 

 

Volume 32, Issue 1, Article Number : 9                                                                                                       www.physedu.in  

4. Data for Messier 3 and NGC 2420 
 
For acquiring the data for the clusters, we made 

use of SDSS’s Data Release 10. We first obtained 

the RA and Dec values for Messier 3 and NGC 

2420 which can easily be found from any 

astronomy catalogue. By entering these values in 

the SDSS Navigation Tool, we obtained an image 

for both the clusters. The image was used to obtain 

an estimate for the apparent diameter of the cluster 

which is its spatial extension as seen from the 

earth. The values used are: 

 
Messier 3: 
Right Ascension = 205.54842° 
Declination = 28.37728° 
Apparent Radius = 9 arcmin 
 
NGC 2420: 
Right Ascension = 114.59958° 
Declination = 21.57409° 
Apparent Radius = 6 arcmin 
 
The SDSS database contains information on 
millions of objects and has been organised into 
tables, each dedicated to data of a specific type. 
The data can be accessed by writing SQL queries. 
A complete description of the various tables and 
their contents can be found at[12]. Once the data 
required has been identified, the query may be 
written in the SDSS SQL Search Tool provided 
at[13]. We used two SQL queries, one for 
extracting the data for Messier 3 and the second 
one for extracting the data for NGC 2420. 
 
Query for Messier 3 
 
select 
s.objid, s.ra, s.dec, s.u, s.g, s.r, s.i, s.z 
 
from 
star s,  
dbo.fGetNearbyObjEq(205.54842, 28.37728,9) n 

 
where 
s.objid = n.objid 
 
Query for NGC 2420 
 
select 
s.objid, s.ra, s.dec, s.u, s.g, s.r, s.i, s.z 
 
from 
star s, 
dbo.fGetNearbyObjEq(114.59958,21.57409,6) n 
 
where 
s.objid = n.objid 
 
 
The SQL queries have three parts: 
 
1. Under ‘select’, we specified the data that we 
wanted the particular query to return. In the above 
queries, we instructed the system to return the 
following information: object ID (objid), Right 
Ascension (RA), Declination (Dec), and 
magnitudes. 
 
2. Under ‘from’, we specified the tables that 
contain the data to be returned. In the above 
queries, we instructed the system to search in the 
table called ‘star’. This ensured that only data for 
stars is returned and not for other objects.  We also 
employed the function dbo.fGetNearbyObjEq 
which accepts three arguments (a, b, c). It works 
by creating a temporary table based on the 
arguments entered and can be used to return the 
required data for all stars within a radius of ‘c’ 
arcmin around the point with RA ‘a’ and Dec ‘b’. 
For example, in the Query for Messier 3, we 
specified the region within a radius=9 arcmin 
around the point with RA=205.54842° and 
Dec=28.37728°. All the stars (not other objects) 
within this region were thus returned by the query. 
 
3. Under ‘where’, we specified the constraints 
that we wished to impose on the returned data. For 
the above queries, the condition imposed ensured 
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that both the table ‘star’ and the one generated by 
the function dbo.fGetNearbyObjEq containedthe 
same data.  
 
A comprehensive tutorial for writing SQL queries 
on SDSS may be found at[14]. 
The data for the analysis was obtained in CSV 
format and analysis was done in Excel®. 
 

5. Results 

Shown in the following pages are the CMDs for 
NGC 2420 and Messier 3 obtained using the data 
extracted from SDSS. We plotted three diagrams 
for each cluster: R vs G-R, G vs R-Z and U vs G-I. 
These quantities simply represent the luminosity 
vs temperature variation with temperature 
decreasing along the positive direction of X-axis 
(increasing G-R, R-Z and G-I) and luminosity 
increasing along the positive direction of Y-axis 
(decreasing R, G and U). 

 

 

Figure 5: DR10 SQL Search with Query for M3 (Output format CSV is selected)  
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Figure 6: R vs G-R CMD for NGC 2420 

 

Figure 7: G vs R-Z CMD for NGC 2420 
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Figure 8: U vs G-I CMD for NGC 2420 

Figure 9: R vs G-R CMD for Messier 3 
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Figure 10: G vs R-Z CMD for Messier 3 

 

Figure 11: U vs G-I CMD for Messier 3
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6. Analysis 

Our diagrams clearly show the main sequence for 

both the clusters. For NGC 2420, it is the most 

prominent feature with almost the entire 

population occupying it, from the more massive 

stars to the lesser ones. For Messier 3, however, 

the more massive stars seem to be missing and the 

main sequence region only seems to extend up to 

the stars with lesser mass.  

The diagrams represent typical features to be 

expected in the CMD of an open and a globular 

cluster respectively. To see why, we need to 

consider what we had discussed above. NGC 

2420, and open clusters in general, are young. 

Most of their stars are still in their Hydrogen-

burning stage in which they spend the major part 

of their lives. These stars are found along the main 

sequence band. In fact, the young age of the 

cluster means that some of the least massive stars 

of the cluster are yet to even enter the main 

sequence region and are called Pre-Main Sequence 

stars (PMS stars). It is only the most massive stars 

that have had enough time to evolve out of the 

main sequence as they have burned up all their 

Hydrogen (the fate that awaits these is a 

catastrophic one - a supernova explosion; 

however, for this discussion we are more 

interested in the evolution of the cluster as a 

whole, rather than that of individual stars). Now, 

as time progresses, the CMD for a cluster 

undergoes changes. The PMS stars also enter the 

main sequence region but more prominently, more 

and more stars begin to leave it and enter the red 

giant region. The point on theCMD at which the 

stars just begin to leave the main sequence is 

called the turn-off point. For older clusters, this 

point corresponds to successively lower mass 

stars. 

We can clearly see the turn-off point in the CMD 

for Messier 3. Also, the red giant region is 

significantly populated. These are features that are 

missing from the CMD of NGC 2420. This can 

again be understood by considering the age of 

Messier 3. Because globular clusters are quite old, 

many of their stars have used up all their 

Hydrogen and moved out of the main sequence 

region. Indeed, the most massive ones evolved 

first and underwent supernovae explosions, but 

with time stars with lower masses too have burned 

through their hydrogen reserves. These stars don’t 

possess enough mass to undergo violent 

explosions; rather they enter a new phase of 

generating energy through Helium-burning and 

become red giants. Eventually, these stars will end 

up as white dwarfs - their final evolutionary state. 

There are two more important features that may be 

seen in the CMD of Messier 3. One is the presence 

of the horizontal branch region. This region is 

occupied by stars not having too high masses 

immediately after they evolve out of the red giant 

phase. Again, this represents aging and it is a 

characteristic feature of old clusters and hence, we 

cannot find it in the CMD for NGC 2420. Finally, 

there is the white dwarf region. Globular clusters 

such as Messier 3 contain several white dwarfs. 

As we mentioned before, CMDs can be used to 

determine important information about a cluster. 

Before concluding, we briefly mention one such 

possible extension to this work - using a CMD to 

determine a cluster’s age. Through the knowledge 

of internal stellar mechanisms of energy 

generation, observations of metallicity for the 

cluster whose age is to be found, the stellar initial 

mass function, etc. astrophysicists can generate 

theoretical CMDs corresponding to different ages 

using computer simulations. These are known as 

isochrones. By comparing these isochrones to the 
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observed data, the best fit can be determined. This 

gives an estimate of the age. From such estimates 

(as well as other techniques), the age of NGC 

2420 is estimated to be about 2 billion years [8], 

whereas that for Messier 3 is estimated to be about 

11.39 billion years [9]. 

7. Conclusion 
We have prepared and analysed Colour-

Magnitude Diagrams for Messier 3 and NGC 2420 

and used them to illustrate the differences between 

globular and open clusters. We have demonstrated 

how the data was obtained from SDSS; one 

important point to note is that our method of data 

acquisition cannot differentiate between stars that 

are actually members of a particular cluster and 

stars that just happen to be in the same field of 

view. This can lead to some non-member stars 

being plotted in the CMDs. Perhaps this explains 

why we see certain unexpected features such as 

the presence of some stars in the white dwarf 

region for NGC 2420. However, the diagrams still 

bring out the most important features for each 

cluster. We hope our work shows how SDSS can 

be an extremely useful resource, particularly for 

undergraduate students who can use the platform 

to pursue a number of independent research 

projects. 
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10. Glossary 

1Magnitude: It is a logarithmic scale that measures 

the brightness of an astronomical object either at a 

particular wavelength or as a composite quantity. 

The scale is defined so that a lower magnitude 

object is brighter than a higher magnitude one. For 

example, an object with R magnitude = -7 is 

brighter than an object with R magnitude = -6 (by 

roughly 2.5 times) at wavelengths centred around 

red.  

2Colour Index: In astronomy, colour is assigned a 

numerical value, called Colour Index, by 

calculating the difference between magnitudes at 

two different wavelengths. For example, G-R 

represents a particular colour. An object with a 

higher value of G-R is redder than one with a 

lower value. An important point to note is that 

Colour Index provides a measure of the 

temperature of a star. This is because a star can be 

approximately considered to be a Blackbody and 

hence the ratio of luminosities at two different 

wavelengths (magnitudes form a logarithmic scale 

and hence G-R actually corresponds to a ratio of 

luminosities at green and red) is only a function of 

the temperature. 

3Inverted colour image: An inverted colour image 

is one in which the colours and brightness values 

are reversed so that the bright areas appear dark 

and vice versa, just as in a negative. We have used 

inverted colour images for M 3 and NGC 2420 as 

they help emphasise the differences in the 

structures of the two clusters. 

4Spectral class: It is an alternative method to 

Colour Index for specifying stellar temperatures. 

The spectrum of a star is obtained and the 

absorption lines it contains give information about 

the relative abundance of ions of various chemical 

elements in the star’s outer surface. By assuming 

that temperature is the main factor for determining 

these ratios and by using our knowledge of the 

atomic energy levels, the surface temperature can 

be calculated. Accordingly, there are 7 main 

classes (and several sub-classes) into which stars 

are classified (in decreasing order of temperature): 

O, B, A, F, G, K, M. For more details, consult [1]. 

5RA and Dec: Right ascension and declination 

form a system of coordinates widely employed in 

astronomy to specify the location of objects in the 

night sky. For details, consult any resource on 

introductory astronomy. 
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Abstract 

Cosmic rays offer an outstanding educational platform involving a free source of high energy 

subatomic particles. In continuation of the preliminary studies [1] presented at 31st National 

Conference of Indian Association for Radiation Protection at BARC, the paper demonstrates 

the fundamental properties of cosmic rays and also exposes the post graduate (PG) students to 

particle detection techniques, advanced nuclear electronics and data analysis. A review on 

several possible studies using plastic scintillator such as time characteristics of PMT which 

includes rise time, fall time, amplitude dependence on high voltage, jitter and walk effects of 

PMT pulse, coincidence, horizontal and vertical separation between detectors, dependence of 

cosmic ray flux with respect to temperature, pressure, humidity will be discussed. 

 

1. Introduction 
In recent years, a numerous number of high 
schools and universities are forming 
collaborations (for e.g.: CROP (Cosmic Ray 
Observatory Project)[2], CHICOS (California 
High School Cosmic ray ObServatory)[3], SEASA 
(Stockholm Educational Air Shower Array)[4], 
ALTA (Alberta Large Area Time-Coincidence 
Array)[5]) for performing the cosmic ray studies 
all over the world. Many educational aspects tend 
to characterize the experiments using different 
detection techniques for study of fundamental 
properties of high energy particles. This has also 

offered a possible usage of the advanced nuclear 
laboratory which involves construction of 
apparatus, use of different detectors, physical 
measurements, muon monitoring, data analysis 
and interpretation for students in field of high 
energy physics.   

In the past few years there have been some 
impressive advances in our understanding of Ultra 
High Energy Cosmic Rays (UHECR’s). The 
origin of UHECR’s is a challenge for 
observational/experimental studies of particle 
acceleration and its propagation which provides 
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information on the spectrum, chemical 
composition and anisotropy.  

Cosmic rays (CRs) are particles originating from 
space which bombard the Earth’s atmosphere. 
Thespectrum of relativistic particles has been 
observed ranging from 106eV to 1019eV [6]. It is 
described by a power law which slightly steepens 
at 3x1015eV which is termed as ‘knee’ and the 
spectrum flattens down at the ankle near 
3x1018eV. The knee may be the result of 
limitations on particle acceleration at typical 
supernovae, whereas the ankle may indicate a 
transition to particles of extragalactic origin. 
HiRes (High Resolution Fly Eye’s) [7] and 
Telescope Array [8] claim the detection of the 
GZK feature and is consistent with the value of 
E1/2i.e. the energy at which the modification factor 
in the flux of UHECRs is reduced to ½ of the 
value inferred from the lower energy 
extrapolation, can be used as a powerful indicator 
of the presence of GZK feature and its association 
to photo-pion production. It measured the quantity 
and found its value to be 1019.73±0.07 eV. The 
chemical composition measured by HiRes by 
using elongation rate is consistent with a proton 
dominated composition at energies above 1018eV. 
Pierre Auger Observatory [10] measured and 
observed a gradual change in composition athigher 
energies which is dominated by iron at 50EeV.  It 
also found the correlation of the arrival direction 
of UHECRs above 57EeV. But it is difficult to 
infer the flux reduction at 1019eV.  Overview of 
the cosmic ray spectrum obtained from various 
observatories such as LEAP [11], AKENO [12], 
AUGER [13], KASCADE [14], AGASA [15], 
HiRes and Proton is shown in Figure 1.  

The quest of UHECRs is related to the issue of 
transition from Galactic cosmic rays to CRs 
generated in extragalactic sources. It has been 
considered that the ankle in the CR spectrum, at ~ 
1019 eV, is the spectral signature of the transition 
from a steep Galactic spectrum to a flatter 
extragalactic spectrum. The nature of the ankle is 
the consequence of three models developed. The 
dip model[16] explains the spectrum of cosmic 

rays propagating on cosmological scales due to 
Bethe-Heitler pair production.  The mixed 
composition model[17] describes that larger 
abundances of nuclei is heavier than hydrogen. 
The maximum energy of protons is relatively low 
at ~4x1018eV and for iron it extends to 1020eV. 
This is considered as disappointing fit due to flux 
suppression at 1020eV with intrinsic cutoff at 
source spectrum and no correlation due to heavy 
composition at highest energy. Both these models 
i.e. dip and mixed composition lead us to expect 
that galactic cosmic ray ends in EeV region rather 
than ankle. This is even supported from the 
cosmic anisotropy studies.  This is due to the 
supernovae remnant (SNR) [18] paradigm which 
is based on non-linear theory of particle 
acceleration at supernova shocks where cosmic 
ray acceleration in SNRs may reach a maximum 
rigidity ~1016 GeV. The main discrimination 
among these models is based on the measurement 
of chemical composition especially in transition 
region. 

 

Figure 1: Cosmic Ray Spectrum [18] 
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The study of arrival distribution of the high energy 
cosmic rays is the most useful method for of 
identifying the sources. This forms different 
categories: a) search for source of galactic central 
region, b) significant correlation of cosmic ray 
arrival direction with astrophysical objects, c) 
Cosmic ray arrival direction distribution for its 
anisotropy search.  

At energies below 1014eV, the spectrum can be 
measured directly by balloon and satellite-borne 
experiments. These experiments generally have an 
area of less than 1 m2. Above this energy, the flux 
is generally too small to make direct 
measurements. Ground-based experiments are 
used, where the energy of the primary cosmic ray 
must be inferred from its secondary’s which are 
produced after the interaction of primary source 
with the Earth’s atmosphere.The high energy 
primary cosmic rays are protons. These protons 
interacts through the cosmic microwave 
background (CMB) [19] photons on their way to 
the earth. Above threshold energy, the following 
photo-production interaction is allowed: 

���� + ��� → ∆�→ � + �� �⁄ + �� 

where the number of protons should significantly 
decrease. This energy is referred to as the Greisen-
Zapsepin-Kuzmin (GZK) cut-off and corresponds 
to proton energy of ~4×1019eV. Protons above this 
range will interact with the CMB photons and 
have their energy degraded while producing an air 
shower cascade which is mostly of charged and 
neutral pions. These particles will subsequently 
decay or interact with other nuclei. The air shower 
has three components: electromagnetic (80%), 
muonic (1.7%) and hadronic (0.3%) [20]. 
Neutrinos are not counted, although they are 
abundantly produced in weak decays. Relativistic 
charged particles will produce Cerenkov light as 
they propagate through the atmosphere. Finally, 
excitations of nitrogen molecules in the 
atmosphere will generate fluorescence light. 

Measurements of multiparticle production in fixed 
target experiments at low energy and in collider 
experiments at high energy are suitable to verify 
model assumptions and to limit theirextrapolations 

to cosmic ray energies. The data which reaches 
upto 1017eV [21] equivalent energy of cosmic ray 
protons obtained from LHC is of more important. 
The high energy secondary particles are more 
relevant to interpretation of cosmic ray data.  
Muon detection is an essential part in the Large 
Hadron Collider (LHC) experiments. It helps in 
understanding the background of the underground 
detectors and to simulatethe atmospheric showers 
induced by muons.At super high energies,these are 
also considered for exploration of primary cosmic 
rays, neutrino studies in different arrays like 
Super-Kamiokande [22], GRAPES-3 (Gamma 
Ray Astronomyat PeV EnergieS) [23] and for 
numerous environmental experiments like the 
solar activity characterization or climate change 
observations [24]. Also, it has successfully been 
used as muon tomography technique in the search 
for hidden rooms in pyramids or in volcanology 
[25]. There are other possible applications to 
increase the safety procedures in mining 
excavations, oil industry as an easy way to search 
for oil bags or at the customs checkpoints, to scan 
the passing vehicles [26].In many applications 
such as industry and academia, an accurate 
determination of the directionfrom where gamma 
rays are emitted is either needed or desirable. 
Radiation therapy treatments,the search for 
unknown sources, and homeland security 
applications are few of the fieldsthat can benefit 
from directional sensitivity to gamma-radiation 
[27]. 
This paper is extension of the previous work done 
on “Preliminary Studies of Muon Telescope” [1]. 
We discussed till now the fundamental properties 
of cosmic ray spectrum, its chemical composition 
and anisotropy. In section II, we present a brief 
description of on-going experiments in our 
laboratory where the PG students get an exposure 
to advanced nuclear electronics. The feedback of 
the students who did the lab course work is 
discussed in section III. An overview of various 
methods that can be implemented for study of time 
characteristics of photomultiplier tube, obtain the 
efficiency of detector system through coincidence 
techniques, calibrate the TDC and obtain the 
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energy deposited from CAMAC modules (ADC, 
TDC), angular dependence of cosmic ray flux and 
finally ends with atmospheric parameters such as 
temperature, pressure, solar activity and their 
effect on cosmic ray flux are presented in Section 
IV. The future aspects of our laboratory are given 
in Section V. 

2. Experiments conducted withPost 
Graduate Students: 

In the preceding work, we performed basic pre
preliminary studies of our telescope. 
includeslight leakage testing from detectors and 
optimized the discriminator threshold voltage. 
Counting statistics was applied to determin
error flexibility within the data range. 
experimental studies conducted with the students 
for understanding the concept of scintillation, 
signal transmission, electronics used to suppress 
the noise,  logical conversion of pulse to acquire 
data in optimizing PMT operating voltage and the 
correlation between count rate and accidentals
be discussed in this section. Two polystyrene (PS)
based scintillatorsi.e. Double Fiber Detector 
(DFD) and Single Fiber Detector (SFD)
dimension 24 x 23.5 x 2 cm3 are presently in use 
in the laboratory. These were assembled at Cosmic 
Ray laboratory, Ooty; afield station of T
Mumbai. Polystyrene (PS) with a photon emission 
at 300 nm is doped with a two stage phosphor 
wavelength shifter composed of 0.5% 
(absorbs photon at 300 nm and emits at 350 nm) 
and 0.02% POPOP (absorbs photon at 350
emits at 410 nm). The response peak of the 
organic scintillator is shown in figure 2
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Figure 2: Organic Scintillator Mechanism [

During the process of polymerization the 
temperature should be controlled at 70ºC for at 
least 60-72 hours. Polymerization is a
exothermic process (165 
temperature control is mandatory when dealing 
with large volumes. Rising polymerization 
temperature may produce bubbles and cracks. The 
fabricated scintillator is shown in figure 

Figure 3(a): Plastic Scintillator used in Experiment.

After cleaning the scintillator with 
isopropanolliquid and polish on both extremes 
with sandpaper, the scintillator is grooved all 
over.Wave length shifting (WLS) fiber of Kuraray 
Y-11 manufacture (refractive index, r=1.59, inner 
clad, r=1.42, outer clad, r=1.49) with
of 1.2 mm diameter is inserted into the 
groove.This absorbs the primary scintillation light 
(~410 nm) and reradiates the energy at a longer 
wavelength (~550 nm) [4]. 
emission spectrum of scintillator with the response 
peak of a photomultiplier tube. They also increase 
the decay time, improve the re
decreases the self-absorption of the detector. 
scintillation detectors embedd
shifting fibers are optically coupled 
tophotomultiplier tube (ET Enterprises, Type 
9807B), a regular 12-stage linear focused dynode 
structure and highly efficient at 550 nm. 
aluminum box  with volume 55cm (length) X 25 
cm (width) X 10 cm (height) and 1.2 mm in 
thickness is designed to place the entire setup i.e. 
scintillator coupled to a photomultiplier tube using 
a cookie (figure 3(b)). The whole setup of detector 
is shown in figure 3(c). 
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: Organic Scintillator Mechanism [8]. 

During the process of polymerization the 
temperature should be controlled at 70ºC for at 

Polymerization is a highly 
exothermic process (165 cal/gm) and the 
temperature control is mandatory when dealing 
with large volumes. Rising polymerization 
temperature may produce bubbles and cracks. The 
fabricated scintillator is shown in figure 3 (a). 

 

: Plastic Scintillator used in Experiment. 

cleaning the scintillator with 
polish on both extremes 

with sandpaper, the scintillator is grooved all 
Wave length shifting (WLS) fiber of Kuraray 
manufacture (refractive index, r=1.59, inner 

clad, r=1.42, outer clad, r=1.49) with double-clad 
of 1.2 mm diameter is inserted into the 

absorbs the primary scintillation light 
(~410 nm) and reradiates the energy at a longer 

) [4]. It helps to match the 
emission spectrum of scintillator with the response 
peak of a photomultiplier tube. They also increase 
the decay time, improve the resolution and 

absorption of the detector. The 
scintillation detectors embedded with wavelength 
shifting fibers are optically coupled 

photomultiplier tube (ET Enterprises, Type 
stage linear focused dynode 

structure and highly efficient at 550 nm. An  
aluminum box  with volume 55cm (length) X 25 

0 cm (height) and 1.2 mm in 
thickness is designed to place the entire setup i.e. 

a photomultiplier tube using 
whole setup of detector 
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Figure 
3(b): Optical coupling of scintillator to PMT with a 

cookie. 

 

Figure 3(c): Detector Setup  

The information provided by the detectors from 
the emitted radiations is in the form of electrical 
signals. This is processed by a signal processing 
electronics usingNuclear Instrumentation Module 
(NIM) which can sort out various unwanted 
signals from detectorsto extract energy 
information and determine the relative timing 
between the two signals.  It generates a fast 
negative logic with a rise time of the order ~1 ns. 
The corresponding voltage levels are thus 0V and 
-0.8V for logic 0 or 1 respectively. These fast 
NIM signals can be transmitted through coaxial 
cables. Students have studied the characteristics of 
pulse, coaxial cables, impedance matching, 
inhibiting discriminator pulse from veto 
functioning, versatile functions of logic unit such 
as AND, OR and anti-coincidence. Correlation 
between detector count rate and its accidental rate 
is also observed. These are briefly described along 
with the results in the following exercises given 
below: 

Exercise 1: Study the pulse characteristics 

In any pulse processing system, it is important to 
distinguish between two types of signal pulses i.e. 
linear and logic. A linear pulse carries information 
through its amplitude or shape. A sequence of 
these pulses differs widely by its size and shape 
characteristics. Logic pulse has a standard size and 
shape that carries information only by its presence 
or absence or by precise time of its appearance. 
Initially all radiation detector signal starts out with 
linear pulses and at some point, a conversion is 
made to logic pulses based on some pre-
determined criteria.  

A fast linear pulse collects the output current of 
radiation detector using a collection circuit whose 
time constant is small. The signal-to-noise ratio 
properties of fast linear pulses are always much 
less than a corresponding tail pulse which is 
derived by integrating the charge output of the 
detector across a large time constant [28]. The 
rapid rise and fall time overcome this outcome 
when timing information and high counting rates 
are more important than amplitude resolution. Its 
polarity depends on the bias voltage applied to the 
detector. The basic pulse characteristics associated 
with its polarity, amplitude, shape and its 
occurrence in relative time are explained here for a 
linear and NIM logic pulse to study its 
voltage/current as function of time. Figures 4(a) 
and 4(b) demonstrate these parameters obtained 
for double and single fiber detector configurations. 

Figure 4(a):Linear pulse characteristics obtained for 
double fiber detector. 
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Figure 4(b): Linear pulse characteristics obtained for 
single fiber detector 

Both the configurations are compared in order to 
understand the amplitude difference where a 350 
mV amplitude pulse generated for double fiber, 
200 mV in case of single fiber detector. This 
depends on the number of photoelectrons that 
reach the anode of the PMT where these fiber 
configurations may give a possible impac

Exercise 2:(a) Check the reflectionsin a
using a 50Ω impedance terminator.

Signal transmission is transferof a 
point A to B and also to preserve the information 
in the signal. These cables should be capable of 
transmitting an infinite frequency range over a 
certain distance in uniform and coherent manner. 
But stray capacitances, inductance or resistance
will invariably results in distortion of the pulse at 
receiving end. When a fast pulse signal is 
transmitted through simple wire connections, it 
attenuates and dies down after few cm. 
necessary to transmit infinite range of frequencies
in laboratory. A basic concept in processing of 
pulses from radiation detectors is the impedance 
of the devices that comprise the signal processing 
chain. High input impedance usually has a less 
load [29]. For example, the input impedance of an 
oscilloscope is always high to avoid excessive 
loading. 

The device impedance also should be in match 
with the cable impedance to avoid signal 
distortion from reflection. When a fast signal is 
viewed on an oscilloscope, it undergoes
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. A basic concept in processing of 
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of the devices that comprise the signal processing 
chain. High input impedance usually has a less 

. For example, the input impedance of an 
igh to avoid excessive 

The device impedance also should be in match 
with the cable impedance to avoid signal 
distortion from reflection. When a fast signal is 

, it undergoes an 

impedance mismatch due to
oscilloscope. In such cases, the cable can be 
terminated with an appropriate value so as to 
adjust the total load impedance seen by cable. This 
is done by placing a resistance of 50Ω in parallel 
with device. The signal seen by the oscilloscope 
for DFD and SFD are shown in figure 
signal is reflection free on terminating with 50Ω 
load impedance. 

Figure 5: Analog Signal Transmission Observed 
using with and without 50 Ω terminating.

We can observe from figure 
distortion from reflection can be avoided by 
matching device impedance with cable impedance. 
Direct transmit of fast NIM signal will result in 
impedance mismatch and fast signal reading. But 
slow signal can be transmitted and also compatible 
as cables are not too long. So
terminated for fast NIM pulse.

(b) To compute the characteristic impedance, 
velocity propagation, time delay and 
coefficient of coaxial cables RG 59/U, 5D2V.

Coaxial cables are used for standard transmission 
of signals. It consists of two concentric cylindrical 
conductors separated by a dielectric material. The 
outer conductor serves as a ground and also 
shields the central wire from stray electromagnetic 
fields. Frequencies ≤ 100 kHz are efficiently 
attenuated in most standard c
constituents of coaxial cables generally 
self-capacitance and inductance
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: Analog Signal Transmission Observed 

using with and without 50 Ω terminating. 

We can observe from figure 5, that the signal 
reflection can be avoided by 

matching device impedance with cable impedance. 
Direct transmit of fast NIM signal will result in 
impedance mismatch and fast signal reading. But 
slow signal can be transmitted and also compatible 
as cables are not too long. So cable should be 
terminated for fast NIM pulse. 

To compute the characteristic impedance, 
velocity propagation, time delay and reflection 
coefficient of coaxial cables RG 59/U, 5D2V. 

Coaxial cables are used for standard transmission 
sts of two concentric cylindrical 

conductors separated by a dielectric material. The 
outer conductor serves as a ground and also 
shields the central wire from stray electromagnetic 

100 kHz are efficiently 
d cables [28]. The line 

constituents of coaxial cables generally contain a 
and inductance. Using EM theory 



Physics Education                                              7                                             Jan – Mar 2016 

 

 
Volume 32, Issue 1, Article Number :10                                                                                                   www.physedu.in 

for two concentric cylinders, they can be 
represented as: 

� =
� �� �

�

�
�

2�
��

�� �= 0.2�� ����
�� �

��
��  

� =
2��

����
�� �

�/� =
55.6��

����
�� �

��/�  

Where a,b are radii of inner and outer cylinders; µ, 
ε are permeability and permittivity of insulating 
dielectric; ke = ε/ εo, km = µ/ µo permittivity and 
permeability relative to vacuum. For non-
ferromagnetic materials, km=1. L and C are on the 
order of 100 pF/m and few tenth µH/m. Coaxial 
cables with air or other gas as a dielectric have a 
propagation velocity very close to the velocity of 
light in a vacuum (3.00x108 m/s). 

General wave equation for a coaxial cable in terms 
of transmission line can be represented as 

���

���
= ��

���

���
+ (�� + ��)

��

��
+ ��� 

Let us consider an ideal loss less cable where R 
and G are zero 

���

���
= ��

���

���
 

For a sinusoidal voltage in time  

� = �(�) exp(���) 

���

���
= −����� = −��� 

�� = ���� 

The space solutions to represent the two waves 
which are travelling in +z and opposite –z 
direction are 

�(�, �) = �� exp��(�� − ��)�

+ �� exp��(�� + ��)� 

Here second wave corresponds to a reflection and 
its presence or absence depends on the boundary 

for the cable. From the above equation, k is 
considered as wave number and velocity of 
propagation is    

� =
�

�
=

1

√��
 

As long as the cable is constant in cross-section, 
the product LC is independent of length and 
�� = ��, where �permittivity is and � is 
permeability of dielectric. Thus for a cable with 
free space as dielectric velocity of propagation = 

�

����
= � = speed of light in vacuum. Speed of 

signal propagation is also reciprocal of time of 
propagation per unit length which is also known as 

T = �-1=√��. Here is T is time delay of the cable 
per unit length of the order 5 ns for 50 Ω cable.  

All signal cables generally utilize polyethylene for 
dielectric in which the velocity of propagation is 
about 66% of that of light in vacuum. In some 
delay cables it is reduced by a factor of 100 [29]. 
Pulse transmission through coaxial cable is in two 
extremes i.e. low frequency and slow pulses, high 
frequency and fast pulses. The application of fast 
and slow pulses depends on the comparison of 
fastest pulse component (rise time) with the transit 
time of the pulse. For dielectric material such as 
polyethylene, the transit time is about 5.1 ns/m 
[29]. Similarly a pulse through 15 m of RG 59/U 
coaxial cable has a transit time of 76.5 ns/15m. 
Pulsewithhigh rise time compared with the transit 
time isconsidered as slow pulse. In this case,cable 
acts much like simple conductor. The resistance of 
central conductor is very small for cables less than 
100 m length. When a 20 m RG-59/U cable have 
0.5 µs rise time, the resultant pulse can be 
considered as a slow pulse. This is due to the 
transit time of the cable i.e. 102 ns/20mbeing less 
than the rise time. Thus, for a signal transmission 
of slow pulse through a cable does not any 
termination as the resistance of central conductor 
is very small which result in negligible signal loss. 
Characteristic Impedance is another important 
property of transmission cable which is ratio of the 
voltage to the current in the cable. 
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In fast nuclear electronics applications, cables 
have a standard characteristic impedance of 50 Ω 
and for slower spectroscopy pulse the 
characteristic impedance is 93Ω. These cables are 
limited to a range of 50-200 Ω of characteristic 

impedance. The ratio 
�

�
 should be a factor of 3.6 to 

minimize losses.For all these cables, dielectric is 
Polyethylene whose relative permittivity is 
2.29.The observations are given in the table 1 and 

2: 

Signal in a coaxial cable is sum of original and 
reflected signal travelling in opposite direction. It 
is represented in arbitrary signal form as  

� = �(� − ��) + �(� + ��) 

When reflections overlap with original signal, then 
interference or distortion will result. Reflections 
occur when a travelling wave encounters a new 
medium in which the speed of propagation is 
different. In transmission lines, these reflections 
occur when characteristic impedance of the line is 
suddenly changed. These reflections are calculated 
by considering boundary conditions at interface. 
Consider a cable of characteristic impedance Z 
terminated with an impedance R. As the signal 
travels, the ratio of voltage to current must be 
equal to Z. When the interface encounters 
reflections, it must be compatible with original 
characteristic impedance since they travel back in 
opposite direction. Thus 

� =
��

��
, � =

�� + ��

�� + ��
=> � =

��

−��
 

Vo, Io are voltage and current of original signal 
and VR, IR are voltage and current of reflected 
signal.From these equations, Reflection coefficient  

Γ =
��

��
=

−��

��
=

� + �

� − �
 

If R>Z, the reflection will be of same polarity, but 
with amplitude between 0 and original pulse 
height. For infinite load impedance, reflected 
amplitude is equal to incident amplitude. The 
reflection is in opposite polarity when R<Z. For 
zero load impedance, reflection is equal and 
opposite in polarity to incident amplitude.If R=Z, 
No reflection takes place where the load and cable 
impedance gets matched. 

 

Exercise 3:Study the specifications of the Phillips 
704 Discriminator: VETO, ���������. 

Discriminator is a device that responds only to 
input signals with a pulse height greater than a 
certain threshold value.  It gives a standard logic 
signal when the criterion gets satisfied. It blocks 
out low amplitude noise pulse from PMT and 
other detectors. Time arrival between input and 
output is constant where as an important aspect of 

Table 1: Characteristic Impedance 

Coaxial 
Cable 

Outer  
diamet

er 
(mm) 

Inner 
diame

ter 
(mm) 

log 
(D/d) 

�� ��(�) 

Manufac
turer 

Values  
RG59/U 

4.95 0.8 0.79 2.29 75 

RG 59/U 4.40 0.63 0.84 2.29 76.6 
(2.3% 
error) 

Manufac
turer 

Values 
5D2V 

7.3 1.4 0.71 2.29 50 

5D2V 5.01 1.39 0.55 2.29 50.1 
(0.2% 
error) 

Table 2: Velocity propagation, Time delay and 
Reflection coefficient 

Coaxial Cables V(%) T(ns) � 

Manufacturer 
RG 59/U 

69 5.14 0.89 

RG 59/U 73 (5% 
error) 

5.18 
(0.7% 
error) 

0.92 
(0.3% 
error) 

Manufacturer 
5D2V 

65 5.06 0.78 

5D2V 68 (4% 
error) 

5.09 
(0.5% 
error) 

0.81 
(0.3% 
error) 
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discriminator is the method of triggering which 
a leading edge triggering. It occurs the moment 
pulse crosses the threshold value. Double pulse 
resolution and continuous pulse train are two 
parameters of this module which measures
smallest time separation between two pulses and 
the highest frequency of equally spaced pulses
[30]. A standardized NIM logic level (
pulse is delivered while suppressing the unwanted 
stray radiations arriving along with analog signal. 
Inhibiting the discriminator pulse 
accomplished by fast vetoing. This VETO 
function is shown in figure 6. 

Figure 6:  VETO Function in Model 704 Quad four 

channels Discriminator. 

Although the main use of a discriminator is to turn 
a variable-height input pulse into a standard
pulse, there are additional features of this unit that 
can be used. Each discriminator channel has a
“complementary” output, noted as
output is always opposite to the regular outputs as 
shown in Figure 7. 

Figure 7: Discriminator Specification Study from 

Oscilloscope. 

Exercise 4: Study the 2 input AND, OR logics 

using Phillips Quad Four fold logic unit

                            9                                             

                                                                                               

discriminator is the method of triggering which is 
occurs the moment 

Double pulse 
resolution and continuous pulse train are two 
parameters of this module which measures the 
smallest time separation between two pulses and 

spaced pulses 
. A standardized NIM logic level (-800mV) 

pulse is delivered while suppressing the unwanted 
ving along with analog signal. 

pulse can be 
This VETO 

:  VETO Function in Model 704 Quad four 

Although the main use of a discriminator is to turn 
standard logic 

of this unit that 
ach discriminator channel has a 

“complementary” output, noted as���������. This 
the regular outputs as 

 

: Discriminator Specification Study from 

Study the 2 input AND, OR logics 

using Phillips Quad Four fold logic unit. 

The coincidence unit determines if two or more 

logic signals are coincident in time and generates a 

logic signal if true (1) and no signal if 

(0).Versatile functions of this 

the selection of Logic AND, OR and Anti

coincidence are observed in figure 

Figure 8(a): Logic OR function

Figure 8(b): Logic AND fun

8(c): Anti-coincidence function

Figure 8(a) demonstrates the OR function where 

the status of detector D1 is 1 and D2 is 0 which 

results in an output as 1. This proves that the 

module performs OR logic. Similarly in figure 
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The coincidence unit determines if two or more 

logic signals are coincident in time and generates a 

and no signal if false 

this module [31] with 

Logic AND, OR and Anti-

in figure 8(a), (b), (c). 

 

(a): Logic OR function

(b): Logic AND fun

Figure 

coincidence function 

(a) demonstrates the OR function where 

the status of detector D1 is 1 and D2 is 0 which 

results in an output as 1. This proves that the 

module performs OR logic. Similarly in figure 
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8(b), we can observe the AND logic i.e. when D1 

is 1 and D2 is 0, the final output gives 0. Figure 

8(c) shows the Anti-coincidence function when

input (D1) is given.  

 

Exercise 5:Determine the PMT (photo

tube) operating voltage and the 

correlation with accidental counts in the

detector. 

Toimprove the acceptance value 

scintillator while suppressing the lower energy 

signals from PMT, the operating voltage for each 

detector i.e. (Double Fiber Detector, DFD and 

Single Fiber Detector, SFD) is determined. 

experimental setup is shown in figure 9. 

plastic scintillation detectors are placed in 

coincidence. The threshold voltage of Quad 300 

MHz discriminator (model number 708 [

fixed at  – 20 mV with a pulse width of 60 ns. 

Figure 9: Experimental setup 

The high voltage of one detector is fixed at 1700V 
whereas the high voltage of the other 
from 1200 – 1800 V with 50V interval.
a coincidence among the pulse the logic switch of 
Phillips Quad four fold logic unit (model number 
756 [31]) is set at level 2.The counts were taken 
using the CAEN Quad Scaler and Preset Counter 
Timer(model number N1145 [
coincidence rate/sec with respect to high voltage 
(H.V.) is observed for each PMT of the detector in 
order to determine its operating voltage.
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(b), we can observe the AND logic i.e. when D1 

l output gives 0. Figure 

function when 

Determine the PMT (photo-multiplier 

the count rate 

accidental counts in the 

 of plastic 

scintillator while suppressing the lower energy 

signals from PMT, the operating voltage for each 

i.e. (Double Fiber Detector, DFD and 

is determined. The 

n in figure 9. Two 

plastic scintillation detectors are placed in 

voltage of Quad 300 

MHz discriminator (model number 708 [30]) was 

20 mV with a pulse width of 60 ns.  

 

is fixed at 1700V 
other is varied 

1800 V with 50V interval. To obtain 
a coincidence among the pulse the logic switch of 
Phillips Quad four fold logic unit (model number 

The counts were taken 
Quad Scaler and Preset Counter 

[32]). The 
coincidence rate/sec with respect to high voltage 

observed for each PMT of the detector in 
oltage. 

 

Figure 10: Operating voltage of PMT in DFD and SFD

From the plot (Figure 10), the operating voltage 

for each detector is observed at 

inflexion for single fiber detector it is observed to 

be 1500V and for double fiber

While making the coincidence measurement, we 

should consider the uncorrelated background 

events in the detector. They may arrive within the 

resolving time of the circuit or through random 

noise which triggers the discriminator. We can 

overcome this disadvantage by measuring the 

accidental coincidences that occur in circuit which 

must be kept to a minimum. The rate of 

accidentals can be estimated from the singles rate 

in each detector and the time resolution of the 

circuit. Consider n1 and n2 are the ind

count rate for detector 1 and 2 respectively and τ is 

the resolution time which is set to trigger the 

circuit. Total number of accidental

� = 2���

Where�is 60 ns. Correlation 

with accidental is shown in figures
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: Operating voltage of PMT in DFD and SFD 

, the operating voltage 

for each detector is observed at the point of 

detector it is observed to 

fiber detector at 1550V. 

While making the coincidence measurement, we 

should consider the uncorrelated background 

events in the detector. They may arrive within the 

resolving time of the circuit or through random 

noise which triggers the discriminator. We can 

advantage by measuring the 

accidental coincidences that occur in circuit which 

must be kept to a minimum. The rate of 

accidentals can be estimated from the singles rate 

in each detector and the time resolution of the 

circuit. Consider n1 and n2 are the individual 

count rate for detector 1 and 2 respectively and τ is 

the resolution time which is set to trigger the 

ccidentals per unit time,   

����, 

Correlation of detector count rate 

is shown in figures 11 (a), (b).  

1500 1600 1700
High Voltage (H.V)

Coincidence Rate

Double Fibre 
Detector 

Single Fiber 
Detector
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Figure 11(a): Correlation between detector count rate 

and accidentals in double fiber detector

Figure 11(b): 

Correlation 

between 

detector count 

rate and 

accidentals in 

single fiber detector 

From figure 11 (a), 

(b); we can observe a linear relation with in the 

detector count rate and its accidentals. This is due 

to the noise which gradually increases with count 

rate on increasing the high voltage (H.V) of the 

PMT. 

3. QUESTIONAIRE FOR LABORATORY 
STUDENTS 

After evaluation of the results we conducted an 
analysis through questionnaire regarding 
understanding capability of the students in 

performing the experiment. The questionnaire 
helped us to understand the basic conceptual 
problems and evaluating the misunderstandings. 
At that point of view we prepared the following 
for students: 

1. Did you understand the scintillation mechanism 
after doing the experiment? 
2. Did you understand the main significance of 
PMT which is used in the experiment? 
3. At PG level do you understand the working of 
this experiment? 
4. Is the theoretical concept of coaxial cables clear 
which are used for transmission of fast pulse in the 
experiment? 
5. Discriminator is used to suppress noise and give 
a standard logic signal. Do you think it acts as 
main source in experiment? 
6. Did you understand why the signals are 
transmitted through Logic unit in experiment? 
7. Interaction of radiation with matter. Is this 
concept which you studied in the graduation clear 
after performing the experiments in this 
laboratory? 
The rating of the students opinion is taken through 
the following multiple choice options regarding 
their understanding capability in scintillation 
mechanism, PMT significance, coaxial cable 
transmission, discriminator, logic unit and 
experiment working with its concept clarity. 
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Figure 12: Students feedback in understanding the 

concepts of the experiemnt 

Taking into account the students responses we 
concluded from graph (figure 12): 66% of students 
understood the scintillation mechanism, 83% got 
the significance of PMT, 61% understood the 
transmission concept in coaxial cables, 50% 
understood the working of discriminator where as 
61% understood about logic gate usage in 
experiment and it is remarkable that 72% of the 
class got the clarity of working principle of 
experiment and its concept. 

8. Among the experiments which is more user 
friendly     
a. GM counter     
b. NaI - Gamma ray spectroscopy   
c. NaI - Multichannel analyzer  
d. Plastic scintillator – Nuclear Instrumentation 
Module 

Figure 13: Students feedback after performing the 

experiments in the laboratory
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: Students feedback in understanding the 

Taking into account the students responses we 
): 66% of students 

understood the scintillation mechanism, 83% got 
the significance of PMT, 61% understood the 
transmission concept in coaxial cables, 50% 

f discriminator where as 
61% understood about logic gate usage in 
experiment and it is remarkable that 72% of the 
class got the clarity of working principle of 

8. Among the experiments which is more user 
        
        
        
        

Nuclear Instrumentation 

 

: Students feedback after performing the 

experiments in the laboratory 

Among the experiments which are performed by 
students in the laboratory, as shown in graph 
(figure 13), 61% of the students felt GM counter is 
more userfriendly where as it is remarkable that 
22% of the class are comfort with the usage of 
NIM based plastic scintillator experiment which is 
presently studied in this paper.

9. Which one do you think is more preferable for 
study of cosmic rays?  

a. NaI  b. Plastic Scintillator 

Figure 14: The feedback of students in using the plastic 

scintillator and Sodium Iodide (NaI) for study of cosmic 

rays 

While comparing the organic and inorganic 
detectors (as shown in graph (figure 1
are present in laboratory for study of cosmic rays, 
72% of the students opted for plastic scintillator 
which is suitable got cosmic ray study. 

10. Among the techniques used, which is 
preferable for studying the efficiency of detectors

a. Pulse Height Discrimination     

Technique 

To a great 
extent

Sufficient

A bit

Nothing
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Sodium 
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experiments which are performed by 
students in the laboratory, as shown in graph 

), 61% of the students felt GM counter is 
more userfriendly where as it is remarkable that 
22% of the class are comfort with the usage of 

scintillator experiment which is 
presently studied in this paper. 

9. Which one do you think is more preferable for 

b. Plastic Scintillator  

 

: The feedback of students in using the plastic 

dide (NaI) for study of cosmic 

 

While comparing the organic and inorganic 
detectors (as shown in graph (figure 14)) which 
are present in laboratory for study of cosmic rays, 
72% of the students opted for plastic scintillator 

c ray study.  

10. Among the techniques used, which is 
preferable for studying the efficiency of detectors 

e Height Discrimination     b. Coincidence 

Plastic Scintillator
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Figure 15: The technique suitable to determine efficiency 
of detectors from students rating of their opinion

The two techniques i.e. pulse height 
discrimination and coincidence technique when 
compared for determining the efficiency of 
detectors (as shown in graph (figure 1
the students opted for pulse height discrimination 
where as 33% opted for coincidence technique.

11. Among the equipments given, which can cause 
main source for errors/noise in the experiment?

a. Scintillator   b. Coaxial Cablesc. 

PMT   d. Discriminator

Figure 16: Students feedback regarding the noise/error 
source in experiment within the equipments

When discussed for possible error/noise source in 
experiment as shown in graph (figure 1
the students gave their feedback for coaxial cables 
and 16% opted for PMT as a main source of noise 
in experiment.  
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: The technique suitable to determine efficiency 
rating of their opinion 

The two techniques i.e. pulse height 
discrimination and coincidence technique when 
compared for determining the efficiency of 
detectors (as shown in graph (figure 15)), 66% of 
the students opted for pulse height discrimination 

as 33% opted for coincidence technique. 

11. Among the equipments given, which can cause 
main source for errors/noise in the experiment? 

b. Coaxial Cablesc. 

d. Discriminator 

 

: Students feedback regarding the noise/error 
ource in experiment within the equipments 

When discussed for possible error/noise source in 
as shown in graph (figure 16)), 66% of 

the students gave their feedback for coaxial cables 
and 16% opted for PMT as a main source of noise 

4. Review on Previous Studies 
Done: 

4.1 Time Characteristics studies of 
PMT: 

The dynode voltage drops in different Photo 
Multiplier Tubes with respect to PIN number have 
been tested on fixing H.V of PMT for long time. 
The most important factor in any timing system is 
its resolution. One method is to measure the 
resolution i.e. to measure the time difference of 
two exactly coincident signals
effect occurs due to variations in the amplitude 
and/or rise time of the incoming signals. 
example, even though if two signals of different 
pulse amplitude is in coincident, then the two 
signals will trigger the discriminator at d
position. The second cause of walk effect is the 
charge required to trigger the leading edge of the 
pulse. Noise and statistical fluctuations also result 
in a time variation of signals generally termed as 
time jitter.  

4.2 Efficiency Studies of Sc
Counters: 

Instead of measuring the number of particles 
passing through the detector, efficiency of the 
entire system can be determined from the 
coincidence measurement. The ratio of 
coincidence counters to optimized counters allows 
to study the number of particles in a particular 
counter detects relative to the others.

The efficiency is calculated from the plateau 
region of third paddle (3F/2F) (Detector 
dimension is 60*20*1 cm3

cm3).  It is studied as function of longitudinal 
length of the detector and also with respect to 
varying distance from PMT (Detector dimension 
is 199x19.5x0.9 cm3 )[34]. The Plateau region of 
the test paddle determined from the efficiency 
(3F) (1st paddle = 200x165x10 mm
200x165x10 mm3, Test paddle = 340x200x10 
mm3)[35]. Probability at a certain time instant 
where all four paddles record a signal 

Coincidence 
Technique
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Review on Previous Studies 

Time Characteristics studies of 

The dynode voltage drops in different Photo 
Tubes with respect to PIN number have 

been tested on fixing H.V of PMT for long time. 
The most important factor in any timing system is 
its resolution. One method is to measure the 
resolution i.e. to measure the time difference of 

ignals [33]. The walk 
variations in the amplitude 

and/or rise time of the incoming signals. For 
example, even though if two signals of different 
pulse amplitude is in coincident, then the two 
signals will trigger the discriminator at different 
position. The second cause of walk effect is the 
charge required to trigger the leading edge of the 
pulse. Noise and statistical fluctuations also result 
in a time variation of signals generally termed as 

Efficiency Studies of Scintillation 

Instead of measuring the number of particles 
passing through the detector, efficiency of the 
entire system can be determined from the 
coincidence measurement. The ratio of 
coincidence counters to optimized counters allows 

number of particles in a particular 
counter detects relative to the others. 

The efficiency is calculated from the plateau 
region of third paddle (3F/2F) (Detector 

3, 45*3*1 cm3, 45*2*1 
).  It is studied as function of longitudinal 

length of the detector and also with respect to 
varying distance from PMT (Detector dimension 

. The Plateau region of 
the test paddle determined from the efficiency 

00x165x10 mm3, 2nd paddle = 
, Test paddle = 340x200x10 

. Probability at a certain time instant 
where all four paddles record a signal was 
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calculated from the individual count rate per 100 
sec, 4-fold trigger rate per 600 sec and average 
frequency (Hz). Here the chance coincidence in 
which a muon passes through paddles 1, 3, 4 and 
paddle 2 records any signal (noise/muon) also 
determined along with actual chance coincidence 
rate, actual cosmic ray muon rate  and average 
muon flux (P1 – 30x2x1 cm3, P2 – 30x3x1 cm3, 
P3 – 40x20x1 cm3, P4 – 40x20x1 cm3)[36]. 
Efficiency (counts/hr) rate taken for two weeks 
where the correlation between count rate and 
atmospheric pressure, temperature, barometric 
coefficient within 2 weeks observed. The statistics 
such as chi-square test, p-value, correlation 
coefficient, slope of the correlation was also 
determined (1000x200x10 mm3 with 2x2 mm3 
square type WLS fibre)[37].  

4.3 Calibration of TDC: 

The time scale of TDCwas calibrated in work 
conducted from reference [38]. Distance between 
the peaks produced by different delays and the 
time resolution of the paddles (60*20*1 cm3 , 
45*3*1 cm3 , 45*2*1 cm3) were measured.  

4.4 Calibration of ADC: 

In the report [38], number of photoelectrons 
produced at the PMT photocathode from 
scintillator paddle for cosmic ray muon (60*20*1 
cm3, 45*3*1 cm3 , 45*2*1 cm3) was measured. 
Muon energy wasdetermined(P1 – 30x2x1 cm3, 
P2 – 30x3x1 cm3, P3 – 40x20x1 cm3, P4 – 
40x20x1 cm3).  Response spectrum on changing 
the coincidence width was also studied forNumber 
of counts v/s ADC channel (1000x200x10 mm3 

with 2x2 mm3 square type WLS fibre from).  

4.5 Radioactive source: 

The isotropic behavior of radiation using two 
detectors where one is fixed at a position and other 
is varied at different angles – coincidence counts. 
Study the inverse square law behavior. Study the 
dependence of cosmic ray flux on placing 
different shielding (lead, Al, wood) between 

source and PMT (Lead acid battery – 6.35 cm, Al 
– 0.3175 cm thick, Wood – 5.08 cm) [39]. 

4.6 Atmospheric parameters: 

The correlation between the flux distributions and 
barometric pressure was studied with variable 
angular acceptance at the earth’s surface of two 
scintillator paddle muon telescope. A paddle 
separation of 0, 7, 14 inches conducted for a 
correlation and anti-correlation analysis of muon 
count rate with the barometric pressure, surface 
temperature, stratospheric temperature and solar 
activity parameters (IMF (nT), plasma speed 
(km/hr) and Kp index) (two 33x7x1 cm2, four 
12x12 cm2) [40]. The dependence of cosmic ray 
flux over zenith and azimuthal angle observed. 
Coincidence counts as function of shielding 
thickness was also determined (Three scintillator - 
40x80x3 cm2, Light guide – 40x40 cm2, Iron plate 
– 2cm thick) [40]. 

5. Conclusion: 

Cosmic rays are a prevailing source of information 
for performing high energy physics experiments. 
They provide energetic,correlated, particles which 
arrive on Earth. The detection of such particlesand 
the study of the inclusive and definite properties of 
secondary cosmic rays may provide basic and 
advanced educational activities to get involved of 
undergraduate and post graduate students. 
Thehardware required by such experiments may 
include the use of scintillators and fast pulse 
techniques for possible experimental 
investigations. By such devices we can carry out 
numerous quantitative experiments, with the 
prospect to enhance the physics curriculum.  

6. Future Plans: 

Students are presently performing horizontal 
coincidence, vertical coincidence and at different 
elevations. Later they are going to compare the 
difference among the count rate of horizontal and 
vertical coincidenceThey will also determine the 
efficiency of detectors from three fold and four 
fold. The effect of absorbers when placed between 



Physics Education                                              15                                             Jan – Mar 2016 

 

 
Volume 32, Issue 1, Article Number :10                                                                                                   www.physedu.in 

detectors will be observed from their count rate. 
Future plan is to interface with CAEN C111C 
Ethernet CAMAC Controller, calibratingPhillips 
TDC 7187 and Phillips 7164 ADC 
modulestostudy the resolution which have an 
impact on range of digitization and time spectrum 
of the particle. Measure and store the time 
difference between the two pulses generated in the 
same detector to visualize the two pulses 
originating from the muon and the electron. 
Investigate the cosmic ray muon life time with 
different counters and absorbers.  
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Abstract

Reformulating classical physics using functional differential equations (FDEs) is of significant
value in itself. But does it lead to quantum mechanics? Formally, the use of mixed-type
FDEs leads to a structure of time, and thence to a quantum logic, and the postulates of
quantum mechanics. Here, we give a simple and intuitive account of the structured time
interpretation of quantum mechanics (STIQM), that quantum mechanics may be due to
advanced interactions. We solve the modified Maxwell’s equations in a linear approximation,
for both retarded and advanced cases. The solutions show that a free electron oscillates
under its own self-action. The oscillations are sustained because both damping and
anti-damping are present even in the fully retarded case. Quantitative agreement with the
de Broglie wavelength is possible with a simple extra hypothesis, though we do not examine
it further here. A structure of time corresponds to many logical worlds, which we explain
using the close analogy to parallel computing. With STIQM wave-particle duality does not
present any conceptual difficulty. If quantum mechanics is indeed due to advanced
interactions then a scalable quantum computer must necessarily be an android.

1 Recap

We have seen that if we do the math cor-
rectly, functional differential equations arise
in the formulation of the two-body problem

of classical electrodynamics. It is invalid to
approximate these by ODEs and PDEs as is
commonly done, since FDEs lead to funda-
mental departures from expectations based on
ODEs and PDEs.[1] Briefly, FDEs correspond
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to a coupled systems of ODEs and PDEs. It
is hazardous to neglect that coupling, even
though it is commonly neglected in everyday
physics.[2]

Next we saw that to do the classical hy-
drogen atom correctly we need to include the
radiation reaction. But if we include radiation
reaction, even the one body problem of elec-
trodynamics cannot be solved since runaway
solutions arise. This state of affairs too needs
to be corrected. There is a way to fix those
infinities by modifying Maxwell’s equations at
a microphysical level. (This is similar to the
technique used to fix the infinities of quantum
electrodynamics.) But this turns even the
1-body equations of motion, with radiation
reaction, into FDEs.[3]

Further, FDEs are not restricted to electro-
dynamics. Compatibility with special relativ-
ity requires that Newton’s “laws” of motion
must be reformulated. But Newton’s laws
of motion and law of gravitation come as a
package deal, so that even gravitation has to
be reformulated in a Lorentz covariant way.
This leads to the FDEs of retarded gravita-
tion theory (RGT). RGT is theoretically bet-
ter than Newtonian gravitation (since Lorentz
covariant), and practically better than gen-
eral relativity (since using it makes the many
body problem for the galaxy tractable). Even
if we accept dark matter as the reason for the
failure of Newtonian physics for the galaxy,
we must use RGT to calculate its extent, not
Newtonian gravitation.[4]

Finally, the existing formulation of physics
is not consistent with our everyday experience
that we create a bit of the future. The easiest
way to reformulate physics to allow for the

observed ability of living organisms to create
some of the future is to allow advanced inter-
actions, or a tilt in the arrow of time. This
is not a new hypothesis, but just drops the
usual hypothesis of causality. That leads to
mixed-type FDEs.[5]

Thus, we have used FDEs for a series of cor-
rections and “tweaks” which leads to a better
mathematical formulation of classical electro-
dynamics, and gravitation, and to a physics
more in accord with the mundane experience
of both time asymmetry and creativity. That
is of substantial value in itself. But will any
of this lead to quantum mechanics?

Now the relation of mixed-type FDEs
(MFDEs) to quantum mechanics was pointed
out long ago[6] in what is called the structured-
time interpretation of quantum mechanics
(STIQM). However, that connection was es-
tablished at a very abstract level, which is
hard for most physicists. The present article
aims to provide a simpler and more intuitive
account of STIQM.

2 The base MFDEs

With the modified Maxwellian electrodynam-
ics, retarded and advanced propagators are
defined as before.[7] That is,

Ga(x,y) = δ((x− y)2 + d2)θ(y0 − x0), (1)

is the advanced Green function, while to ob-
tain the field strength we now need to use
the derivatives at advanced time instead of
retarded time.
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Mixed-type propagators are defined as a
convex combination of retarded and advanced
propagators

Gm = aGa + (1− a)Gr 0 < a < 1, (2)

so that for the fields we have

Fm = aFadv + (1− a)Fret 0 < a < 1. (3)

With this expression for the field, the equa-
tions of motion of even a single classical
charged particle are MFDEs.

2.1 The locally linear
approximation

There are no general methods of solving this
type of nonlinear MFDE. However, a sim-
ple way to obtain an approximate solution,
called the locally linear approximation, was
suggested long ago.1 The idea is to approxi-
mate the nonlinear MFDE locally by an equa-
tion of the same type, a linear MFDE with
constant coefficients and constant deviation
of the argument.

To obtain this linear MFDE the coefficients
are frozen in the neighbourhood of a particular
point of time, as are the delay and advance.
We know how to solve such linear MFDEs
with constant coefficients and constant devi-
ation of arguments. We then continue the
solution by using this locally linear approx-
imation in neighbourhoods around different

1C. K. Raju, “Simulating a tilt in the arrow of
time”, paper presented at the seminar on “Some As-
pects of Theoretical Physics”, Indian Statistical Insti-
tute, Calcutta, 14–15 May 1996 (unpublished).

points of time, and patching together solu-
tions at different times. This may not result
in a globally continuous or unique solution,
but that is not a requirement.

2.2 A linear approximation:
retarded case

Let us start by explicitly working out this
linear approximation in the retarded case. It
is helpful to convert from proper time to co-
ordinate time, and to use 3 vectors and a 3+1
decomposition.

A straightforward but tedious calculation
gives for the electromagnetic field strength E

E =
qcτ

4πε0
(
c2τ − (v · χ)

)3(
− a

(
c2τ − (v · χ)

)
+ u(c2 − v2 + χ · a)

)
(4)

where v, a are the 3 vectors corresponding to
velocity and acceleration respectively (both at
retarded time), (τ, χ) = ζ is the 3+1 decom-
position of the retardation vector ζ. Further,
u = 1

τ
χ−v, is analogous to the vector defined

in elementary texts [Griffiths]. However, recall
that, unlike the Maxwellian case, ζ is no longer
a null vector, since interaction takes place
along a hyperboloid. Consequently, 1

τ
χ 6= χ̂.

Instead, we now have

χ2 + d2 = c2τ 2. (5)

For the case of self-action, let us approxi-
mate the retardation 3-vector χ as

χ ≈ vτ. (6)
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This gives from (5) that

τ = γ
d

c
. (7)

Since χ ≈ vτ we actually have u ≈ 0 for
the case of self action, and we can also use
(6) to simplify the expression due to the dot
product ζ · α̇

c2τ − v · χ = (c2 − v2)τ (8)

To derive our approximate linear equation,
let us further neglect the force due to the
magnetic field. The self-force on the charge
due to the electric field is F = qE, and the
equation of motion is

ẍ =
q

m
E (9)

Recalling that u = 0 for the case of self-
action, and recalling that we are neglecting
the magnetic field in this approximation, the
equation (9) reduces to the simple equation

ẍ = −kra (10)

where

kr =
q2cτ

4πε0m(c2τ − v · χ)2
. (11)

Using (8), this simplifies to

kr =
q2c

4πε0mτ(c2 − v2)2

=
q2

4πε0mc3τ(1− v2

c2
)2

(12)

If the charged particle is an electron so that
m = me, the last equation can be rewritten

kr =
q2

4πε0mec3τ(1− v2

c2
)2

=
re
c
· 1

τ
· γ4

=
τrelax
τ

γ4

=
re
d
γ3, (13)

where re = q2

4πε0mec2
is the classical radius

of the electron, τrelax = re
c

is the so-called
relaxation time of the electron (time taken
by light to travel across the classical electron
radius), and d is the separation parameter in
the modified Maxwell equations. If d ≈ re,
we have kr ≈ 1.

3 Oscillatory solutions

For our immediate purpose, we can, without
loss of generality, further simplify the above
equation to an equation in a single dimension
(so that x is a scalar, not a vector). (There
is no loss of generality because in the vector
case we simply apply the following reasoning
to each component of the vector.)

To begin with, since kr ≈ 1, we set kr = 1,
in (10) and solve the simple equation

ẍ = −ẍ(t− τ) (14)

We look for pure imaginary roots of the
characteristic quasi-polynomial. That is, we
substitute x = eıωt in (14), to obtain

− ω2x = ω2xe−ıωτ . (15)
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Cancelling ω2x from both sides, we see that
we are seeking a solution of

e−ıωτ = −1. (16)

Such a solution is easily found. Taking real
and imaginary parts we see that we need the
simultaneous solution of

cosωτ = −1,

sinωτ = 0. (17)

The solution is evidently given by

ωτ = π + 2nπ, n = 0,±1,±2, . . .

= (2n+ 1)π, n = 0,±1,±2, . . . (18)

In general, this equation has an infinity of
roots. Each pure imaginary root corresponds
to an undamped oscillatory motion of the
particle. Thus, the solution of (14) is

x(t) = eıωt

ω = (2n+ 1)
π

τ
, n = 0,±1,±2, . . . (19)

Thus, we see that a single free charged par-
ticle will, under its own self-action, oscillate.
While there is no rest frame for such a par-
ticle, we may consider as a “zero” frame a
frame where the particle does not drift off,
and has zero average velocity. As seen from a
frame which it is moving with respect to the
zero frame, so that the particle has an average
velocity V, the particle will correspond to a
travelling wave, say,

x = V t+ A sin(ωt). (20)

However, for the wavelength λ of such a
travelling wave we will have

λ = V T, (21)

where T = 2π
ω

is the time period of the si-

nusoidal oscillation. Since T ∝ τ = γd
c

, we
see that quantitative agreement with the de
Broglie formula requires an additional hypoth-
esis

d ∝ 1

E
, (22)

where E is the average energy, and we neglect
the γ factor, for simplicity. For a free particle
E = 1

2
mV 2, so, with this hypothesis, from

(21) we get

λ ∝ 1

mV
. (23)

Now the parameter d is not specified by
the theory. Roughly speaking, it relates to
the “interior” of the electron, where anything
at all might happen. The above hypothesis
about it looks simple enough. Nevertheless,
any attempt to justify it would bring in rami-
fications far beyond the scope of this article,
which aims to give a simple an intuitive ac-
count of the structured-time interpretation
of quantum mechanics (STIQM). Therefore,
for the purposes of this article let us proceed
with qualitative agreement alone: some sort
of oscillatory or wave motion is naturally as-
sociated with a free charged particle.

Note that we have an infinite (discrete)
spectrum of possible frequencies in classical
physics. That is obviously not possible in clas-
sical mechanics or with ODEs. If we were to
do the same for a system of ODEs, no matter
how many particles are involved, we would
end up with a polynomial with a finite num-
ber of roots, never a quasi polynomial with
an infinity of roots. On the theory of Fourier
series, this means that we are not restricted
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to sinusoidal oscillations, and can have any
general period function.

4 Damping and

anti-damping

The significance of pure imaginary roots of the
characteristic quasi-polynomial is that pure
imaginary roots correspond to stable or un-
damped oscillations. However, in arriving
at the simplified equation (14) above we as-
sumed that kr = 1, although from the last
of the equations (13) it is clear that that can
never exactly be the case.

So, let us go to the next level of complexity,
and solve the equation after putting back the
value of kr but supposing it to be a constant,
possibly different from 1. That is, we solve
the equation

ẍ = −krẍ(t− τ), (24)

obtained by neglecting just the magnetic field,
and treating kr as a constant.

We now take as a trial solution

x = ezt, where

z = u+ ıω. (25)

Substituting in (24), and cancelling z2ezt as
before, we are led to the characteristic quasi-
polynomial equation

e−zτ = − 1

kr
, (26)

in place of (16). Equating real and imaginary
parts as before, we arrive at

e−uτ cosωτ = − 1

kr
, (27)

sinωτ = 0. (28)

in place of (17). This can be solved by choos-
ing ω as before as a solution of (17) and choos-
ing u as the solution of

e−uτ =
1

kr
. (29)

That is,

u =
1

τ
log kr (30)

Thus, the solution of (24) is given by

x(t) = eut.eıωt (31)

with ω as before given by (18) and u given by
(30).

Thus, we now have oscillations which are
damped or anti-damped by a factor of eut

where u = 1
τ

log kr. Damping holds if u < 0,
or kr < 1, that is, for large values of d or
τ (d > γ3re or τ > γ4τrelax). If the reverse
inequality holds ( kr > 1), that is for small
values of d or τ (d < γ3re or τ < γ4τrelax) we
will have anti-damping. This should be noted,
because on intuition built on classical mechan-
ics there is no possibility of anti-damping with
purely retarded radiation.

In particular as d → 0, it is anti-damping
which prevails, and we recover the runaway
solutions as in the theory with point masses.
That is, the method of deriving radiation re-
action by a limiting procedure is not valid, be-
cause in the process of taking the limit there
is an unexpected switch from damping to anti-
damping.
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4.1 Self-excited oscillations

The existence of both damping and anti-
damping raises the possibility of self-excited
oscillations. Indeed, kr = re

d
γ3, is velocity

dependent. For constant re
d

, as v → c we have
γ →∞, so kr will increase, and anti-damping
will set in. In an oscillatory motion, v will de-
crease and become zero. During this time, we
have γ → 1, so if re

d
< 1, damping will set in.

Thus, both damping and anti-damping may be
present in the course of a single oscillation.

What will be the effect of this? We can-
not write down a formula for this case, where
the damping factor is velocity dependent, but
the numerical solution is given below. The
solution is stable, or at least semi-stable, cor-
roborating the possibility of self-excited oscil-
lations, though the frequency of the oscillation
is no longer given exactly by (17).

Thirdly, even τ = γd
c

is γ dependent. So
long as the values of v are small relative to
c this does not seem to make much of a dif-
ference, and the numerical solution remains
almost the same.

Thus, on classical physics (with FDEs) an
electron is not just a mass point which sits idly
waiting for an external force to move it as in
Newtonian mechanics. Under its own retarded
self-action it undergoes a rapid self-excited
oscillation, during which its momentum and
energy also vary, though there is no net loss
or gain of energy due to radiation.

-1.5
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Figure 1: Solution of the retarded equation (24) with
the velocity dependence of kr and τ taken into ac-
count. The x-axis is time in units of τrelax (deci-yocto
seconds). The y-axis does double duty. For velocity it
is in units of c

30 (or c
300 ) dfm/dys, for position it is in

corresponding units of distance (deci-femto meters).

4.2 The equations of motion
for self-action: mixed case

We now take up the mixed-type case, where
the propagator is a convex combination of
advanced and retarded propagators. Working
exactly as above, we arrive at the approximate
equations of motion for a charged particle as,

ẍ = akrẍ(t+ τ)− bkrẍ(t− τ), a+ b = 1,
(32)

where the weight of the advanced component
a � 1, so that the weight of the retarded
component b ≈ 1. To solve this equation, as-
suming kr constant, we proceed as before and
take as a trial solution x = ezt, with z = u+ıω.
Substituting in (32), and cancelling z2ezt as
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before, we are now led to the characteristic
quasi-polynomial equation

1 = akre
zτ − bkre−zτ . (33)

Taking real and imaginary parts as before, we
now obtain

akre
uτ cosωτ − bkre−uτ cosωτ = 1 (34)

akre
uτ sinωτ + bkre

uτ sinωτ = 0. (35)

If ω is a solution of (17), then sinωτ = 0
so the equation (35) is satisfied, and, since
cosωτ = −1, (34) reduces to

aeuτ − be−uτ = − 1

kr
. (36)

This can be solved by setting y = e−uτ so
that u = − 1

τ
log y. This leads to the quadratic

equation
−1

kr
=
a

y
− by (37)

Explicitly the quadratic is by2 − 1
kr
y − a = 0

and this has the solution

y =
1±

√
1 + 4abk2r
2bkr

. (38)

We need a positive root since we need the log
of y. Approximately, this is given by

y ≈ 2

2bkr
+

2abk2r
2bkr

, (39)

so that

y ≈ 1

bkr
+ akr (40)

Since b ≈ 1 we have as before y ≷ 1 almost
according as kr ≷ 1. Thus, the solution in the
mixed-type case is

x(t) = eut.eıωt (41)

with ω as before given by (18) and u =
− 1
τ

log y with y given by (40).
However, in this case there is one more

solution. We can choose cos(ωτ) = 1 in (34),
so that ω = 2nπ

τ
. In this case, instead of (36)

we have the equation

aeuτ − be−uτ =
1

kr
. (42)

With y defined as before by y = e−uτ we now
get the quadratic by2 + 1

kr
y − a = 0, which

has the solution

y =
−1±

√
1 + 4abk2r

2bkr
. (43)

Further analysis shows that this solution is
unstable since permanently anti-damped (un-
less some assumptions fail), hence we discard
it.

5 STIQM

That brings us to a very fundamental issue,
at the core of STIQM.[6] The difference be-
tween MFDEs and retarded FDEs is not just
a matter of slightly differing rates of damping.
With MFDEs past does not determine future.
Indeed, the existence of advanced interactions
allows the future to communicate with the
past, so that even the past is not fully deter-
minate. However, since advanced interactions
are rare, the indeterminacy of the past is very
small compared to that of the future.

The question now is this: how does one
model such indeterminacy? A structure of

Volume xx, Number xx, Article Number : x www.physedu.in

Jan - Mar 2016

 32                    1                                   11



Physics Education 9 xx-xx-2016

time helps us to model indeterminacy. In
Newtonian mechanics a dynamical variable
has a definite value at one instant of time.
A structure of time means that it may have
more than one value at one instant of time.

Because the structure of time in STIQM
arises from the use of MFDEs with only a
tiny advanced component, a retarded FDE
model still remains a good first approximation.
The world is still approximately deterministic,
and the indeterminacy relates typically to a
microphysical level. That is, STIQM involves
a microphysical structure of time. We can
expect advanced effects to be most readily
manifest at the level of single particles.

It may seem illogical to say of a dynamical
variable that q = 3 is true, and also that
q = 4 is true, but logic itself depends on the
nature and structure of time.[8] A change in
logic is a key required feature in modeling the
indeterminacy of qm; it is well-known that
the logic obeyed by quantum mechanics is not
Boolean like 2-valued logic.

In terms of probabilities, quantum probabil-
ities are different from classical probabilities,
just because quantum probabilities are defined
on a different logic, and hence do not admit
a joint probability distribution of canonically
conjugate variables. In the von-Neumann for-
mulation of qm, the representation of dynami-
cal variables by operators may be understood
as relating to random variables as measurable
functions defined on the non-Boolean lattice
or logic of subspaces of a Hilbert space, also
called a quantum logic.

The temporal logic corresponding to a struc-
tured time is neither 2-valued, nor 3-valued;
it is quasi truth-functional. That is we cannot

always assign a truth value to the statement
q = 3. A subtle but important point here is
that this is NOT the same thing as saying that
q = 3 has the truth value “indeterminate”, as
in, say Lukasiewicz’s 3-valued logic.[6, chp. 1]
In that 3-valued logic, the logical connectives
remain functions of the 3 truth values; that is
no longer the case with quasi truth-functional
logic.

Roughly speaking, in 3-valued logic we as-
sign neither truth value (true, false) to a
proposition; in quasi truth-functional logic we
may assign both truth values (at one “instant”
of time). It is not the case that Schrödinger’s
cat is either alive or dead, and we don’t know
which is the case; rather it is the case that
Schrödinger’s cat is both alive and dead (at
one “instant” of time). The 3-valued logic
used by Reichenbach[9] or Kothari[10] does
not lead to a valid interpretation of qm. A
key result of STIQM, however, is this: a
quasi truth-functional logic is a quantum logic.
Though this result is formally proved only in
the book[6], and not in the related series of ar-
ticles in this journal, let us try to understand
it here in simple intuitive terms.

As already noted, the key aspect of quan-
tum probabilities is that joint probability dis-
tributions do not exist for canonically conju-
gate variables. This is mathematically linked
to the non-commutativity of operators, with
dynamical variable defined as random vari-
ables, with probability defined on the lattice
of subspaces of a separable Hilbert space in-
stead of a usual Boolean algebra. The key
requisite feature of the lattice of projections
on a Hilbert space is that the distributive law
of “and” over “or” fails.
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Let us try to understand this in simple and
intuitive terms. Consider a two slit experi-
ment with two slits A and B. Consider the
two propositions:

1. The electron reached the screen AND
passed through slit A OR the electron
reached the screen AND passed through
slit B.

2. The electron reached the screen AND
passed through slit A OR slit B

The two statements are equivalent on a
Boolean logic. However, they are physically
different, since in the first case one observes
a mixture of two gaussians, and in the sec-
ond case one observes an interference pattern.
Hence, the distributive law fails, and a quan-
tum logic must be non-Boolean.

The lattice of projections on a Hilbert space
is such a non-distributive lattice. If P1 and
P2 are two projection on subspaces S1 and S2

respectively, we define P1∧P2 as the projection
on the intersection S1 ∩ S2, and P1 ∨ P2 as
the projection on the span of S1 ∪ S2. If
Px and Py and Pxy are projections on the x-
axis, y-axis and the line x = y respectively,
then (Pxy ∧ Px) ∨ (Pxy ∧ Py) = 0, whereas
Pxy ∧ (Px ∨ Py) = Pxy, so that “and” (∧) is
not distributive over “or” (∨).

The explanation of non-distributivity with
quasi truth-functional logic is much easier to
understand. The two statements above are
not equivalent because the OR in proposition
1 is exclusive, while the OR in proposition 2 is
inclusive. That is, we allow for the possibility
that the electron passed through both slits.
The electron is a particle, it did not divide

into two halves like a wave; but it is time
which split into two threads to allow for both
possibilities simultaneously.

The formal mathematical way to make
a quasi truth-functional logic meaningful is
to interpret it in terms of logical (2-valued)
“worlds”. A logical world, in the sense of
Wittgenstein, is “all that is the case”. That
is, a logical world corresponds to an assign-
ment of binary truth values “true” or “false”
to any proposition. This understanding of the
word “world” must be clearly distinguished
from the loose way in which the word “world”
is used in, say, the many-worlds interpreta-
tion of quantum mechanics. In STIQM, there
is only one physical world. Multiple logical
worlds are just a semantic device we use to
make its description easily comprehensible in
natural languages. In particular, these logical
worlds may interact with one another.

Parallel computers provide a concrete
model of the use of quasi truth-functional
logic. The parallel computer is analogous to
the single physical world we have. It, however,
consists of multiple processing units, each of
which runs a sequential execution “thread” or
sequential process,[11] and thus each proces-
sor constitutes a logical world. These worlds
interact with one another. Each execution
thread itself is a thread or branch of struc-
tured time. Now suppose we want to debug
a parallel program, and break its execution.
This would give us the “state” of the physical
world at one “instant”. However, it is per-
fectly possible that we find Schrödinger’s cat
is alive in one processor, and dead in another,
there is no paradox in that. A quasi truth-
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functional logic is needed to understand such
debugging.[12]

When the STIQM was developed, almost a
quarter century ago, parallel computing was
in its infancy, and OCCAM was being used as
the language of parallel computing, since there
was nothing much then by way of parallel
Fortran or parallel C. An example computer
program in OCCAM illustrating the above
considerations (and using the indeterministic
ALT construct of OCCAM) is given in [6].

5.1 Two sources of uncertainty

Thus, the use of FDEs brings in two novel
sources of uncertainty. First, unlike the case
in Newtonian mechanics, a particle such as
an electron does not stay at rest. Even with
purely retarded FDEs, and under its own self-
action the particle oscillates. As such its po-
sition and momentum are not fixed, but are
constantly varying.

Secondly, with MFDEs the future, and even
the present and past really are uncertain at
the microphysical level. This corresponds to
a microphysical structure of time. While this
situation can be described as multiple parallel
“worlds”, in STIQM, unlike the many-worlds
interpretation, these are only parallel logical
worlds. There is only one physical world, as
in one computer performing concurrent com-
putation.

Note that the existence of these parallel
worlds follows from classical physics done cor-
rectly, by addressing problems neglected over
the last century.

5.2 Wave particle duality

An interesting feature emerges when we com-
bine both sources of uncertainty, or both the
features of (a) an oscillating particle which
(b) exists in multiple sub-threads of time.

Consider again the classical two-slit experi-
ment with an electron. If the electron behaves
as a free particle before the slits, then there
are two sub-threads of time, one in which
the electron comes from slit A and another
in which it comes from slit B. These multi-
ple past possibilities will reflect in multiple
future solutions between the slits and screen.
It is clear that the two solutions will, in gen-
eral, travel different distances to reach a given
point on the screen. Accordingly, there will
be a phase difference between the two oscilla-
tions. Since there is only one physical world,
what we will observe is a superposition of the
two oscillations corresponding to the two sub-
threads. Since both solutions concern one and
the same electron, this is a coherent superposi-
tion. Accordingly, we will see an interference
pattern.

If, however, we observe which slit an elec-
tron goes through (delayed choice is irrelevant)
then we destroy the possibility that the elec-
tron goes through both slits. That is, we
change the past data. Consequently, the so-
lution changes also between the slits and the
screen. (Note that STIQM is explicitly non-
local, since it is all about advanced effects, and
it is not a hidden-variable theory, since the un-
certainties in it cannot be eliminated, as the
very notion of a structure of time indicates.[6,
chp. 6a])
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Thus, with a structure of time obtained
through the use of MFDEs, wave particle du-
ality does not present any conceptual problem.
What about quantitative agreement? Will the
observed interference pattern correspond to
the de Broglie wavelength? To reiterate the
answer above, such quantitative agreement
can be obtained by supposing that (22) of
some equivalent hypothesis holds. But jus-
tifying that very simple hypothesis involves
ramifications beyond the scope of this article.

6 Schrödinger equation

It has long been known that, using Koopman’s
formalism, the representation of dynamical
variables by operators on a Hilbert space can
also be used in classical statistical mechanics.
The critical issue related to qm is the non-
commutativity of the operators. That, as
explained above, connects to a change of logic,
which may be understood using the STIQM.

But what about Schrödinger’s equation?
Now Schrödinger’s equation gives us unitary
evolution in Hilbert space; this is possible
even with Koopman’s formalism. Further,
Schrödinger’s equation holds only in equilib-
rium, and as pointed out in my first inter-
pretation of quantum mechanics[13] unitary
evolution is equivalent to stationarity which
corresponds to equilibrium or indifference to
the origin of time. Either way, unitary evolu-
tion in Hilbert space does not by itself present
any fundamental difficulty.

The critical issue is about the Hamiltonian,
or the infinitesimal generator of the unitary
group. Why is the quantum Hamiltonian the

same function of the dynamical variables as
the classical Hamiltonian (when the latter
exists)? This indicates that qm and classi-
cal physics are not just two different theories;
they are closely connected. We will not go
further into this question here, except to point
out that the STIQM is the best way currently
available to connect classical physics to quan-
tum physics.

7 Concluding remarks

Classical physics done correctly, i.e., with
MFDEs, exhibits many of the most puzzling
conceptual features of quantum mechanics.
Those puzzling features are the expected con-
sequences of the existence of advanced inter-
actions.

We emphasize that we have not derived qm
from classical physics, nor was such deriva-
tion ever a goal. At the least some extra
phenomenology will be required to obtain the
Planck constant or the fine structure constant
to obtain quantitative agreement.

We do not claim to have derived qm from
classical physics also since classical physics
with MFDE’s is not identical to qm. It is a
self-contained theory with many of the fea-
tures of qm, but distinct from qm. Thus,
with MFDEs non-locality central: the theory
can be tested by testing for the existence of
advanced interactions.

Nevertheless, the understanding acquired
above, that key features of qm can be ex-
plained as advanced “effects”, is important
for the technology of quantum computing, con-
sidered vital to the future. The key current
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problem with that technology is the problem
of decoherence or the inability to scale up a
quantum computer.

The speed-up provided by a quantum com-
puter is due to parallelism, which on the above
understanding relates to a structure of time.
And that, according to STIQM is due to ad-
vanced effects. So, is there a way to scale
up tiny advanced effects to some reasonable
macrophysical level? Living organisms (and
only living organisms) seem to be able to do
that. We do not today understand how that
happens. For such understanding we would,
at the least, need to simulate the interactions
of biological macromolecules using MFDEs in
place of the ODEs as is done today.

However, on the structured-time inter-
pretation of quantum mechanics, we can
safely conclude that scaling advanced effects
would necessarily involve living organisms.
(Recall that time travel is impossible with
machines.[5])Hence, a (scalable) quantum
computer would necessarily be an android
(not as in the popular operating system, but
as in half-live, half-machine); it would involve
at least biological macromolecules.
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ANNOUNCEMENT 

Gravitational Waves Detected 
Laser Interferometric Gravitational Observatory   

GW150914 Event 
A animation video for Non-experts 

by  
Arvind Gupta Toys, IUCAA, Pune 411007 

 
Abstract 

The first observation of gravitational waves occurred on 14 September 2015 and was 
announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, 
gravitational waves had been inferred only indirectly, by observing the decay in the orbit of 
binary pulsar star systems because of energy loss from gravitational waves. 
The waveform, detected by both LIGO observatories, matched the predictions of general 
relativity for a gravitational wave emanating from the inward spiral and merger of a pair of 
black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the 
single resulting black hole. The signal was named GW150914 (from "Gravitational Wave" 
and the date of observation).  
          wikipedia 
 
____________________________________________________________________________ 
 
400 years after Galileo's first telescope we are on 
the verge of new way of looking at space, which 
will open new frontiers in Astronomy. This will be 
achieved through the observations of 
Gravitational-waves (GW), predicted by one of 
the most revolutionary theories in physical 
sciences, Einstein’s General theory of Relativity, 
proposed 100 years ago. In this film, we will 
introduce the basic idea, current developments 
and highlight the contributions made by Indian 
scientists. In March, 1944 Einstein had 
humorously quipped, “Why is it that nobody 
understands me, yet everybody likes me?”. The 
domain of General Relativity is complex and 
esoteric however this has become so pedantic 
that it is literally in the hands of 2.6 billion people 
in form of smart phones. 
 
Consider the following analogy. Throw a lighter 
ball at a fast speed- it will roll around the heavier 
ball due to the curvature in the fabric the latter 
induced. Analogously, this is why the earth goes 
in a curved orbit around the sun because 
according to Einstein’s general relativity, the sun 
curves the space-time around itself. The 
stretched sheet is 4-dimensional space time 
fabric of the universe and gravity is the 
manifestation of curvature of space-time.  
 

If two black holes collide or large twin stars circle 
around each other, then they would radiate GW 
which are strong enough to be measured. And by 
measuring these waves we could see what no 
man or woman has seen before. Even these 
“strong” gravitational waves would require 
extremely sophisticated instruments capable of 
measuring tiny displacements of test masses to 
the tune of 10-18 m which is much smaller than 
the size of an atomic nucleus. The GW signal 
recorded in these instruments is very feeble and 
is drowned in the detector noise. Seismic noise, 
Airplanes flying by, traffic noise, even the school 
band playing nearby can corrupt the data. So to 
detect and extract just the GW signal from the 
noisy data, we also need really smart algorithms 
or methods which can extract the pure 
Gravitational Wave from the noisy data. This is 
where Indian scientists figure in. The basic 
method to detect and extract the in-spiralling 
binary GW signal from detector data was 
developed by a team of scientists at IUCAA and is 
now used universally across the world. Extraction 
process requires very accurate phase information 
of the wave which was done by scientists at 
Raman Research Institute. 
Indian scientists have made many other 
significant contributions in gravitational wave 
research. We list some these below: 

1. Developing an understanding of Black 

https://en.wikipedia.org/wiki/LIGO
https://en.wikipedia.org/wiki/Virgo_interferometer
https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Gravitational_wave
https://en.wikipedia.org/wiki/Inspiral
https://en.wikipedia.org/wiki/Stellar_collision
https://en.wikipedia.org/wiki/Binary_black_hole
https://en.wikipedia.org/wiki/Binary_black_hole
https://en.wikipedia.org/wiki/Solar_mass
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Holes, their event horizons, their ring 
down modes or quasi-normal modes. 

2. Data analysis strategies to detect and 
measure GWs from other type of 
astrophysical sources, such as periodic, 
stochastic, etc. 

3. Identifying and mitigating instrumental 
glitches. 

4. Following up potential GW events with 
electromagnetic telescopes such as 
optical etc. 

 
We have just detected a candidate GW event with 
the LIGO detectors of the US. These are laser 
interferometric detectors placed 2000 miles apart 
in the US. But the Holy Grail in Gravitational 
waves is not only to detect a GW but to also 
locate the astrophysical source of the wave in the 
sky. Now to accurately locate the source of the 
wave in the sky, we need to have another 
detector as far away as possible from existing 
detectors. By detecting the same wave from three 
detectors, geographically well separated, we can 
triangulate the location of the GW source in the 
sky with far better accuracy. This is very 
important for the electromagnetic follow up of 
the GW source, using either optical or other 
electromagnetic telescopes. India is on the other 
side of the world in relation to the US. So if we 
build a LIGO type detector in India we will be able 
to enormously improve the accuracy of finding 
the GW source. The improvement can be as large 

as an order or two orders of magnitude!  
 
Currently, we are at a very interesting phase in 
Astronomy where India can play a major role. 
With some of the most fundamental research in 
Gravitational Waves, General Relativity 
supporting us and the geographical advantage of 
being farthest from existing detectors, we take a 
lead and pave the way for many fundamental 
discoveries in our understanding of cosmos and 
testing basic scientific theories. We hope to get 
started soon on this massive LIGO-India project in 
India which will provide a platform for many 
scientists and youngsters to collaborate together 
in our quest for beyond.  
 
 
 
Story and Animation: Manish Jain, Nidhi Gupta 
This work is supported by IUCAA (www.iucaa.in) 
and TATA Trust 
 (www.tata.com/aboutus/sub_index/Tata-trusts) 
 
Credits: Ashok Rupner, Manish Jain, Pradnya 
Pujari, Shivaji Mane, Jyoti Hiremath, Arvind 
Gupta, Vidula Mhaiskar 
 
A  brief animation video describing the discovery. 
Ctrl+Click below to a link for a 7.25 minutes video   
https://youtu.be/kM6eVWWFVrM  
and other videos on the subject. 
 

________________________________________________________________________________

https://youtu.be/kM6eVWWFVrM
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