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It is a pleasure to publish the issue 31.2 of 

Physics Education containing a wide range of 

interesting articles. C K Raju’s article is of 

fundamental nature, giving a formulation of theory 

of gravitation in terms FDEs. P. Mandal gives an 

interesting account of trapping of charged 

particles, while Sazonov gives a novel technique 

to calculate the contribution of magnetic energy to 

the energy of the field of a rotating metal sphere. 

H. S. Rawal deals with a problem of quark 

confinement in simple terms. The article on 

Foucault pendulum by S. S. Verma includes the 

problems of constructing one. The article on Solar 

flares by Kumar, Bhatt and Jain gives insights into 

a new field for students. Minkin and Shapovalov 

show subtle implications of physical situations for 

vector addition. A pedagogical formulation of the 

requirement of complex numbers in quantum 

mechanics is given by Maynard, Lambert and 

Deering.   

I wish you a very happy reading!  

                       

 

                                      Pramod S. Joag. 

         Chief Editor, Physics Education                                                                                                                                      
          Chief-editor@physedu.in,                                                                                                                                

          pramod@physics.unipune.ac.in 
 

_______________________________________________________________________________________________  

    



Physics Education 1 Apr-Jun 2015

Functional differential equations.

4: Retarded gravitation

C. K. Raju

ckr@ckraju.net

(Submitted 27-06-2015)

Abstract

Are functional differential equations (FDEs) only about electrodynamics? No. They apply also to
gravitation. We explain a recent reformulation of gravitation, called retarded gravitation theory (RGT),
which is Lorentz covariant, and uses functional differential equations. RGT modifies the Newtonian
“inverse square law” gravitational force: the RGT force depends upon (a) retarded distance, and
(b) includes a velocity-dependent term. RGT, since Lorentz covariant, theoretically improves on
Newtonian gravitation. At the same time, RGT has the practical advantage over general relativity theory
(GRT) that a solution of the many-body problem is feasible in RGT. Hence, RGT can and ought to be
applied to the galaxy where Newtonian physics apparently fails but GRT cannot be applied. The tiny
velocity dependence of the RGT force is amplified across a hundred billion co-rotating stars in the galaxy,
so that non-Newtonian velocities of stars in spiral galaxies are to be expected on RGT, even without dark
matter. Possible experimental tests of RGT include the flyby anomaly observed for NASA spacecraft
which depends systematically on velocity-effects due to the rotation of the earth.
We further clarify that Laplace’s objection to pre-relativistic naive theories of retarded gravitation (NRG)
does not apply to RGT. We solve the 2-body FDEs of RGT for the sun-Jupiter case: the system is stable
despite tiny differences from Newtonian gravitation. Thus, FDEs are a general feature of post-relativity
physics.

1 Recap

In three earlier articles[1, 2, 3] in this series, we saw
that functional differential equations (FDEs) are fun-
damentally different from ordinary differential equa-
tions (ODEs). Hence, doing physics with FDEs leads
to a paradigm shift in physics. Further, FDEs arise
naturally in classical electrodynamics: without any
new physical hypotheses but just by doing the math
right. The right way to solve for the classical hydro-

gen atom, even without radiation damping, is to use
FDEs and that changes the qualitative features of the
solution.

What happens if we have radiation damping? The
problem of the motion of even a single charged par-
ticle, in classical electrodynamics, with radiation
damping has remained mathematically unsolved for a
century because of runaways. These runaways can be
controlled by modifying Maxwell’s equations at the
microphysical level, so that the equations of motion
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of even a single charged particle become FDEs.

Before proceeding further to quantum mechanics,
there is one doubt which needs to be settled. Are
FDEs only about classical electrodynamics? No.
They are about resolving a fundamental conceptual
flaw in Newtonian physics. I have dealt with this is-
sue of Newtonian physics in detail in previous articles
in this very journal,[4, chp. 2, chp. 3a, chp. 3b] and
will only summarise the key points here.

2 The problem of time in
Newtonian physics

Consider Newton’s first law of motion. It states that,
in the absence of external forces, a body continues in
its state of rest or uniform motion. Is this mean-
ingful? It is easy to understand “rest”, but what is
“uniform motion”? A body is said to be in uniform
motion if it covers equal distances in equal times. But
what are equal times?

When we say that one hour in the past is equal
to one hour in the future, there is no way to verify
it empirically. Obviously, we cannot bring back one
hour in the past and compare it in the present with
one hour in the future. We must use a clock. But,
clocks differ, so which clock should one use? Uniform
motion according to my heart beats would not be
uniform motion according to a simple pendulum, and
vice versa. Without a definition of equal intervals of
time, or the definition of an “ideal clock”, there is
no basis on which to say that a mechanical clock is
“better” than heart beats.

So, what exactly is an ideal clock? In his Prin-
cipia, Newton admitted that days and nights are un-
equal, as are the swings of a pendulum, and that no
natural phenomenon would provide an ideal clock.
But he reached the strange conclusion that it was
unnecessary to define equal intervals of time. He
said that he was concerned only with “absolute, true,
and mathematical time, which flows on without re-
gard to anything external”. Each of these adjec-
tives: “absolute”, “true”, “mathematical”, and
“without regard to anything external” makes
clear that Newton took time as an aspect of meta-

physics. In short, he thought it was all right if God
knew what equal intervals of time were, even if hu-
mans did not.

This was a mistake because to do physics, humans
too need to know what equal intervals of time are. In-
deed, Newton’s predecessor and mentor Barrow had
emphasized the need for a clear physical definition of
equal intervals of time, saying those who did physics
without it were “quacks”.[5] Why did Newton make
time metaphysical? Newton thought that making
time metaphysical was the way to make “perfect”
the notion of d

dt needed for his second law. This re-
lated to the European misunderstanding of the In-
dian calculus imported into Europe in the 16th c.
This is an interesting but long story, which I have
told elsewhere.[6, 7]

For common applications of Newtonian mechan-
ics, to planetary motion and ballistics, many common
clocks “work”. However, Newton’s failure to provide
a physical definition of equal intervals of time, be-
came prominent during attempts to reconcile elec-
trodynamics with Newtonian physics at the turn of
the 19th c. The solution provided by relativity was to
define equal times in a way which preserved electro-
dynamics but required a modification of Newtonian
physics.

Physics texts teach relativity differently: they
teach that relativity began with the Michelson-
Morley experiment which proved the absence of ether
and the constancy of the speed of light. That, how-
ever, is not correct: one cannot measure the speed of
light or anything else without a clock, and a positive
result in the experiment (as later found by Miller) is
no evidence either for ether or for a varying speed of
light.[4, p. 56–57] In fact, as explained in an earlier
article in this journal, the Michelson-Morley experi-
ment was NOT designed to test the existence of ether:
it was designed to test between the two ether theo-
ries of Fresnel and Stokes. Amusingly, it came out in
favour of the wrong theory: the Stokes theory, which
involved a mathematical absurdity. Hence, Lorentz
thought it was preferable to believe that the arm of
the Michelson interferometer contracted in the direc-
tion of motion.

Now, a clock is required even to measure lengths:
for a moving rod, one must note the positions of
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both ends of the rod simultaneously, and simultane-
ity is decided by a clock. If one postulates that
the speed of light is constant, then a photon bounc-
ing between two parallel mirrors marks equal times
between bounces, and this provides an ideal clock.
The Lorentz-Fitzgerald length contraction is a natu-
ral consequence of using such a clock.

Note clearly that the constancy of the speed of light
is a postulate, not an experimental fact. This pos-
tulate of constant speed of light automatically leads
to the Lorentz transform which Poincaré derived and
so named. That is, the special theory of relativity
came about as the solution to the problem of equal
intervals of time in Newtonian physics.

As for “ether”, the word is confusingly used in
multiple senses. One sense is as an absolute refer-
ence frame. But the original sense of ether (= sky
= ākās.a, as in the Vaíses.ika sūtra) relates to action
by contact (sam. yoga). Eliminating ether also elim-
inates action by contact, and admits, for example,
delayed action at a distance. This is mathemati-
cally equivalent to replacing ODEs by FDEs (which
Poincaré called “equations of finite differences” [4,
p. 116]). Einstein, to whom special relativity is usu-
ally attributed, never understood this point, for he
mistakenly kept approximating FDEs by ODEs, un-
til late in his life.[4, p. 122]

This process of development of relativity, by iden-
tifying and resolving a conceptual flaw in Newtonian
physics, as well as the connection of relativity with
FDEs, are both obscured by usual accounts of the
theory of relativity which focus on glorifying an indi-
vidual, Einstein. (It is on record that Einstein knew
of Poincaré’s work until 1902. In his 1905 special rel-
ativity paper, he casually used the strange term “lon-
gitudinal mass” first circumspectly used by Lorentz
in 1904. Einstein also used the novel term “relativ-
ity” first used by Poincaré in his 1904 paper (instead
of his earlier “principle of relative motion”). Einstein
later denied reading both the 1904 papers, of Lorentz
and Poincareé, and his 1905 paper on (special) rela-
tivity cites absolutely no references.)

3 Modifying gravitation

Special relativity modified Newton’s laws of motion;
but that is not enough, Newtonian gravitation too
must be modified for the two come as a package deal.
Newtonian gravitation involves instantaneous action
at a distance which is incompatible with special rel-
ativity, where the speed of light is a limiting speed.
The general theory of relativity (GRT) did modify
Newtonian gravitation. However, GRT is enormously
complicated: in a century since GRT was formulated,
even the two body problem could not be solved in it.
This creates a peculiar problem as follows.

3.1 Galactic rotation curves

Newtonian gravitation worked well for the solar sys-
tem, but it fails for the galaxy. In the solar system
the rotational speed of a planet of mass Mp is deter-
mined by

GMSMp

r2
=
Mpv

2

r
(1)

where MS is the mass of the sun, v is the rotational
velocity of the planet round the sun, and r is the
distance of the planet from the sun. This means that
the rotational velocities of planets v ∝ 1√

r
decline

with distance r from the centre. Or, in terms of the
time period T = 2πr

v , we must have T ∝ r
√
r. This

accurately fits observations: Pluto some 39.5 times
more distant from the sun than earth takes 39.5 ×√

39.5 ≈ 248 earth years to complete an orbit round
the sun.

However, what happens in a spiral galaxy is starkly
different. In spiral galaxies, the rotational velocities
of stars, instead of declining, are observed to increase
as one moves out from the centre. (Fig. 1) This is
contrary to what one expects from Newtonian gravi-
tation.

3.2 Dark matter

Of course, the Newtonian theory can be easily
“saved” by supposing that there is invisible dark mat-
ter (DM) in the galaxy. Perhaps that is so: but at
least we expect a decline in rotational velocities of
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Figure 1: Rotation curves of various galaxies. The ro-
tational velocities increase and then become roughly
constant.[8] This is contrary to the expected be-
haviour on Newtonian gravitation that, sufficiently
far from the nucleus, rotational velocities must de-
cline as 1√

r
with distance r from the nucleus.

stars as we move to the edge of the visible galaxy.
Unfortunately, even that expectation is belied. It is
clear from Fig. 1 that the rotational velocities of stars,
instead of declining, become approximately constant
at the edge of the galaxy. Therefore, to “save” the
theory we must make one more hypothesis: that the
hypothetical invisible dark matter is distributed in a
peculiar way in the form of a halo round the galaxy,
with its density reaching a peak where the luminous
matter thins out to zero.

Now why should that be so? The hypothetical,
invisible dark matter, whatever its composition, has
exactly the same gravitational properties as the lumi-
nous matter in galaxies. On the scale of the galaxy,
gravitation is the dominant force which decides struc-
ture. So why should luminous matter and dark mat-
ter be distributed in such strikingly different ways?
No clear explanation has emerged so far.

3.3 MOND

Dissatisfaction with the DM hypothesis led to the for-
mulation of another theory: modified Newtonian dy-
namics (MOND).[9, 10] In its original form, the the-

ory simply supposed that the gravitational force law
itself changed at the scale of the galaxy on the phe-
nomenological grounds of observations. Moreover, it
did not initially correct what we now know to be a
critical conceptual defect in Newtonian physics.

Could GRT explain any part of the departure from
Newtonian gravitation? To answer this we need to
be able to apply GRT to the galaxy. Unfortunately,
that is not feasible: GRT is too complex to be used
to solve the many body problem of a galaxy typically
involving hundreds of billions of stars. Even mod-
elling a collection of discrete objects is very difficult
in GRT. Therefore, the only thing available is to fall
back on Newtonian gravitation just believing it to be
a good approximation to GRT at those scales.

4 RGT

This situation motivates retarded gravitation
theory.[7] We know that special relativity is an es-
sential conceptual correction to Newtonian physics.
Can we have a theory of gravitation compatible with
special relativity? Poincaré did attempt to find such
a theory (with a different motivation) but did not
fix on a definite expression for the force, or try to
solve the problem of galactic rotation curves, which
was not known in his time.

Some people might ask: why look for such a theory
when we already have the “ultimate” theory, namely
GRT? One simple answer is this: it is no use having
an ultimate theory which is not usable! It is like say-
ing ultimately “God knows everything”, but we have
no way to read the mind of God! In the context of
the galaxy, the theory which is actually used is New-
tonian gravitation. RGT, being a Lorentz covariant
theory of gravitation, improves on that. As we will
see, RGT does help us to bypass the additional hy-
potheses introduced by both DM and MOND.

4.1 Derivation of the expression for
the force

How does one make gravitation Lorentz covariant?
The derivation of the Lorentz-covariant gravitational
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force is so simple that it can be reproduced in its
entirety here.

We start with a reference frame in which the test
particle (“attracted body”) is a mass point (at rest)
at the origin. The “attracting body” is located at
the retarded position described by the 4-vector X =
(ct, ~x) and moving with a 4-velocity V = γv(c,~v),
both at retarded time t = − rc . Here, ~x = (x, y, z), r =√
x2 + y2 + z2, and γv = (1 − v2

c2 )−
1
2 is the Lorentz

factor.
Let F = (T, ~f) be the 4-force experienced by the

attracted body. This 4-vector transforms in the same
way as the 4-vectors X and V , so we take it to be
given by a linear combination

F = aX + bV, (2)

where a, and b are Lorentz invariants to be deter-
mined. Since a and b are Lorentz invariant, the ex-
pression (2) for the 4-force F would be Lorentz co-
variant, as required.

For the case where the attracting body is also at
rest (~v = 0), we require that the 3-force must ap-
proximately agree with the Newtonian gravitational
force ~f = k( xr3 ,

y
r3 ,

z
r3 ), where k = Gm0m1, the two

(rest) masses are m0 and m1, and G is the Newtonian
gravitational constant. (Note that the sign conven-
tions we are using are the opposite of the usual ones,
since the “attracting body” is at X, and the force is
in the direction of its retarded position.) Therefore,

a ≈ k
r3 . This suggests that a = −kc

3

a31
where a1 is the

Lorentz invariant quantity a1 = X.V = γv(c
2t−~x.~v),

which equals −cr when ~v = 0, and approximately
equals −cr when v = ||~v|| is small compared to c.
That is,

a = − kc3

(X.V )3
≈ k

r3
. (3)

We now use the fact that the components of the
4-force are not independent, but must satisfy [11]

F.U = 0, (4)

where U = γu(c, ~u) is the 4-velocity of the particle on
which the force acts. This comes about simply since

the revised form of the equations of motion is now

m0
d2Y

ds2
= F, (5)

where m0 is the rest mass and s is proper time
along the world line, Y (s), of the “attracted particle”.
Since the 4-force F is parallel to the 4-acceleration of
the particle on which it acts, it must be perpendicu-
lar to its 4-velocity U (which is a vector of constant
norm). Accordingly, taking the dot product of U with
both sides of (2), we obtain

0 = a(X.U) + b(V.U). (6)

Now the dot products X.U and V.U are scalars,
or Lorentz invariants, and the Lorentz invariant a is
already determined. Hence, (6) determines b as a
Lorentz invariant. Explicitly,

b = −a(X.U)

(V.U)
≈ k

cr2
. (7)

Note that we would not have been able to satisfy
the requirement (4) had we already set b = 0 to begin
with. This shows that the Lorentz covariant gravita-
tional force we seek cannot be purely position depen-
dent but must depend also on velocity.

Substituting these values of a and b in (2), the force
in RGT is explicitly given by

F = − kc3

(X.V )3
X +

kc3

(X.V )3
(X.U)

(V.U)
V. (8)

Since the equations of motion (5), and the expression
for the force (8) are Lorentz covariant, we can use
these expressions in any Galilean frame, and are not
tied to any special frame. Note, however, that RGT,
unlike GRT, is restricted to Galilean frames.

In studying motions such as those of stars in the
galaxy we can use the non-relativistic approximate
expressions for a and b given in (3) and (7). This
leads to

F ≈ k

r2

(
X

r
+
V

c
,

)
, (9)

which simple form exhibits clearly the departure from
Newtonian gravitation.
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Thus, we have made two changes to Newton’s “in-
verse square law” of gravitation. First, the RGT
gravitational force uses the retarded distance, not the
instantaneous distance between the two bodies. Sec-
ond, the gravitational force cannot be a pure “inverse
square law” force (even with the retarded distance),
but has a velocity-dependent ( vc ) component. This
RGT modification of Newtonian gravitation is com-
pletely different from other earlier modifications of
the “inverse square law”. Furthermore, it is not ad
hoc or speculative like earlier modifications; rather
RGT is a logical consequence of an essential correc-
tion to a conceptual defect about time in Newtonian
physics.

5 The solution for the galaxy

Now special relativistic effects, such as the v
c term in

the above force, are believed to be relevant only when
velocities approach that of light. However, this piece
of text-book wisdom is true only for the one body
problem, the only problem solved by texts in special
relativity. For the galaxy, however, we need to do a
many-body problem.

Now, stars in a spiral galaxy all systematically co-
rotate in one direction. Could a tiny but system-
atic v

c effect become significant when summed over
a large number of stars? Specifically, The observed
rotation velocities of stars in spiral galaxies are of
the order of a few hundred km s−1 corresponding to
v
c ∼ 10−3, which is small. However, a systematic ef-
fect of this order must be summed over some 1011

stars in a galaxy. Could the sum be significant?
To make a quick check we can re-frame the ques-

tion. Suppose we have numerous mass points spread
in a disk rotating around a central mass. Suppose,
now, we introduce a test mass into this configuration,
and let us further suppose the test mass is moving
with the Newtonian velocity required for equilibrium
at a distance r from the centre. What will happen to
the test mass?

For a test mass, the calculation is very simple, for
the meaning of a “test” mass is that we neglect the
effect of that mass on the remaining particles (the
galaxy). That is we prescribe the motion of the other

particles not only in the past, but for all time. Under
these circumstances of a one-body problem, where
the motion of all remaining bodies is prescribed for
all time, the FDEs of motion in RGT reduce to ODEs,
which can be readily solved. However, the force still
differs from that of Newtonian gravitation.

According to Newtonian gravitation the rotational
velocities of the other masses are irrelevant, and only
the total mass counts. Hence, our test mass which
begins in Newtonian equilibrium, should continue in
equilibrium. On RGT, however, the test particle is
violently accelerated. Depending upon the total mass
it may stay within the system, with a non-Newtonian
velocity, or get thrown out. Therefore, on RGT, a
large number of co-rotating particles can significantly
increase the rotational velocity of a test particle in
Newtonian equilibrium. Further, unlike Newtonian
gravitation, if we consider a shell of rotating particles,
the velocity effect acts on the test particle even inside
the shell.(Fig. 2)

The story has a very important moral: tiny spe-
cial relativistic effects, at non-relativistic velocities,
can add up across a large number of particles, and
become immense. The text book claim that special
relativity matters only at relativistic velocities needs
to be corrected: that claim is true only for the one
body problem.

Thus, RGT predicts that stars in a spiral galaxy
will have non-Newtonian velocities just because the
velocity-dependent gravitational force adds up across
a large number of co-rotating stars. It is not neces-
sary to hypothesize dark matter just to explain non-
Newtonian velocities in spiral galaxies, but if there is
any dark matter, its effects would be in addition to
those predicted by RGT.

What about the other feature of rotation curves
that rotational velocities become constant at the edge
of the galaxy? In principle, this feature too admits
a simple explanation in RGT. Far from the centre of
the galaxy, the gravitational pull of the central mass
becomes weak, and the velocity effect becomes more
prominent. Consider two nearby stars co-rotating at
the edge of the galaxy. The velocity dependent com-
ponent of the RGT gravitational force will tend to
equalise their velocities. Thus, there is a simple and
natural explanation for the approximate constancy of
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Effect of velocity drag for a test particle at the edge of a spiral galaxy

Figure 2: The velocity effect of retarded gravi-
tation: The velocity of a test particle in our model
galaxy increases due to velocity drag, and the parti-
cle escapes. The plot is velocity vs time. Time units
are approximately 10 million years, while length units
are 1 kpc. A central mass of 1.5× 1010 solar masses
is surrounded by 10,000 particles (each of 105 solar
masses) in a rotating ring of radius 12 kpc. The test
particle is initially in Newtonian equilibrium at 12.2
kpc.

star velocities at the edge of the galaxy, and there is
no need to hypothesize halos of dark matter.

Thus, the hitherto mysterious qualitative features
of the rotational velocities of stars in spiral galaxies
are expected on RGT.

RGT, unlike MOND, involves no speculative hy-
pothesis, but proceeds solely on the theoretically nec-
essary principle of Lorentz covariance, and its origins
in the problem of equal intervals of time in Newto-
nian physics. Therefore, even dark matter theorists,
who set aside MOND, MUST take into account the
special relativistic effects incorporated into RGT to
estimate the amount and distribution of dark mat-
ter. Specifically, all current estimates of dark matter
and its distribution obtained by using only Newtonian
gravitation are defective and unreliable, and must be
recalculated using RGT. Because RGT is a completely
general theory, these remarks apply equally to the dy-

namics of clusters of galaxies. (To reiterate, science
is NOT about “authorised knowledge”, or popular-
ity among scientists, or “reputability”; it is about
refutability.)

6 Laboratory tests of RGT

Is there any way to test RGT closer home? Indeed
there is. RGT, unlike MOND, changes the gravita-
tional force at all scales from the laboratory to the
galaxy, and beyond. In a conventional Cavendish ex-
periment, if the two attracting masses are rapidly ro-
tated in opposite directions that would change the de-
flection of the suspended dumbbell, on RGT, though
it would have no effect on Newtonian gravitation. In
particular, if the two attracting and rotating masses
are exactly lined up with the dumbbell, there would
be a non-zero deflection on RGT, but zero deflection
on Newtonian theory.

Of course, very high precision would be required to
carry out such experiments. An unexpected difficulty
here is that the value of the Newtonian gravitational
constant G is not known sufficiently precisely. One
reason for this is that there is an apparent discrep-
ancy between static and dynamic ways of determining
G.

According to RGT, in the dynamic way of deter-
mining G, velocity effects must be taken into account.
If these are neglected, we could end up with a slightly
different value of G. So, the existence of tiny discrep-
ancies between different ways of measuring G consti-
tutes an additional way of testing RGT. While dis-
crepancies have indeed been noted, and it has even
been speculated that these might be due to some fun-
damental issues,[12] the discrepancies are still within
experimental error. Hopefully, these issues will be
clarified in future, since it is anyway important to
determine G to high precision.[13]

7 The flyby anomaly

One experiment which has already been carried out
(and is likely to be repeated with greater precision)
involves spacecraft when in near-earth orbit. On
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RGT, one expects a tiny v
c effect due to the rota-

tional velocity v of the earth. The rotation of the
earth has no effect on Newtonian gravitation.

Between 1990 and 2005, six NASA spacecraft flew
by earth, using the technique of earth gravity as-
sist, to either gain or lose heliocentric orbital en-
ergy. Tiny anomalies were observed [14] correspond-
ing to an unexplained velocity difference of the order
of a few mm/s at perigee. However, the observations
were very precise, with systematic experimental error
ranging from 0.01 mm/s to 1 mm/s, so the observa-
tions could not be put down to experimental error.
Of course, the tiny anomalies may have been poten-
tially due to many causes because the perigee veloci-
ties of the spacecraft were of the order of a few km/s,
but the causes could not be explained despite a care-
ful audit and consideration of various possible factors
including general relativistic effects.[15]

Further, Anderson et al[14] found an empirical for-
mula which fitted all six flybys:

∆V∞
V∞

= K(cos δi − cos δo), (10)

where ∆V∞ was the difference between the incom-
ing and outgoing asymptotic velocity in a geocentric
frame. (Conceptually, this is the hyperbolic excess
velocity at infinity of an osculating Keplerian trajec-
tory, so the difference ought to have been zero on the
Newtonian theory.) Further, δi and δo were the de-
clinations of the incoming and outgoing asymptotic
velocity vectors. The constant K = 3.099×10−6 was
expressed in terms of the Earth’s angular rotational
velocity as ωE (7.292115× 10−5 rad/s), its mean ra-
dius RE (6371 km) and the speed of light c by

K =
2ωERE

c
.

Clearly, this expression for K shows that the flyby
anomaly is an effect related to the rotation of the
earth, a relation expected on RGT, but inexplicable
on Newtonian gravitation. If we look for a v

c term, re-
lated to earth’s rotation, using just dimensional anal-
ysis, K is the natural term that would arise. Clearly,
also, if the incoming and outgoing declinations of the
spacecraft are both zero (i.e., it enters and exits in

the equatorial plane), then the additional RGT force
which accelerates it on entry will symmetrically equal
the force which retards it on exit, so there will be no
net gain or loss of asymptotic velocity. A net gain or
loss will arise only in the event of a difference between
the asymptotic incoming and outgoing declinations.
Thus, the observed anomalous effect in the flybys is
prima facie a systematic v

c effect depending on the
rotational velocity of the earth, as expected on RGT.

Detailed modelling of the earth and exact calcu-
lations using RGT are still to be done. However,
preliminary calculations already give a result which
is very close. The figures below show a couple of cal-
culations done for the Galileo (Fig. 3) and Cassini
(Fig. 4) spacecraft. Past data on the orbits of these
spacecraft was obtained using the NASA Horizons
interface.
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Figure 3: Galileo. The difference in the velocity be-
tween the solutions obtained using the new velocity-
dependent RGT force and the Newtonian force, for
the first flyby of the Galileo spacecraft. The x-axis is
time (in units of 100 s) and the y-axis is difference of
(scalar) velocity in units of km per 100 s.

The above calculations reproduce also the qualita-
tive behaviour that most of the velocity gain or loss
is close to the perigee. The computed increase or de-
crease in velocity is the right order of magnitude, and
we expect greater accuracy with more sophisticated
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Figure 4: Cassini. The difference in the velocity be-
tween the solutions obtained using the new velocity-
dependent RGT force and the Newtonian force for
the earth flyby of the Cassini spacecraft. Same units
as before. The calculated change in velocity is −3.4
mm/s compared to the reported change of −2 mm/s.

modelling of the earth.

8 Two body orbits

8.1 Laplace’s argument

The Lorentz covariant RGT described above should
not be confounded with the naive theories of retarded
gravitation proposed over a century ago. Those
naive retarded gravitation (NRG) theories were pre-
relativistic and aimed to explain the discrepancy
between Newtonian gravitation and the observed
anomalous advance of the perihelion of Mercury.
While they succeeded in that aim, they suffered from
a theoretical defect: two body orbits on those theo-
ries would be unstable, as pointed out by Laplace,[16]
long ago.

Thus, NRG theories typically assumed that the
gravitational force pointed towards the retarded po-
sition of the attracting body (and was equal to the
inverse square of the retarded distance). Laplace’s
objection to this was as follows. Consider two bodies

in circular motion around a common centre of mass—
a typical problem of Newtonian gravitation. The line
of action of the NRG force would not pass through
the instantaneous centre of mass. Consequently, the
system would be unstable (due to a delay torque).

Laplace’s argument does not apply to RGT for var-
ious reasons. First, relativistically, there is no such
thing as “instantaneous centre of mass”.[17] That
does not mean that all relativistic theories are un-
stable! Further, even if one somehow defines some-
thing which can be called the instantaneous centre
of mass, as some people have attempted to do, no
one has proved that the “centre of mass” so defined
plays the same fundamental role in deciding stability
as in Newtonian mechanics. Secondly, RGT involve
FDEs which do not have the same theory of stability
as ODEs.

Finally, RGT differs from NRG in that the RGT
force depends also upon velocity. In the above situ-
ation, of circular 2-body orbits, this means that the
RGT force does NOT point directly to the retarded
position of the other body, as Laplace assumed. An
easy calculation shows that, in the non-relativistic
case, the RGT force points closer to the instanta-

neous centre of mass up to v2

c2 terms (Fig. 5).

Figure 5: Difference between NRG and RGT force:
Because the RGT force includes a velocity-dependent
component, it points closer to the (non-relativistic)
instantaneous centre of mass.

Departures from Newtonian gravitation at the v2

c2

level are not undesirable. Thus, for the case of Mer-
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cury, there is a long-known discrepancy with New-
tonian gravitation. The classical GRT formula for
the advance of perihelion ε, based on geodesics of the
Schwarzschild solution, is

ε = 24π3 a2

T 2c2(1− e2)
(11)

where a is the semi-major axis of the ellipse, e its
eccentricity, T the time period, and c the speed of
light. For e ∼ 0, when the orbit is nearly circular, 2π

T
is an estimate of the angular velocity, and a is just

the radius of the circle, so that 4π2a2

T 2 is just v2. As
such, the anomalous perihelion advance of Mercury

can be regarded as approximately a v2

c2 effect.
Of course, since with RGT, unlike GRT, we can

easily do many-body problems, the right way would
be to do a many body problem, and not just linearly
add up perihelia advances “due to” various causes.

8.2 Two body problem for Jupiter

We conclude with a solution of a planetary 2-body
problem in RGT, as an example of how to do many
body problems in RGT. The relevant equations are
derived in the appendix. The equations initially in-
volve two proper times. To solve them, we need to
rewrite the equations in terms of a single coordinate
time. The only non-obvious trick here is the partic-
ular 3+1 decomposition to use, as described in the
appendix. (It is obvious, once we see it.)

Secondly, since these are FDEs, we need to pre-
scribe past data. For the planetary 2-body problem,
we took up the sun-Jupiter case, and prescribed past
data as perfectly circular theoretical Newtonian or-
bits about a common centre of mass. In the Newto-
nian case, circular orbits remain circular, but with
RGT the circle gets deformed into an ellipse, as
shown in Fig. 6. However, there is no runaway insta-
bility. Had we used NRG instead, that would result
in a runaway instability, as shown in Fig. 7

9 Conclusions

FDEs are an essential feature of post-relativity
physics. RGT arises from modifying Newtonian grav-
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itation to make it Lorentz covariant. This modi-
fies the Newtonian gravitational force to include a
velocity-dependent term, and the basic equations of
motion of RGT are FDEs. The velocity depen-
dent term suggests a natural explanation of the flyby
anomaly as due to the rotation of the earth. Though
tiny it may add up significantly across a billion stars
in a spiral galaxy, which are all co-rotating. Because
RGT is a theoretically essential correction to New-
tonian gravitation, all galactic simulations and cal-
culations of dark-matter must be redone using RGT.
RGT does not suffer from the instability problem of
pre-relativistic naive theories of retarded gravitation.

Appendix: Equations of motion
in RGT

Consider two particles, with world lines given by
Y1(s1) and Y2(s2), where Y1 and Y2 are 4-vectors,
and s1 and s2 are the respective proper times. The
equations of motion in RGT are

m1
d2Y1
ds21

= F12, m2
d2Y2
ds22

= F21, (12)

where m1 and m2 are the respective rest masses of
the two particles, and F12 the 4-force exerted by par-
ticle 2 on particle 1 is given by the Lorentz covariant
expression

F12 = − kc3

(R2 ret.V2 ret)3
R2 ret

+
kc3

(R2 ret.V2 ret)3
(R2 ret.V1)

(V2 ret.V1)
V2 ret

(13)

≡
[
− kc3

(R2.V2)3
R2 +

kc3

(R2.V2)3
(R2.V1)

(V2.V1)
V2

]
2 ret

. (14)

Here, k = Gm1m2, G is the Newtonian gravitational
constant, c is the speed of light, R2 ret = Y2 ret − Y1
is the retardation vector, V1 = dY1

ds1
and V2 = dY2

ds2
denote the respective 4-velocities, and, in (14), [ ]2 ret

indicates that the quantities with subscript 2 are to
be evaluated at the corresponding retarded proper
time, as explicitly indicated in (13). The other force
F21 is given by interchanging 1 and 2 in (14).

In coordinates, if Y1 = (ct, ~y1(t)), and Y2 =
(ct, ~y2(t)), the retarded coordinate time t12, in the
force F12 acting on Y1 at time t0, is the root of the
equation

c2(t− t0)2 = r212 ≡ (~y2(t)− ~y1(t0))2, (15)

satisfying t < t0. That is, it is the value of t at the
spacetime point where the backward null cone from
Y1(t0) intersects the world line Y2. The correspond-
ing distance r12 is the retarded distance from particle
1 to particle 2. A similar equation holds for t21, the
retarded coordinate time in F21, the asymmetry be-
ing only in the arguments of ~y1 and ~y2.

Since the two equations (12) have to be solved si-
multaneously, it is convenient to use a common time
parameter, which we take to be the coordinate time
t. We assume that the functions t = t1(s1) and
t = t2(s2) are suitably invertible and (at least) twice
continuously differentiable, and will not explicitly in-
dicate them further. Thus, we have dt

ds1
= γ1, and

dt
ds2

= γ2, where γ1 and γ2 are the respective Lorentz
factors. Using an overdot to denote derivatives with
respect to t, we have, by the chain rule, V1 = dY1

ds1
=

dY1

dt
dt
ds1

= γ1Ẏ1. Similarly, dV1

ds1
= dV1

dt
dt
ds1

= γ1V̇1.
Hence, (12) can be rewritten

Ẏ1 =
1

γ1
V1,

V̇1 =
1

γ1

F12

m1
, (16)

with similar equations for particle 2.
Since the zeroth component of these equations is

not independent, we can write them in 3-vector no-
tation using Y1 = (ct, ~y1(t)), Y2 = (ct, ~y2(t)), so that
Ẏ1 = (c,~v1), Ẏ2 = (c,~v2). Let ~u1 and ~u2 denote the
space components of the velocity 4-vectors V1, and
V2, so that ~u1 = γ1~v1, ~u2 = γ2~v2. Further, we let
~r2 ret = ~y2(t12) − ~y1(t), denote the 3-vector corre-
sponding to R2 ret. Then the final equations are

~̇y1 =
1

γ1
~u1

~̇u1 =
1

m1γ1
~f12 (17)
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where
~f12 = a~r2 ret + b ~u2 ret (18)

b = ab̃, and

a = −
[

kc3

(R2 · V2)3

]
2 ret

b̃ = −
[

(R2 · V1)

(V2 · V1)

]
2 ret

(19a)

or

a =

[
k

r32

]
2 ret

b̃ =
[r2
c

]
2 ret

(19b)

Here, (19b) is the non-relativistic limit of (19a).
The equations of motion (17) (accompanied by

(18), (19a) or (19b)), together with the corresponding
equations for particle 2 are the four 3-vector equa-
tions (or 12 equations in all) we actually solved for
the sun-Jupiter problem.
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Abstract

An electrostatic potential minima does not exist in three dimension. However, an alternating electric field
can produce a dynamical potential minima in three dimensional space and charged particles can be
trapped within such potential well. A system of trapped ion/s is almost free from unknown external
perturbations and hence such a system finds enormous applications in different fields. This article explains
how such a potential minima can be developed with electric field only and how the charged particles can be
trapped within it. Some important applications of trapped particles have been outlined here with a
demonstrative experiment for realization of the technique.

1 Introduction

‘Let us consider a particle at rest’-this is often the in-
troductory sentence in our text books or while teach-
ing in classroom. But can we have a particle at rest in
practice? A famous remark from Erwin Schroedinger
may be quoted in this regard, ‘We never experiment
with just one electron or atom or (small) molecule. In
thought-experiments we sometimes assume that we
do; this invariably entails ridiculous consequences’.
However, it has now become a reality to have a par-
ticle almost at rest. A single particle like an atom, or
even an electron can be confined in space within a re-
gion of few micrometers. For confinement of charged
particles, two different techniques were developed by
two pioneers Wolfgang Paul (the device, named af-

ter him, known as Paul trap [1]) and Hans Georg
Dehmelt (the device, named after Frans Michel Pen-
ning, known as the Penning trap [2]). In Paul trap,
the charged particles can be trapped by using a static
electric field together with a time varying electric field
while in Penning trap, a static magnetic field is re-
quired in association with a static electric field. Both
of these devices are regularly used as important tool
in different fields, both of fundamental physics in-
terests and commercial applications. Here we will
restrict ourselves in discussions related to the Paul
trap. The readers are, however, referred to an arti-
cle [3] which covers discussions on both the Paul trap
and the Penning trap.

The article has been arranged in the following way.
In section 2, the fundamental technique of creation
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of potential minima using only the electric field (as
associated with the Paul trap) has been described.
The equation of motion of a single charged particle
within such a dynamic potential well is reviewed in
section 3. In section 4, a demonstrative experiment
has been presented. The applications of trapped ion
system in different fields have been outlined at the
end of this article (section 5).

2 How to create a potential
minima in 3D?

A particle in one dimension can be confined by a
restoring force proportional to its displacement from
the equilibrium position (the force as associated with
a simple harmonic motion). In other words, it re-
quires a quadrupole potential (proportional to the
square of the displacement). Naturally, for three di-
mensional trapping of a particle, the potential should
be quadrupolar in all three dimensions and is de-
scribed as follows:

Φ(x, y, z) = Ax2 +By2 + Cz2, (1)

where A, B, C are constants. For a charged parti-
cle, this potential can be chosen as the electric poten-
tial. Thus the force on a particle of charge e under
the influence of this potential is given by

~F (x, y, z) = −e~∇Φ(x, y, z)

= −2e(Axx̂+Byŷ + Czẑ). (2)

As is necessary for trapping, the force ~F should be
restoring in nature and thus it follows that the con-
stants A, B and C are all positive (for a positively
charged particle). However, any electrostatic poten-
tial in free space should satisfy the Laplace’s equation
(∇2Φ(x, y, z) = 0), following which, at least one con-
stant must be negative for this electrostatic potential.
Thus it can be concluded that no electrostatic poten-
tial minima exists in three dimension 1.

So how to create the electric potential minima in
three dimension? The answer to the this challenge

1This is, in literature, known as Earnshaw’s theorem

r0

z0

U + V0 cos Ωt

Figure 1: The hyperbolic geometry of the electrodes
with necessary electrical connections for develop-
ing the quadrupole potential as defined in eqn. 5.
The dotted lines show hyperbolic equipotential sur-
faces (eqn. 3).

was addressed by Wolfgang Paul who demonstrated
that a time varying electric potential can produce a
‘dynamic minima’ in three dimension. The idea is
to vary A, B and C with respect to time, such that
the potential having its minima in one direction at
an instant, rotates to the other direction at a later
instant. If the rotation of the potential minima is
faster as compared to the motion of the charged par-
ticle, the particle will experience a time-averaged po-
tential minima in all directions. The particle will be
confined within the potential well if the average po-
tential depth is larger than its kinetic energy. This
can be compared to a ball placed on a rotating saddle
(see, for reference, a nice demonstration in youtube,
the mechanical analogue of Paul trap [4]).

In order to produce the quadrupole electric poten-
tial, suitable geometry of the electrodes is required. If
there exists a rotational symmetry about the z axis,
A = B, and hence C = −2A. Consider, for exam-
ple, the electrode geometry depicted in fig. 1. As can
be seen from fig. 1, two coaxial bowl-shaped elec-
trodes at the ends, together with the ring electrode
at the middle are hyperboloids of revolution about
the z axis. If the radial and axial dimensions of the
trap are respectively r0 and z0, the equations for the
hyperbolic electrode surfaces are given by [5]
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t = 0 t = π/Ω

(a) (b)

Figure 2: Potential surface in the r−z plane at differ-
ent instant. (a) Harmonic oscillator Potential along
r(in x − y plane) and inverted oscillator potential
along z at t = 0. (b) Harmonic oscillator Poten-
tial along z and inverted oscillator potential along r
at t = π/Ω. The minima of the potential surface ro-
tates in the r−z plane with angular frequency Ω, the
frequency of the applied alternating potential.

r2 − 2z2 = r20,

r2 − 2z2 = −2z20 , (3)

where r2 = x2 + y2. When voltage is applied to
the middle electrode or on the end electrodes, it pro-
duces equipotential surfaces defined by eqn. 3. The
potential inside the trap can therefore be written as

Φ(r, z) = A(r2 − 2z2). (4)

Now, the coefficient A should be chosen in such a
way that the potential has its minima along r (i.e. in
the x− y plane) at an instant, and in the z direction
at a later instant. To elucidate the statement, let us
consider the following form of the potential:

Φ(r, z, t) =
U + V0 cos Ωt

2r20
(r2 − 2z2). (5)

It is seen from eqn. 5 that, at time t = 0 the poten-
tial resembles that of simple harmonic oscillator along

r and inverted harmonic oscillator along z [fig. 2(a)].
However, the vice-versa hold at t = π/Ω [fig. 2(b)].

3 Motion of a Trapped Ion

The equation of motion of a single particle of charge e
and mass m under the influence of the potential (de-
fined by eqn. 5) follows from Newton’s law of motion
and can be described by the following equations:

d2r

dt2
= − e

mr20
(U + V0 cos Ωt)r,

d2z

dt2
=

2e

mr20
(U + V0 cos Ωt)z. (6)

Using a common symbol u for both r and z, and
introducing the dimensionless parameters au, qu and
ζ the eqn. 6 can be rewritten as

d2u

dζ2
+ (au − 2qu cos 2ζ)u = 0, (7)

where

az = −2ar = − 8eU

mr20Ω2
,

qz = −2qr =
4eV0
mr20Ω2

,

ζ =
Ωt

2
. (8)

The equation of motion (eqn. 7) is a standard dif-
ferential equation in mathematics, known as Mathieu
differential equation. The solutions of this equation
result in either stable or unstable motion depending
on the values of the parameters au and qu, defined in
eqn. 8. There exists a region in au vs. qu diagram
for which the ion-motion is stable along a particular
direction, for example along r (fig. 3). A similar sta-
bility region exists for the motion along z direction.
An intersection between these two stability regions
(the shaded region in fig. 3) is where the stable mo-
tion in three dimension is sustained.
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Figure 3: Stability region in au vs. qu diagram for
an ion trap. The regions bounded by the dotted line
and bold line correspond to stable motion along r
and z respectively. The motion is stable along both
r and z directions in the shaded region and the trap
operating parameters au and qu are chosen in this
region.

In the ‘adiabatic approximation’ (i.e. for small au
and qu values), the solution of Mathieu differential
equation can be represented in the following form [5]:

u = c
(

1− qu
2

cos Ωt
)

cosω0ut, (9)

where c is a constant and

ω0u =
βuΩ

2
. (10)

The parameter βu, for small au and qu, can be
defined as

βu ≈
√
au +

q2u
2
. (11)

Eqn. 9 shows that the ion oscillates with a fre-
quency ω0u and its motion is modulated with the fre-
quency Ω of the applied alternating potential (fig.4).
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Figure 4: The motion of a trapped ion in one di-
rection. A low frequency motion, called the secu-
lar motion is modulated by a high frequency mo-
tion, the micromotion. The simulation of the tra-
jectory is done for qr = 0.5, Ω = 2π × 50 rad/s and
ω0r = 2π × 8.5 rad/s.

For βu < 1, ω0u < Ω. The slow frequency motion
(at ω0u) is called the macromotion or secular motion
while the higher frequency motion (at Ω) is termed
as the micromotion.

4 An Experiment

In this section, a demonstrative experiment has been
described. Dust particles, here chalk dust, have been
trapped in a ring trap at the line frequency, at 50 Hz.

The trap setup is shown schematically in fig. 5.
The surfaces of two end electrodes are hyperboloids
of revolution about the z axis and the ring electrode
at the middle has hyperbolic cross section, a similar
geometry that is described in fig. 1. In the experi-
ment, the electrodes are made of brass. The ring is
taken of diameter ∼ 10 mm (r0 = 5 mm) and the end
cap electrodes are separated by a distance (2z0) of
7 mm (note that, r20 = 2z20 , a dimensional constraint
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V
0 
cosΩt

Figure 5: Schematic of a ring trap setup. The end
electrodes are connected together and the alternat-
ing potential is applied between the ring and the end
electrodes.

of this electrode geometry as necessary for efficient
trapping). The end electrodes are electrically con-
nected together and an alternating voltage is applied
between the ring electrode and the end electrodes.
The line voltage (230 V, 50 Hz) is passed through a
variac and fed to a step-up transformer for necessary
voltage amplification. A typical voltage used for trap-
ping is 1500 V. It is to be noted that no dc potential is
applied here i.e. U = 0 and hence au = 0 (dc poten-
tial just modifies the effective potential depth). The
chalk dust are taken in a syringe and injected inside
the trap. The dust get ionized due to injection and
are trapped inside. A photograph of the experimen-
tal setup with trapped dust particles at the center is
presented in fig. 6.

The dust particles form thread-like clusters and os-
cillate inside the trap. If the trapping voltage is sta-
bilized and the system is adequately isolated from
the surroundings, the particles can be stored for days
within the trap. It is possible to estimate the charge-
to-mass ratio of the trapped dust clusters. For sta-
ble and efficient trapping, the q parameter should be
around 0.5. With the applied ac voltage V0 = 1800 V,
at frequency Ω = 2π × 50 rad/s, the charge-to-mass
ratio (e/m) is estimated from eqn. 8 as 3×10−4 C/kg.

Figure 6: A photograph of the setup with trapped
chalk dust. A laser beam is incident on the trapped
dust at the center and is scattered by the dust parti-
cles for clear visualization of ion trapping.

5 Applications

Ion traps provide best realization of ‘particle at rest’
and hence it is used as an important tool in many
applications. The thermal motion of trapped ion can
be reduced by laser cooling technique and it can be
localized within its de Broglie wavelength which is
few µm [6]. Thus a single trapped and laser cooled
ion represents a perturbation-free quantum system.
A series of experiments are being performed for test-
ing and demonstrating wide aspects of fundamental
physics. A single or few ions are used for preci-
sion measurement of various atomic properties such
as lifetime of atomic states [7], transition frequency
or ac Stark shift [8], quadrupole moment of atomic
states [9], atomic parity violation [10] etc. A sin-
gle trapped ion is used for developing atomic fre-
quency standard [11]. Single or few trapped ions are
used for quantum teleportation [12], quantum infor-
mation processing [13] and designing quantum com-
puter [14]. Large ion traps are used for Coulomb crys-
tal study [15], mass spectrometric applications [16]
and many more [17].
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Abstract 

Contribution of the magnetic energy to the energy of field of a rotated charged conducting 
spheroid is calculated by a method which does not use either the integration of the magnetic 
energy density as the surface integration of the scalar product of the current density vector 
or the vector potential of field. The method may be interesting for a student, studying the 
classical electrodynamics course.  

 
 

1. Introduction 
The problem of magnetic field calculation, created 
by a rotating charged conducting sphere, is a 
traditional part of university textbooks on 
electrodynamics ([1]). If the sphere’s radius is a, it’s 
angular velocity is  and the net charge on sphere is 
Q = 0· 4 a

2, then, in Gaussian units, the solution of 
the Poisson equation for the vector potential A( R ) 

                               jA
c

42  ,                       (1) 

with the current density 
                  0 )(sin)(  eRj aRa  (2) 

is  

                    eA  sin
2

1
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                    eA 


 sin)(
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ar .                      (4) 

Here  

                             ω
c

Qa

3

2

 ,                                (5) 

is the sphere’s dipolar moment,  

                               
3

2

a
B ,                                (6) 

 
 
 
 
is the magnetic field induction inside it, R, ,   are 
the spherical coordinates, defined so that Oz axis is 
along the vector  and the center of sphere 
corresponds to R = 0, e is the correspondent unit 
vector.  
To tell strictly, even in the zero electron mass 
approximation, which will be used further, the action 
of the Lorenz force on electrons will disturb the 
surface charge density 0 (we can consider the thin 
metal film sputtered on a dielectric ball instead of to 
consider the metal ball). However, it is easy to show 
(as in [2]), that the relatively rearrangement  /0 
of the charge density at any point of sphere is 
proportional to  2 where  =  a / с (c is the speed 
of light in vacuum). Considering  << 1 we will not 
pay attention on this effect beneath. 
To spin the ball with charged metal film, it’s 
necessary to spend the work W against the eddy 
electric field among other. The quantity W is called 
the magnetic field energy. Contrary to (3) – (6), the 
W value is not presented in [1]. Meanwhile this 
quantity is called for the theoretical physics as it is 
seen from the original journal articles. In [3] 
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(Appendix), author uses for the calculation of W the 
formula  

                             dVW
R


3

2
rot

8

1
B


,                      (7) 

(R3 is the symbol of integrating over all space, 
Brot(R) is the magnetic field induction in an arbitrary 
point) and derives  

                                    
3

2

a
W


 .                            (8) 

In [4] (Appendix) authors computed (8) with the help 
of formula  

                   dV
c

W
R

 
3

)()(
2

1
RjRA ,                    (9) 

what is the more simple way owing to Dirac 
function presence in (2). The aim of this note is to 
show that an undergraduate student studying the 
classical electrodynamics may not spend the time for 
reproducing the routine algebraical calculations and 
to derive (8) more simply than in [4] if he orients 
freely in the theme of magnetostatics of 
ferromagnets in the volume, for example, of [5]. The 
method of calculation of the rotating charged body 
magnetic energy will be applied to the spheroid. For 
auditory purposes an educator may adapt this 
method turning the spheroid to sphere primarily and 
expelling a part of mathematics beneath.  

2.Magnetic energy of a rotating 
charged metal spheroid 

Let the thin metal film is sputtered onto the 
dielectric so that the equation of the external metal 
surface is: 

                           1

22
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
,                      (10) 

where 22 yx  . The distribution of the surface 

charge density (z) is ([6]): 
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After the body began to rotate the linear current 
density of the surface charge is  

          )(cos
4

)()()( z
b

Q
zzzi 




  ,          (12) 

where the angle  is defined in the Figure 1 and the 
equation tg = d / d| z| = z ·a2 / ·b2 for the    

 
FIG. 1: Vertical section of metal spheroid (the dielectrical core is not 

shown). Q – arbitrary point on it’s surface. n – normal to surface in Q, 

 is the line, tangent to spheroid in Q. 

spheroid surface was used.  

The magnetic field induction Brot(R) created in all 
space by such current distribution coincide with the 
just one Bmagn(R) created by the spheroidal 
permanent magnet of the same shape (10) with the 
magnetization  

                            z
4

1
eM

b

Q

c 


 ,                        (13) 

in accordance with the well-known statement ([6]) 
that the uniform magnetization M is equivalent to 
molecular current with the linear surface density 
                              nMi ; c ,                            (14) 

where n is the unit vector of outer normal at the 
given point of magnet surface. Let us call such a 
magnet as the equivalent one for our rotating charged 
metal spheroid.  
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Let the two ideal conductors, screaning completely 
any external variable magnetic field inside it at zero 
temperature, move from infinity to the equivalent 
magnet as it is shown in Figure 2. Everyone of the 
two has one flat surface with the deepening as the 
half of our spheroid. When the conductors will 
taught the magnet, the field of screaning currents 
Bj(R) will compensate the field of magnet in all 
space so that Bj(R) + Bmagn(R) = 0. So the magnetic 
energy (7) of our rotating spheroid is equal to the 
magnetic energy of currents in conductors which is, 
by definition, the work of external forces F1 , F2 
being spended for the conductors transition from 

 FIG. 
2: Permanent magnet and the ideal conductors. F1 and F2 are the 
external forces transferring the last two. Jsc are the screening 
currents appeared by this. 

infinity.  This work will increase the free energy   
of the system “magnet + ideal conductors”: 
                      ext W ,                (15) 

where ext  is the free magnetostatic energy of the 

retired equivalent magnet. As it was discussed in [7],  

       2
ext

2

1

2

1
MMHBM kVV  ,        (16) 

where B is the micro field, acting on the magnetic 
moments inside the spheroid, H is the magnetic field 
strength there, k depends only of a crystal lattice 

type of material of magnet and V is it’s volume. (k is 
ignored often in literature as it is made in [5]) 
Formula for   is presented in [8]:  

                       V j
2

1
BBM ,                 (17) 

 

FIG. 3: The demagnetized magnet inside the system of two 
ideal conductors. P1 – PN are the magnetic moments of 

atoms. 

without any comments and references what reflects 
it’s evidence for professional physics-theoreticians. 
For students the next comment may be done.        
Let us imagine that the equivalent magnet is 
magnetized in the presence of the ideal conductors 
enveloping it from the initial state where the 
magnetic moments pi of atoms (i = 1 … N) lie 
chaotically in the Oxy plane (Figure 3). During the 
magnetization process pi vectors rotate up to Oz axis  
so that the value of angle   between pi and Oz axis 
is just the same for all atoms at any moment of time 
( =  / 2 in Figure 3). Then the vectors B and Bj 
became functions of  and (di is the vector of 
infenitizemal rotation of pi): 

                  iiN dθBBp  
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Taking in (18) Bj = 0 and B ()  cos  · ez, we 
derive (16). But for the screaning currents it must be 
Bj()  B () as the consequence of the Maxwell 
equation rot H = 4  j / c linearity. So at any , it will 
be Bj ()  cos  · ez and we came to (17).  

Using (16) – (17) in (15) we obtain 

             magn
2
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4
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1 
 MM ,          (19) 

where Nx and Nz are the demagnetization factors of 
spheroid along Ox and Oz axes and, as it resulted 
from (13),  

               ωMM
c

Qa
baV

33

4 2
2   .         (20) 

For the sphere Nx = 4 / 3 and we return from (19) to 
(8). In the general case of the arbitrary m = b / a it is 
conveniently to present the result as the W / Wel 
dependence of m where Wel = Q2/ 2C is the 
electrostatic energy of the charged metal spheroid 
and C is it’s capacity. Taking the expressions for C 
from [6] and for Nx from [9] we have: 
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for the oblate spheroid and 
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for the prolate one. Formulae (21) – (22) are 
illustrated graphically in the Figure 4. 

Formula (19) with  derived from (20) must became 
the strict one for infinite cylinder when the tangential 
component of the Lorenz force acting on the free 

electrons disappears. Inserting B = 4 M in (20) and 
using (20) in (19) with Nx = 2, we return to (7). 

 

  

FIG. 4: The dependence of the value F = (3 /  
2
)· W / Wel as function 

of the spheroid parameter m = b / a 
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Abstract

The particle physics is a study of the properties and interactions of subatomic particles. Here we discuss
the basics of one of the most crucial phenomena in particle physics, namely, The quark confinement.
Subsequently, we describe The Bag Model of the quark confinement, which makes a phenomenology of the
confinement easy to understand.

1 Introduction

The idea of quarks was put forward by Murray Gell-
Mann and George Zweig in the year 1964 [1]. Later,
experiments established the quarks as real physical,
fundamental objects. There are six different types of
the quark, namely, Up, Down, Top, Bottom, Charm
and Strange. They all have an electric charge. Down,
Bottom and Strange quarks have an identical charge
of − 1

3e; whereas Top, Up and Charm quarks have
an identical charge of 2

3e. All of them are massive
with the top quark being the heaviest and the up
quark being the lightest. Up and Down quarks are
the only stable quarks. This is the reason why the or-
dinary matter, we see around us, is made up of them.
The rest are created in high energy collisions only
and quickly decay into these quarks. Each quark has
its antiparticle called antiquark. A subatomic parti-
cle made of quarks is commonly known as ‘Hadron’.

There are two types of the hadron, namely, Meson
and Baryon. Meson is composed of the quark and the
antiquark of different types e.g. Pion+ is composed
of the up and the anti-down quark pair. Baryon is
composed of three quarks e.g. Neutron is composed
of two down quarks and one up quark. Having given
a brief introduction about the quarks and the recipe
to understand the confinement, we now proceed to
the main subject of this article.

2 The quark confinement

Experimental developments over many years have
confirmed the non-existence of free quarks unlike
other fundamental particles such as the electron and
the neutrino. What is observed instead in experi-
ments is jets of hadrons. For example, when protons
(a known member of the baryon family) or nuclei of
heavy atoms such as lead are smashed in particle col-
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liders like large hadron collider, products of collisions
are jets of mesons and baryons. One such collision is
shown below

proton + proton→ proton + neutron + pion+

These experiments have unearthed the truth,
which is against our day-to-day experience in a fol-
lowing sense. When we break something assembled,
it shatters into more basic objects which make that
thing and not into other similar entities. For exam-
ple, when a building is blasted, it collapses into de-
bris of cement concrete, bricks and other materials
which made it and not into other different types of
buildings. However, what happens after collision of
protons or nuclei is exactly opposite. Parent hadrons
are not broken into quarks but get converted into
different daughter hadrons after collisions. Thus, the
quarks by default clump together to form hadrons.
So, the quarks are forever trapped inside hadrons
(‘life sentence’), a phenomenon known as the con-
finement.

The physics of the confinement phenomenon is
‘the asymptotic freedom’, a peculiar property of the
strong force through which quarks interact. Naively,
the asymptotic freedom means that the quarks do not
interact with one another when they are very close
and as the separation increases, strength of interac-
tion keeps growing. Therefore, quarks tend to be
close together. Again, this property contradicts a fa-
miliar classical physics. When two charges or masses
are brought closer to each other, the electromagnetic
or the gravitational force between them increases as
1
r2 , inverse square of the distance between them, but
the strong nuclear force has an opposite behavior.
The phenomenology of the confinement physics can
be easily understood by a simple model called “The
Bag Model”.

3 The Bag Model

The Bag Model was developed in 1974 by a group
of physicists at the Massachusetts Institute of Tech-
nology in Cambridge (USA) [2] and soon it be-
came popular in particle physics community. In this

Figure 1: Example: Energy being converted into up-
antiup quark pair

model, mesons are considered as elastic bags contain-
ing quark-antiquark pair and baryons are considered
as elastic bags containing three quarks. When any
elastic material undergoes deformation due to exter-
nal force, it tries to resist the deformation. The same
is true for these imaginary elastic bags but they are
little weird since when the original bag is broken, new
bags are formed out of it automatically.

Imagine an elastic bag as shown in fig. 2 contain-
ing quarks which represents a baryon. When a bag is
unstretched, quarks can move freely in it. As soon as
you try to pull a quark apart, the bag stretches and
resists. More you stretch, more the energy required
to stretch it even further. In other words, poten-
tial energy of two quarks is proportional to distance
between them, V (r) ∝ r. Now, the energy can be
converted into equivalent mass and vice-versa as per
Einstein’s famous mass energy equivalence formula,
E = mc2. The converted mass has to be in the form
of pairs of particle and its antiparticle so that the
fundamental charge conservation law is conserved. A
pictorial representation of one such process is given in
fig. 1. At some point while stretching, it is more en-
ergetically favorable for a new quark-antiquark pair
to spontaneously appear from a given energy, than
to allow the bag to extend further. So at this point,
the bag does not stretch further instead new quark-
antiquark pairs appear from all the energy given so
far for stretching the bag. These pairs destroy the
original bag and again clump together in new bags,
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thus forming mesons and baryons. The whole process
is shown pictorially in fig. 2. A collision of particles in
colliders can be imagined as this process. When bags
(hadrons) collide, they undergo deformation; at the
energy where the pair-production is more favorable
than further deformation, original bags are broken
and different new bags (mesons and baryons) are cre-
ated, which move away giving rise to jets. So in this
way, The Bag Model correctly dummies hadrons and
what might be happening at the time of collisions of
hadrons so that we don’t get to see individual quarks.

4 Conclusion

We explained the quark confinement and the physics
responsible for it, and discussed how and why this
phenomenon is drastically different from our real
world experience using an example. Then we de-
scribed The Bag Model which helps understand the
confinement phenomenon easily.
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Abstract 

Science students always feel curious to learn and also visualize the revolution of earth 
around its own axis in 24hrs. The introduction of the Foucault pendulum in 1851 somehow 
overcame all the bottlenecks and aligned itself with the Rest of the Universe and was the 
first dynamical proof of the rotation of earth in an easy-to-see experiment and it created a 
justified sensation in both the learned and everyday worlds. Today, Foucault pendulums are 
popular displays in science museums and universities world over.  This article, briefly 
presents the topics like history, mechanics, construction and setting up about Foucault’s 
pendulum with a hope that it will act as a source for its readers to understand the physics of 
Foucault’s pendulum in a simple manner. 

 
 

1. Introduction 
 
People already knew, at the time, that the Earth 
turned around its own axis in 24hrs and also 
goes around the Sun, once every year. The Sun, 
in turn, goes around the centre of our galaxy, 
The Milky Way, once every 250 million years. 
These are all local motions. The cycle of night 
and day was already very convincing proof of 
earth’s rotation about its own axis but the 
French physicist Léon Foucault wanted to prove 
it without resorting to any celestial elements that 
had already been done 218 years earlier by 
Galileo.  The introduction of the Foucault 
pendulum in 1851 somehow ignores all these 
local motions and somehow aligns itself with 
the Rest of the Universe and was the first 
dynamical proof of the rotation of earth in an 
easy-to-see experiment and it created a justified 
sensation in both the learned and everyday 
worlds. Today, Foucault pendulums are popular 

displays in science museums and universities 
world over and author has the opportunity to see 
the Foucault pendulum installed at Physical 
Research Laboratory (PRL) Ahmadabad 
(Gujarat). Its action is a result of the Coriolis 
effect. It is a tall pendulum free to oscillate in 
any vertical plane and ideally should include 
some sort of motor so that it can run 
continuously rather than have its motion 
damped by air resistance. 
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Main installation 

 

 

Pendulum bob 
 

2.  History  
 
Mr. Foucault—a surgeon by training, physicist, 
inventor and journalist by trade—was not 
looking for direct proof that the planet rotates. 
The Foucault pendulum was invented by 
accident. In 1848 Leon Foucault was setting up 
a long, skinny metal rod in his lathe. He 
"twanged" it, and the end of the piece of metal 
proceeded to go up-and-down. If you treat the 
chuck of the lathe like a clock, the end vibrated 
from 12 o'clock down to 6 o'clock, and back to 
12 o'clock, and so on. He slowly rotated the 
chuck by 90 degrees. But the end of the metal 
rod steadfastly vibrated back-and-forth between 
12 and 6 o'clock! This set Leon Foucault 
thinking. He set up a small pendulum in his drill 
press. He set the pendulum oscillating, and then 
started the drill press. Once again, the pendulum 
kept swinging in its original plane, and ignored 
the fact that its mounting point was rotating. He 
then constructed a 2 metre-long pendulum with 
a 5 kilogram ball in his workshop in his cellar. 
Before the amplitude of the swing died away 
totally, he saw that the weight on the end of the 
pendulum appeared to rotate clockwise .  
 
Now that he was convinced of the principle, he 
built a second pendulum with an 11-metre wire 

in the Paris Observatory, and it too rotated 
clockwise. He was asked to construct something 
"big" for the 1850 Paris Exhibition, and he 
constructed a 67-metre tall Foucault pendulum 
in the PanthŽon - a Parisian church also known 
as the church of Saint Genevi ve. He went to a 
great deal of trouble to make sure that the wire 
was perfectly symmetrical in its metallurgy. He 
used a 28 kilogram cannon ball. A stylus was 
placed under the ball, and sand was scattered 
under the potential path of the ball, so that the 
stylus would cut a trace in the sand. The ball 
was pulled to one side, and held in place with a 
string. With much ceremony, the string was set 
alight, and the ball began to describe a beautiful, 
straight (non-elliptical) path in the sand. Within 
a few minutes, the pendulum had begun to 
swing a little clockwise - and the previous, 
narrow straight-line in the sand had widened to 
look like a twin-bladed propeller. The 
experiment was a success. The Earth rotated 
"under" his pendulum. So it was possible, way 
back in 1850, to set up an experiment inside a 
room which had no view of the outside world, 
and prove that the Earth rotated. The next year, 
Foucault repeated his Pendulum experiment 
with a massive, spinning weight. He showed 
that this weight, just like his Pendulum, ignored 
local effects and lined itself up with the distant 
stars.  
 
During Foucault’s life it was already proven that 
the Earth rotated; thanks to experiments which 
showed that weights dropped from tall towers 
fell slightly to one side rather than straight 
down. This is the Coriolis Effect in action. 
Essentially, the weight does fall in a straight line 
towards the centre of the Earth, as you would 
expect, but the Earth rotates slightly during its 
fall. It is the tower and the ground which move 
sideways, not the weight. Incidentally, pilots on 
long flights have to correct for this effect; if 
they took off, pointed their plane at a distant 
destination and maintained a straight course, 
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their arrival airport would no longer be there 
when they arrived.  
 
The first public exhibition of a Foucault 
pendulum took place in February 1851 in the 
Meridian of the Paris Observatory. A few weeks 
later Foucault made his most famous pendulum 
when he suspended a 28 kg brass-coated 
lead bob with a 67 meter long wire from the 
dome of the Panthéon, Paris. The plane of the 
pendulum's swing rotated clockwise 11° per 
hour, making a full circle in 32.7 hours. The 
original bob used in 1851 at the Panthéon was 
moved in 1855 to the Conservatoire des Arts et 
Métiers in Paris. A second temporary 
installation was made for the 50th anniversary 
in 1902.  During museum reconstruction in the 
1990s the original pendulum was temporarily 
displayed at the Panthéon (1995), but was later 
returned to the Musée des Arts et Métiers before 
it reopened in 2000.  On April 6, 2010 the cable 
suspending the bob in the Musée des Arts et 
Métiers snapped, causing irreparable damage to 
the pendulum and to the marble flooring of the 
museum. An exact copy of the original 
pendulum has been swinging permanently since 
1995 under the dome of the Panthéon, Paris. 
 

3.  Explanation of mechanics 
 
Newton's law of motion states that when a body 
is set in motion, it will move in a straight line 
from its origin, as long as it is not influenced by 
outside forces. This was the concept upon which 
Foucault based his proof that the earth rotates. If 
you start a Foucault pendulum swinging in one 
direction, after a few hours you will notice that 
it is swinging in a quite different direction. The 
earth, on the other hand, will rotate once every 
24 hours underneath the pendulum. Thus if you 
stood watching the pendulum, after a quarter of 
an hour or so, you would be likely to notice that 
the line of the pendulum's swing has changed to 
a different direction. This would be especially 
clear if one marked the position of the line of 

swing in the morning and had the pendulum 
knocking down pegs arranged in a ring at the 
center. However, if you are standing on the floor 
of a building housing a pendulum (which is 
connected to the earth), you will naturally think 
that the floor is stable and the pendulum is 
moving. This is because we naturally assume 
that the base on which we stand is stable unless 
our eyes or sense of balance tells us otherwise. 
If our base moves slowly or accelerates 
smoothly, we are easily fooled into thinking that 
another object we see is moving. Thus, after 
thinking for a while about the total situation you 
might be willing to agree that what you are 
seeing is a real demonstration that the earth is 
rotating under the pendulum and that the line of 
swing of the pendulum just appears to rotate. 
 
The Earth's rotation causes the trajectory of the 
pendulum to change over time, knocking down 
pins at different positions (or oscillating in 
different marked directions in a circle) as time 
elapses and the Earth rotates. The experimental 
apparatus consists of a tall pendulum free to 
swing in any vertical plane. The actual plane of 
swing appears to rotate relative to the Earth. The 
wire needs to be as long as possible—lengths of 
12–30 m (40–100 ft) are common. At either 
the North Pole or South Pole, the plane of 
oscillation of a pendulum remains fixed relative 
to the distant masses of the universe while Earth 
rotates underneath it, taking one sidereal day to 
complete a rotation. A pendulum day is the time 
needed for the plane of a freely suspended 
Foucault pendulum to complete an apparent 
rotation about the local vertical. This is one 
sidereal day divided by the sine of the latitude. 
So, relative to Earth, the plane of oscillation of a 
pendulum at the North Pole undergoes a full 
clockwise rotation during one day; a pendulum 
at the South Pole rotates counterclockwise. 
When a Foucault pendulum is suspended at 
the equator, the plane of oscillation remains 
fixed relative to Earth. At other latitudes, the 
plane of oscillation precesses relative to Earth, 
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but slower than at the pole; the angular 
speed, ω(measured in clockwise degrees per 
sidereal day), is proportional to the sine of 
the latitude, φ ( ), where 
latitudes north and south of the equator are 
defined as positive and negative, respectively.  
 

4. Construction and setting up 
 
The Foucault pendulum (support + wire + iron 
ball) is attached to this building. Any pendulum 
consists of a cable or wire or string and a bob. 
For a pendulum to easily demonstrate the 
Foucault effect, it should have as long a cable as 
possible (this one is 52 feet) and a heavy 
symmetrical bob (this one is hollow brass, 
weighing about 240 pounds). Like all 
pendulums this one loses a bit of energy with 
each swing due to friction from air currents and 
vibrations in the cable and other factors. Thus, 
left to itself the pendulum would swing in 
shorter and shorter arcs until after a few hours it 
will decrease almost to zero. To keep the 
Foucault pendulum going, one must replace the 
energy lost with each swing. This can be done 
by giving the pendulum a little "kick" with each 
swing. To do this, two iron collars are attached 
to the cable near the top. There is a doughnut-
shaped electromagnet built into the ceiling, and 
the iron collar swings back and forth inside the 
hole of the doughnut. When the pendulum cable 
reaches a particular point in its swing, it is 
detected by an electronic device and the magnet 
is turned on at just the right time to give the 
collar (and thus the cable and the bob) a little 
"kick" in the exact direction of its natural swing. 
This restores the energy lost during the swing 
and keeps the pendulum from stopping. It has 
no effect on the direction of the swing, and thus 
does not interfere with the demonstration that 
the earth is rotating. 
 
At either the North Pole or South Pole, the plane 
of oscillation of a pendulum remains pointing in 
the same direction while the Earth rotates 

underneath it, taking one sidereal day to 
complete a rotation. When a Foucault pendulum 
is suspended somewhere on the equator, then 
the plane of oscillation of the Foucault 
pendulum is at all times co-rotating with the 
rotation of the Earth. What happens at other 
latitudes is a combination of these two effects. 
At the equator the equilibrium position of the 
pendulum is in a direction that is perpendicular 
to the Earth's axis of rotation. Because of that, 
the plane of oscillation is co-rotating with the 
Earth. Away from the equator the co-rotating 
with the Earth is diminished. Between the poles 
and the equator the plane of oscillation is 
rotating both with respect to the stars and with 
respect to the Earth. The direction of the plane 
of oscillation of a pendulum with respect to the 
Earth rotates with an angular speed proportional 
to the sine of its latitude; thus one at 45° rotates 
once every 1.4 days and one at 30° every 2 
days. 
 
A Foucault pendulum is tricky to set up because 
imprecise construction can cause additional 
veering which masks the terrestrial effect. Air 
resistance damps the oscillation, so Foucault 
pendulums in museums usually incorporate an 
electromagnetic or other drive to keep the bob 
swinging. Its oscillations continue with 
reassuring regularity, its movement maintained 
by an electromagnetic device in the base of the 
installation. Once a pendulum has been set in 
motion, it does not change the direction in 
which it swings. The pendulum is only attached 
to the Earth at a single point, which allows it to 
maintain its direction of oscillation. Another 
phenomenon, then, must be responsible for the 
progressive fall of the pins. Indeed, it is not the 
pendulum that turns, but the Earth, turning 
beneath the pendulum. The rotation of the 
instrument is only apparent; it is us, the 
building, the table and little pins, all firmly 
attached to the Earth, that are turning around the 
pendulum. 
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5.  Precautions 
 
A Foucault pendulum requires care to set up 
because imprecise construction can cause 
additional veering which masks the terrestrial 
effect. The initial launch of the pendulum is 
critical; the traditional way to do this is to use a 
flame to burn through a thread which 
temporarily holds the bob in its starting position, 
thus avoiding unwanted sideways motion. Air 
resistance damps the oscillation, so some 
Foucault pendulums in museums incorporate an 
electromagnetic or other drive to keep the bob 
swinging; others are restarted regularly, 
sometimes with a launching ceremony as an 
added attraction. 
 

6.  Conclusion 
 
We all know that the Earth rotates, even if we 
rarely contemplate the fact, but watching a 
Foucault pendulum is a humbling reminder that 
we're all on the surface of a planet spinning in 
space. That intuitive impact is exactly why this 
experiment remains so famous. Mechanically, 
it’s one of the simplest experiments possible: a 
heavy weight attached to a very long string or 
cable that is free to swing in any vertical plane. 
This pendulum is set in motion very carefully to 
avoid introducing any sideways motion, usually 
by tying it back with a thread of cotton which is 
then burned with a candle. Oddly, it will then 
appear to change its direction of swing over 
time without any outside input. Of course, it is 
actually the Earth which is rotating, while the 
pendulum continues to swing in the same plane 
relative to the rest of the Universe. The Foucault 
pendulum is currently working. The main 
problems involved in making a Foucault 

Pendulum are starting the ball in a swing that 
passes through the true centre point of the 
swing, keeping the ball in that "true" swing (and 
not going into an elliptical swing), and pumping 
energy into the swing so that it does not die 
down. Three subsystems were set up to achieve 
these goals, and currently, they are all 
operational.  
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Abstract 

Solar flare is a diverse dynamic activity of solar atmosphere. It is associated with high magnetic 
energy release (1027J), particle acceleration, radiation burst and release of plasma particles into 
the space. In this paper we studied the different aspects of solar flare such as magnetic 
reconnection, radiation burst, magneto hydrodynamic, and interaction with Earth atmosphere 
from the fundamental point of view.  
 
 

1. Introduction 
Sun is a main sequence G2 spectral class star of 
the universe and full of mysterious activity like 
Sun Spots, Solar Cycles, Solar Flare, CME, Solar 
Prominences etc. Sun is a gaseous ball of plasma 
and continuously emitting radiations. The total 
solar radiation of the entire Sun is 3.83 X 1023 
kW [1]. Sun is a magnetic active star [2] and 
mostly activity is due to the variation in magnetic 
field. Solar magnetic field is generated in the 
convection zone by a dynamo process which is a 
combination of solar rotation and convection [3]. 
The magnetic field of various activity of Sun are 
depicted in table 1[1]. According to solar 
standard model [4], Sun structure is considered as 
an internal as well as external structure (solar 
atmosphere). Solar atmosphere comprises 
photosphere, chromospheres and corona. The 
basic temperature and density parameters of Sun 
structure are depicted in table 2 [1]. 
 

 
 
Solar flare is an solar atmospheric activity and 
first discovered or observed by R. C. Carrington 
and R. Hodgman on 1st September 1859 
independently in optical light [5][6]. Solar Flare 
is associated with solar spots (high magnetic 
field, ~3000 Gauss), solar cycle (variation in 
number of sun spots in 11 year) and sometime by 
coronal mass ejections (plasma particles 
propagation along with magnetic field lines). 
Solar Flare is an intense variation of energy into 
solar corona. Though, Sun is continuously 
emitting energy in the form of radiation in all 
wavelengths from radio to gamma rays (please 
see Appendix A for wavelengths, frequency and 
energy of electromagnetic radiation spectrum) 
but during flare an intense increase arise in the 
radiation level of the Sun [7]. Also huge amount 
of plasma particles accelerate in the space along 
with magnetic field lines say CME (sometimes), 
solar wind etc. 
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It is widely believed that flares are caused by the 
release of magnetic energy up to some 1027 J in 
the solar atmosphere within a relatively short 
time between 100 and 1000 s. Release of 
magnetic energy causes particle acceleration 
(electrons, protons, and heavier particles) and 
turbulence in solar atmosphere. This energy 
accelerates particles to tens and hundreds of keV.  
Electrons accelerated to 10-100 keV can contain 
a significant fraction (10-50%) of this energy. 
The accelerated particle causes intense radiations 
in all wavelengths. Inside the solar flare, gas 
temperature can reach up to 10 or 20 million 
degrees Kelvin. It can be as high as 100 million 
degrees Kelvin. 
 
 It is observed that there are typically three stages 
in a solar flare [8]. First is the precursor stage, 
where the release of magnetic energy is triggered. 
Soft X-ray emission is detected in this stage. In 
the second or impulsive stage, protons and 
electrons are accelerated to energies exceeding 1 
MeV. During the impulsive stage, radio waves, 
hard X-rays, and gamma rays are emitted. The 
gradual build up and decay of soft X-rays can be 
detected in the third, decay stage. The duration of 
these stages can be as short as a few seconds or 
as long as an hour.  
 
Solar flares are mainly categorized in single loop 
and two ribbon flares. Single loop flares are 
single magnetic loop or flux tube brightens in X-
rays and remains apparently unchanged in shape 
and position throughout the event.  Two ribbon 
flares are much larger than a compact flare and 
takes place near a Solar prominence, a loop of 
plasma confined between two magnetic field 
lines [9]. The Hα and Soft X-ray classification 
scheme is given in appendix A.  A B C M and X 
class classification depend upon peak flux. The 
X-class flare denotes the most intense flares, 
while the number provides more information 
about its strength. An X2 is twice as intense as an 
X1, an X3 is three times as intense, etc.  
 

In the present time, solar flares are observed in 
all wavelengths from radio to gamma rays 
emissions excess in to 10 MeV. Space based 
observatories and Ground based observatories are 
in use for observing solar flare.  YOHKOH, 
GOES, RHESSI, SDO, SOHO, WIND was/are 
the major solar space observatories [10]. An 
example of solar flare observed by SOHO 
spacecraft is shown in figure 1. A flare observed 
by the GOES satellite based on the X-ray 
radiation level of Sun is shown in figure 2.  
 
In this paper we studied introductory aspects of 
solar flare, magnetic reconnection, magneto 
hydrodynamic, radiative process and its 
interactions with the Earth atmosphere.  
 
Table 1: Magnetic field of different activities on 
Sun 
 
Solar Activity Magnetic Field 

(Gauss) 
 

Polar Field 1-2 
Sun Spots 3000 
Promineces 10-100 
Chromospheric plages 200 
Bright chromospheric 
network 

25 

Ephemeral (unipolar) 
active regions 

20 

 
Table 2: Temperature and density parameters of 
Sun Structures 
 
Solar 
Structure 

Temperature 
(K) 

Density 
(Kg/m3) 

Interior  
(centre of Sun) 

15 000 000 K 16000 

Surface 
(photosphere 

6050 K 10–6 kg/m3 

Sunspot umbra 
(typical) 

4240 K  

Sun spot 
Penumbra 
(typical) 

5680 K  
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Chromospheres 4300 to 50 000 
K 

10–9 kg/m3 
 

Corona 800 000 to  
3 000 000 K 

10–13 kg/m3 

 
 

Figure 1: The Sun unleashed a powerful flare on 4 
November 2003. The Extreme ultraviolet Imager in 
the 195A emission line aboard the SOHO spacecraft 
captured the event. Credit: SOHO, ESA & NASA 

 

 

 
Figure 2: X-ray flux from the Sun of 13.05.2013 
(GOES-15), Image courtesy: NASA 

 

2. Magnetic Reconnection  
Magnetic reconnection is a natural process of 
plasma state of the matter. Magnetic 
reconnection is a process where magnetic field 
lines are broken and rejoined in highly 
conducting plasma. Solar flare is caused by 
magnetic reconnection. During solar flare 
magnetic reconnection will dissipate magnetic 
energy which will cause particle acceleration and 
release of huge amount of emissions. The process 
of magnetic reconnection was first postulated by 
Giovanelli (1946) [11].  
 
The term magnetic reconnection was first 
proposed by Dungi in 1953[12].  Dungy 
suggested the formation of current sheet within 
the perspective of magneto hydrodynamics. In 
the current sheet the magnetic field will 
reconnected and diffusion occurs. The 
differential rotation of Sun, solar dynamo, and 
convection ensure that the magnetic field of the 
Sun is typically highly stressed and prone to 
reconnection events [13]. Here we presented 
cartoons for solar flare formation taking magnetic 
reconnection as a process. It is shown in figure 3 
a, 3b, 3c and 3d respectively. The figures are not 
in scale. 
 
 

 
 
Figure 3a: Evolution of magnetic field lines  
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Figure 3b: Twisting of magnetic field lines and 
current sheet formation  
 

 

 
Figure 3c: Release of magnetic Energy  

 
Figure 3d: Solar flare formation and extraction of 

field lines 
 

After the postulation of magnetic reconnection 
several models have been proposed.  The first 
model to describe magnetic reconnection was 

developed by Parker (1957) and Sweet (1958) 
[14] [15] in terms of enhanced magnetic 
diffusion in a layer with anti parallel field lines 
on both sides. This model found slow at time 
scale in solar flare conditions. Later Petschek 
[16] develop fast reconnection model considering 
small current sheet. A schematic of Sweet Parker 
and Petschek models of Reconnection is shown 
in figure 4 
 

 
Figure 4: Sweet-Parker and Petschek Model of 
magnetic reconnection (figures are not in scale) 
 
Under steady state conditions Sweet parker 
calculated the rate of flow of plasma from the 
current sheet. If Ey is the uniform out of plane 
electric field and Bin is the magnetic field of 
reconnection region, than; 
 

ininy BVE ~  

According to Appere’s law, the current density is 
given by; 

o

in
y

B
J ~  

Where δ is the half thickness of Sweet parker 
model thickness. A relation resistivity ƞ, in flow 
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velocity inV  and current sheet half thickness δ 

will be equal to; 





o

inV ~  

The above relationship represents the condition 
that the resistive electric field, ηJy, within the 
current sheet matches the ideal electric field 
outside the current sheet. The thickness of a 
steady state reconnection layer is set by how 
quickly magnetic field lines can diffuse. 
  
Conservation of mass will give a relationship 
under incompressible conditions; 

outin VLV ~  

Where L is the half thickness of the reconnection 
layer and Vout is the outflow velocity. According 
to the conservation law of energy; 
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Solving this equation we will get following 
relationship 

0

~ in
Aout

B
VV   

Thus out flow velocity in a Sweet Parker current 
sheet scales with the upstream Alfen speed. The 
dimension less reconnection rate ca be given by 

SV

V

A

in 1
~  

Where S is the Lundquist number and is equal to; 



 ALV
S 0  

Sweet Parker model is not able to explain the 
extremely short time scales of seconds to minutes 
observed for energy release during solar flare. 
Sweet Parker is found correct for the resistive 
MHD framework for moderate Lundquist 
number (S~102-104). 
 

The second most important model was proposed 
by Petschek (1964)[16] as shown in figure 4. 
Petschek modify Sweet parker model considering 
small current sheet. Perschek considered that 
diffusion region must be small than the global 
length scale. He proposed a mechanism for the 
diffusion in a smaller length scale considering 
slow mode shocks. The maximum reconnection 
rate is given by 

SV

V

out

in

ln8


  

 
In the beginning, the Petschek model got good 
acceptance but it is found that under resistive 
MHD conditions only Sweet Parker type current 
sheet will form as studied by Biskamap in 1986 
[17]. Experimental and observational results 
ruled out the formation of Petschek current sheet.  
 
Apart from these two models several other 
models are also given by researchers such as 
Turbulent Reconnection, Two Fluid 
Reconnection, Asymmetric Reconnection 
etc.[18].   
 
Multiple wavelength observations by modern 
satellites strongly suggest that magnetic 
reconnection is the principal process for the 
energy conversion in solar flares. Typical cusp-
like feature of post-flare loops observed in soft 
X-rays is a strong piece of evidence in favour of 
the reconnection model [19]. 
 
The solar flare standard model [20] is known as 
CSHKP model. This model was developed by 
pioneer researchers Carmichael (1964), Sturrock 
(1966), Hirayama (1974), and Kopp-Pneuman 
(1976). Kopp and Pneuman (1976) considered 
that after reconnection of open field line, the 
solar wind along open field line collides to form 
shock inside the reconnected closed field, which 
heat the coronal plasma to are temperature. 
However, Cargill and Priest (1982) correctly 
pointed out that we should consider the role of 
slow mode shock associated with Petschek type 
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reconnection. Forbes and Priest (1984) noted the 
formation of fast shock (termination shock) due 
to reconnection jet above the reconnected loop, 
and Forbes and Malherbe (1986) pointed out that 
the slow shock is dissociated to isothermal slow 
shock and conduction front in solar are condition. 
 

 
Figure 5: A standard model of solar flare as 
developed by Shibata  
 
 
Some of the solar flares parameters observed and 
derived from the theoretical modeling are 
summarized in table 3[7] [13]. 
 

Table 3: Physical parameters of the Solar Flare 
Flare Properties Values 

Flare Energy 1027 J 
 

Flare Temperature  ͠107 K 

Flare Volume (104 km)3 
 

Fare Loop Height 104 to 105 Km 
 

Plasma Density 1010 cm-3 

Duration of flare 
(time scale) 

103 – 104 s 

Electron energies  
 

>10 MeV 

Proton energies >100 MeV 
 

Number of energetic 
electrons 

1036 per second 

 
3. Magneto hydrodynamics of the 
Flare 
Magneto hydrodynamic is a dynamics of plasma 
material in the influence of magnetic field. 
Magneto hydrodynamics is similar to fluid 
dynamics.  Magneto hydrodynamic equation, 
relates different parameters of plasma, are used 
for studying dynamics of plasma. The solutions 
of MHD equations provide detail information 
about the plasma flow. Analytical and Numerical 
methods are used for solving magneto 
hydrodynamic equations.  
 
MHD equations are non-linear partial differential 
equations. The basic Magneto hydrodynamic 
equations [21] are as follows:  
Mass conservation equations; 

0).( 



V

t



 

Momentum conservation equation; 

gBBpVV
t

V
  




)().( 1

 

Faraday’s equations 

0)( 



E

t

B
 

Gauss law; 

0. B  
Ampere’s law; 

jB .  
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Equation of state; 

T
m

p B 


  

 
Here ρ is mass density, V is flow velocity, B is 
the magnetic field, E is the electric field, p is gas 
pressure, γ = 5/3 is the adiabatic index, g is 
gravitational acceleration, T is temperature, m is 
mean particle mass and kB is the Boltzmann’s 
constant. MHD equations relates plasma 
unknown parameters with one another. 
  
Induction equation is derived by using Ampere’s 
law and ohm’s law, 

BBv
t

B 2)( 



  

The first term of the right side describes 
advection and second term diffusion.  
A dimension less number, Magnetic Reynold 
number is defined as a ratio of advection and 
diffusion terms. 
 

B

Bv
Rm 2

)(







 

If Rm>>1; advection term will dominate 
(condition is known as frozen in flux). 
If Rm<<1; Diffusion term dominate and 
reconnection occurs. 
 
Plasma beta parameter is defined as a gas 
pressure (p) to magnetic pressure (B2/2µ). It is 
equal to; 

2

.2

B

p
   

If β>>1, the gas pressure will dominate 
(Photosphere of Sun) 
If β<<1, the magnetic pressure will dominate 
(Solar corona) 
 
Forbes & Priest 1983; Magara et al. 1996; Ugai 
1996; Forbes & Malherbe 1991 carried out 
magneto hydrodynamic simulation on magnetic 
reconnection models in two dimensions. This 

simulation work was mainly concentrated to 
simulate basic geometry of solar flare such as the 
reconnection site structures with an X-type 

magnetic neutral point associated with extending 
slow-mode MHD shocks, bidirectional 
reconnection jets, fast-mode MHD shock formed 

at the top of reconnected loops, and upward 

ejecting plasmoids. These simulations do not 
include thermal processes such as heat 
conduction. Forbes and Melherbe ((1991) 
simulated magnetic reconnection by considering 
radiative cooling effect. 
 
Yokoyama and Shibata (1997) carried out first 
time the self-consistent MHD simulation for the 
reconnection. Yokoyama and Shibata (1998, 
2001) [22] [23] performed 2D MHD simulation 
of reconnection with heat conduction and 
chromospheres evaporation. This simulation is 
considered as a most advanced model of eruptive 
areas. 
 
An illustration of the reconnection model of a 
solar flare based on the simulation results is 
shown in figure 6. This model was develop by 
the simulation study carried out by the Petschek 
1964; Tsuneta 1996; Shibata 1996.  Thick solid 

lines show magnetic field. Magnetic energy is 
released at slow-mode MHD shocks emanating 
from the neutral X-point, which is formed as a 
result of the magnetic reconnection. The ejected 
reconnection jet collides with the reconnected 
loops and forms a fast-mode MHD shock. The 
released heat at the reconnection site conducts 
along the field lines down to the chromospheres. 
Because of the heat input into the dense 
chromospheres plasma, the plasma there 
evaporates and flows back toward the corona. 
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Figure 6: Schematic picture of the model; e.g., 
Petschek 1964; Tsuneta 1996; Shibata 1996 
 

4. Flare Radiations  
Most of information about the astronomical 
bodies, phenomenons and processes are obtained 
by studying electromagnetic radiations which 
comes from the object. Radio, microwave 
infrared, visible, ultraviolet, X rays, gamma rays 
are known as electromagnetic radiations. The 
electromagnetic (EM) spectrum is the range of all 
types of EM radiation. The wavelength, 
frequency and energy of electromagnetic 
radiation are given in the Appendix. The basic 
properties associated with radiation are 
luminosity, flux, intensity, emissivity, radiation 
energy density, Einstein coefficients, mean free 
path etc. [24] 
 
Electromagnetic radiation is produced whenever 
a charged particle is accelerated. The greater the 
acceleration the higher the energy of the emitted 
photon will produce. The basic mechanisms for 
the production electromagnetic radiations are as 
follows: 
- Bremsstrahlung (free-free emission) 
- Compton Scattering 
- Synchrotron emission 
- Absorption processes 

- Self-absorption 

- Pair production 
- Ionisation Losses 
- Cherenkov radiation 
- Nuclear interactions 
 
There are two types of electromagnetic radiation: 
thermal radiation - which depends on the 
temperature of the emitting source - and non-
thermal - which does not depend on the source 
temperature. The thermal radiation processes are 
black body radiation and thermal bremstrahlung.  
The Non thermal emissions are non thermal 
bremstrahlung, inverse Compton scattering and 
synchrotron radiation 
 
X-ray and radio emission mechanism can also be 
classified as coherent and incoherent emissions. 
Coherent emission mechanisms are plasma 
emission and the electron cyclotron maser 
mechanisms. Incoherent emission mechanisms 
include bremsstrahlung and gyro-emission.  
 

In solar flare an intense radiation occurs in all 
wavelength of electromagnetic spectrum at 
different Locations of flare regions.  Nearly half 
of energy released during flares is used to 
accelerate electrons and protons up to velocity 
nearly speed of light. Solar flares accelerate 
particles to nearly the velocity of light, hurling 
them out into the solar system and down into the 
Sun.  Both Thermal and Non thermal radiations 
occurs in solar flares [26].  
 

X-ray emissions from solar flare provide a detail 
study of physical properties of Solar flare. X-ray 
emission can be classified as hard X-ray (10-
100KeV) emissions and soft X-ray (~0.1-10 keV) 
emissions. SXR often refers to the thermal part of 
the photon bremsstrahlung spectrum, which can 
go up to 20 keV in powerful flares. Hard X-ray 
referred as non thermal power law like spectrum. 
The hard X-rays are widely believed to be non 
thermal bremsstrahlung emission produced by 
high-energy electrons precipitating into the 
chromospheres. High-speed electrons that are 
thrown down into the Sun emit hard X-rays when 
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entering the lower solar atmosphere [26]. An 
illustration of X-ray photon production in solar 
flare is shown in figure 7. 
 

 
 

Figure 7: Production of X ray in Solar Flare 
 
Hard X-ray emission and the evolution of high-
temperature thermal flare plasma are often 
referred to as the Neupert effect. Jain, Rajmal, et 
Al. [27][28][29] studied X ray emissions, 
observed by SOXS mission of India, from solar 
flare meticulously and derived many conclusions 
about Solar flare. According to Jain et. al, 
[27][28][29]  The evolution of the break energy 
point that separates the thermal and non-thermal 
processes reveals increase with increasing flare 
plasma temperature. Jain et al., [27][28][29] also 
concluded that the X-ray energy spectrum from a 
typical large solar flare is dominated by soft X-
ray line and thermal (free-free) bremsstrahlung 
emission at ε ≈ 1–20 keV, and collisional 
bremsstrahlung of non-thermal electrons at ε ≈ 
20–1000 keV . 
 
Gamma and neutrons emissions from solar flare 
provide information about flaring process and 
conditions within flare loop [30]. Gamma ray 
emissions are generally associated with most 
powerful solar flares. Energetic flare protons 
create nuclear reactions when they are tossed 
down into the chromosphere or photosphere, 
emitting gamma rays in the process Solar flare 
are generally associated with such as the nuclear 
lines from excited nuclei, as well as the delayed 

neutron capture line, and the electron-positron 
annihilation line and continuum.  

For gamma rays, protons and heavier ions 
accelerated in the flare. These high energy 
particles interact with the nuclei of the different 
elements in the ambient solar atmosphere to 
produce a far more complicated emission 
spectrum than the relatively smooth continuum 
bremsstrahlung spectrum. Many individual 
gamma-ray lines from a wide variety of different 
elements in the solar atmosphere have been 
detected. They result from the decay of such 
relatively abundant elements as carbon, nitrogen, 
oxygen, etc. that are excited to high energy states 
in the various nuclear interactions. The relative 
intensities of the various lines provide 
information about the composition of both the 
accelerated particles and the target nuclei [31].   

5. Earth Atmosphere and Flare 
Interaction 

Earth atmosphere is the protective layers of gases 
which surrounds the Earth. It receives solar 
radiation in the form of radiations and plasma 
particles (CME, solar wind etc) from the Sun. 
Earth atmosphere mainly constitute nitrogen 
(78%), oxygen (21%) and other gases. Gravity 
holds the atmosphere to the Earth's surface. With 
the height the atmosphere becomes thinner. Earth 
atmospheres (figure 8) are classified into five 
layers;  
 
1) The troposphere is the first layer above the 
surface and contains half of the Earth's 
atmosphere. Weather occurs in this layer.  
2) Many jet aircrafts fly in the stratosphere 
because it is very stable. Also, the ozone layer 
absorbs harmful rays from the Sun. Meteors or 
rock fragments burn up in the mesosphere. 
4) The thermosphere is a layer with auroras. It is 
also where the space shuttle orbits.  
5) The atmosphere merges into space in the 
extremely thin exosphere. This is the upper limit 
of our atmosphere. 
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Figure 8: Earth Atmosphere with height  
 
Flare interaction is assumed as an interaction of 
plasma particles and intense radiation with the 
Earth atmosphere. The key processes of the 
interaction take place are the emission, 
absorption and scattering. As discussed above 
that Solar flare produces high energy particles 
(protons, electrons ions etc.) and radiations. The 
particles are stopped by the magnetic field of 
earth. Radiation (mainly X ray and UV) is 
stopped by ionosphere layer of earth atmosphere. 
As the charged particles of solar winds and flares 
hit the Earth's magnetic field, they travel along 
the field lines [32].  
 
A sudden ionosphere disturbance (SID) occurs 
during flare. The ionosphere starts at about 70-80 

km high and continues for 640 km. It contains 
many ions and free electrons (plasma). The ions 
are created when sunlight hits atoms and tears off 
some electrons. Auroras occur in the ionosphere. 
the ionosphere is composed of three main parts, 
named for obscure historical reasons: the D, E, 
and F regions. The electron density is highest in 
the upper, or F region. The F region exists during 
both daytime and nighttime. During the day it is 
ionized by solar radiation, during the night by 
cosmic rays.  

The flare’s X-ray energy increases the ionization 
of all the layers, including the D. 
Electromagnetic radiation at wavelengths of 100 
to 1000 Angstroms (ultraviolet) ionizes the F 
region, radiation at 10 to 100 Angstroms (soft X-
rays) ionizes the E region, and radiation at 1 to 
10 Angstroms (hard X- rays) ionizes the D 
region. When electromagnetic radiation from the 
sun strips an electron off a neutral constituent in 
the atmosphere, the resulting electron can spiral 
along a magnetic field line at the electron gyro 
frequency. 

When a Solar Flare occurs, the VLF propagation 
is disturbed and it is possible to detect the SIDs 
by monitoring the variations or the signal level of 
a distant VLF receiver. Figure 9  is an artistic 
view of flare interaction with Earth atmosphere. 
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Figure 9: An artistic view of solar flare 
interaction with Earth atmosphere 

8. Conclusions 
From the beginning of the discovery [5][6] of 
solar flare in the solar atmosphere to till now, 
solar flare is studied very meticulously from the 
theoretical and observational point of view. 
Theoretical and observational studies explored 
solar flare very much. Theoretical study such as 
study of magnetic reconnection [11][12] and its 
models [14][15] provided very significant 
information about the flare which is very much 
correlated with the observational[10] results. 
Magneto hydrodynamics models and their 
numerical salutation [22][23] are very helpful in 
exploring solar flare phenomenons.  
 
Observational study of flare by observing 
radiations, fundamental particles, explored solar 
flare very clearly. Jain, Rajmal et al. [27][28][29] 
studied X-ray emission from solar flare and 
explored solar flare from many point of view 
such as heavy elements presences, thermal and 
non thermal energy radiations  etc. The study of 
X-ray emissions from solar flare indicates stages 
in solar flare. High-resolution images obtained 
from the hard X-ray telescope (HXT) and the soft 
X-ray telescope (SXT) on Yohkoh and Rhessi 
revealed several features of solar flare which are 
consistent with the reconnection model. 
 
Now it is well known that solar flare materialize 
due to the release of huge magnetic energy and 
having magnetic reconnection [17] is the prime 
process behind formation. Solar flare takes place 
in stages, which are well correlated with 
observational and theoretical modeling.  Solar 
flare has a loop like structure [17] with thermal 
variations at different regions in the loop. 
Electromagnetic radiations take place at different 
regions in flares. Theoretical modelings of 
radiations, processes, are very helpful in 
calculating properties, parameters and extracting 
information of the flare.  
 

It is also well clear that solar flare causes 
increased radiation and particle dose in the space. 
Many phenomenons’s such as Aurora, increase in 
ionosphere concentration level (SID), 
geomagnetic storms, magnetic reconnection etc. 
occurs in Earth outer atmosphere.  
 
Still lots of questions are unsolved with respect to 
Sun and Solar flare. The detail study of Sun is 
not yet complete. The formation of magnetic 
field, hydrodynamics of coronal loops, MHD 
oscillations and coronal seismology, the coronal 
heating problem, self organized criticality from 
nano flares to giant flares, magnetic reconnection 
processes, particle acceleration processes, 
coronal mass ejections and coronal dimming etc. 
are the major unsolved problems [33] 
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Appendix A 

Approximate wavelength, frequency, and energy limits of the various regions of the electromagnetic 
spectrum. 

 Wavelength (m) Frequency (Hz) Energy (J) 

Radio > 1 x 10-1 < 3 x 109 < 2 x 10-24 

Microwave 1 x 10-3 - 1 x 10-1 3 x 109 - 3 x 1011 2 x 10-24- 2 x 10-22 

Infrared 7 x 10-7 - 1 x 10-3  3 x 1011 - 4 x 1014 2 x 10-22 - 3 x 10-19 

Optical 4 x 10-7 - 7 x 10-7 4 x 1014 - 7.5 x 1014 3 x 10-19 - 5 x 10-19 

UV 1 x 10-8 - 4 x 10-7 7.5 x 1014 - 3 x 1016 5 x 10-19 - 2 x 10-17 

X-ray 1 x 10-11 - 1 x 10-8 3 x 1016 - 3 x 1019 2 x 10-17 - 2 x 10-14 

Gamma-ray < 1 x 10-11 > 3 x 1019 > 2 x 10-14 

Flare Classification Scheme 

Hα classification  Radio flux at 
5000 MHz in 
s.f.u. 

Soft X-ray class 

Importance 
Class 

Area 
(Sq. Deg.) 

Area 
10-6 solar disk 

Importance 
class 

Peak flux 
in 1-8 Å w/m2 



Physics Education    14 Apr – Jun 2015 
 

Volume 31, Issue 2, Article Number :  6                                                                                                        www.physedu.in  

 
After Bhatnagar & Livingston 2005; Hα sub-classification by brightness:  F – faint,  N – normal,  B – bright  

1 s.f.u. = 104 jansky = 10-2 W m-2 Hz- 
_____________________________________________________________________________ 

S 2.0 200 5 A 10-8 to 10-7 
1 2.0–5.1 200–500 30 B 10-7 to 10-6 
2 5.2–12.4 500–1200 300 C 10-6 to 10-5 
3 12.5–24.7 1200–2400 3000 M 10-5 to 10-4 
4 >24.7 >2400 3000 X >10-4 
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Abstract 

Introductory physics textbooks usually give some information about vectors and rules for their 

addition (triangle rule) and multiplication. In mathematics, addition of vectors is a matter of 

definition while in physics, in some cases, it must be done based on the meaning of addition and 

experimental confirmation. In physics, the triangle rule might be worthless if the meaning of 

addition is not strictly defined.  

Keywords: vectors’ addition, triangle rule, polar and axial vectors, sliding and bound vectors, 

center of boyuoncy, superposition 

________________________________________________________________

Introduction 

Many fundamental principles of physics are 
presented in vector form. In mathematics, a 
vector is invariant with respect to rotation of 
coordinate axes and displacement from 
origin. Due to this property of vectors, the 
equations which express physics laws in 
vector form do not depend on the choice of 
inertial system of coordinates. This is the 
reason why it is simple and convenient to 
present physics laws in vector form. 
However, using vectors raises questions of 
transformation of different vector quantities 
under transition from one inertial (and non-
inertial) system to another. The triangle rule 
is a mathematical rule for addition of two 
vectors. Nevertheless, this rule should be 
used with caution because in some cases, the 

physical meaning of vector addition must be 
first clarified. 

In mechanics textbooks, the triangle rule of 

vector addition, including addition of 

velocities and accelerations, is usually 

described. This formal rule is applicable in 

Newtonian mechanics – for non-relativistic 

motion in inertial frames. On the contrary, in 

relativistic kinematics, where physical 

principles of measurements of length and 

time must be specified, the triangle rule of 

vector addition is not valid and the rule of 

vector addition should be based on physical 

principles of the special theory of relativity. 

In non-relativistic mechanics, the triangle 

rule for addition of accelerations in the 
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frame rotating with respect to inertial one, in 

general, is not valid either. 

The triangle rule is not always operational 

for addition of parallel vectors. For example, 

for addition of two collinear angular 

velocities, the location of instantaneous axis 

of rotation and magnitude of sum of angular 

velocities cannot be found based only on 

principles of vector algebra. Physical 

principles of kinematics must be used. 

Similar situation arises for addition of 

pressure forces applied to the object 

submerged in fluid. In this case, rules of 

vector algebra are not enough to find the 

point of application of the resultant of these 

forces – physical principles must be used.  

Some examples, which illustrate the 

statements given in the abstract and 

introduction sections, are presented below.  

Specifics of Vector Addition in Physics 

1. Let us consider stationary frame K1 

and frame K, moving with the constant 

velocity u with respect to frame K1. Imagine 

that the point object is moving with velocity 

v with respect to frame K. What is the 

velocity of the point object, v1, with respect 

to frame K1? In this case, the motion of the 

object is considered in two different systems 

and clocks and rulers in different frames 

measure velocities. In classical mechanics, 

addition of velocities follows the triangle 

rule (mathematical vector addition) and v1 = 

v + u, while in relativistic kinematics this 

rule cannot be applied (v1 ≠ v + u). Addition 

is based on the experimentally confirmed 

principles of special relativity theory. In 

one-dimensional case  

 
�� =

� + �

1 +
��

��

 

 

(1) 

Here, c is the speed of light in vacuum. 

2. In non-relativistic classical 

mechanics, addition of vectors of 

acceleration, in general, does not follow the 

triangle rule. Let the frame K be moving 

with acceleration  a with respect to frame 

K1. Imagine that a point like object is 

moving with acceleration �� with respect to 

frame K. In this case, the acceleration,  a1, of 

the moving point in the system K1 can be 

found by using the triangle rule only if both 

motions (K system and the point with 

respect to K frame) are translational. In this 

case �� = � + ��. In general, 

�� ≠ � + �� 

and a1 is not defined by a and �� For 

example, if the coordinate system K is 

rotating with constant angular velocity ω 

with respect to a fixed coordinate system K1, 

the acceleration of the particle, a1, observed 

in the system K1 is [1] 

�� = � + ���� + �� 

Here acor = 2ω x vrel is Carioles’ 
acceleration, vrel is the velocity of the point 
with respect to system K,  �� =
� x (� x �) is the centripetal acceleration 
directed to the axis of rotation, and r is a 
vector position of the point in the system K.        

3. In mathematics, the transformation 
of vector components is defined when one 
system of coordinate is turned with respect 
to the other. But the problem of 
transformation of vectors of electric and 
magnetic fields in moving systems of 
coordinates cannot be resolved using only 
mathematical principles. The transformation 
of electric and magnetic fields under 
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transition from one reference frame to 
another is not the same as transformation of 
vectors  – electric and magnetic fields are 
coupled. Actually, electric and magnetic 
fields are second rank tensors [2] (although 
a vector can be considered as a first rank 
tensor). The special theory of relativity 
allows us to find the laws of conversion of 
electric and magnetic fields.  

4. Superposition principle for electric 
and magnetic fields [2] is not obvious but is 
an experimental fact and it should be 
emphasized that this principle and the 
triangle rule of vector addition can be 
applied only to linear systems. Maxwell’s 
equations, which are mathematical 
expressions of experimentally confirmed 
laws of nature, are linear and, therefore, the 
mathematical rule of vector addition is valid. 

a. In mathematics, a directed line 
segment is called a vector [3]. Algebraically, 
a vector is a set of three numbers, which we 
call vector components [3]. These 
definitions are acceptable in physics 
although the given geometric and algebraic 
definitions suggest the concept of a sliding 
(free) vector. That is a vector whose initial 
point can be any point on a straight line that 
is parallel to the vector. In physics, statics, 
structures, and strength of materials, the 
point of vector application can be critical 
(bound vectors) [4] and the point of 
application of the resultant vector must be 
defined not only by mathematical rules but 
also by applying physics meanings. For 
example: 
a.         Any axial vector which is a cross 
product of two polar vectors and includes a 
vector position (torque, angular momentum) 
depends on the axis chosen and the point of 
force applied. 
b. Deformation of solids depends on 
the point of force applied. It means that two 
parallel forces of equal magnitude (which 
are identical in mathematical meaning) 

cause different changes in the shape  of an 
object. 
c. The point of application of the 
resultant pressure force (center of boyuoncy, 
CB) acting on the object submerged in  fluid 
(buoyant force, Fb) is important for studying 
rotational motion, equilibrium, and stability 
of the object in fluid. Typically, US 
introductory physics textbooks do not 
consider this topic. However, it may be 
difficult to predict CB intuitively. For 
example, let us consider a cylinder 
submerged in liquid (Fig. 1). The magnitude 
of the buoyant force acting upward on a 
partially or fully submerged object is equal 
to the weight of the liquid displaced by that 
object and CB point is the center of mass of 
the fluid displaced by the floating or 
submerged body [5]. The CB point for this 
particular case, which is the result of 
addition of parallel pressure forces, is 
located higher than all points of the 
appliedvertical pressure forces. The position 
of CB point is defined not by the 
mathematical rules of vector addition but by 
Newton’s Principles of mechanics. 

 

Fig 1: Vertical pressure forces, their 

resultant Fb (boyuant force), and center of 

boyuancy CB of the object submerged in 

liquid. 

Similar comments can be made about the 

position of the center of gravity – the 

addition of gravity forces is defined not only 

by the mathematical rules of vector addition 
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but by the definitions of center of gravity 

and torque. 

d. Introductory physics textbooks 

typically consider smooth rolling objects 

(without slipping) along a flat surface. This 

motion can be studied as rotational motion 

with respect to the center of mass with 

angular velocity ω and translational motion 

of the center of mass, or as pure rotational 

motion with the same angular velocity ω 

with respect tomoving axis that always 

extends through contact lineof two surfaces 

[6]. However, a slightly different case of 

rolling thefirst cylinder of radius r1 on the 

external surface of the second stationary 

cylinder of radius r2 (Fig. 2) may be 

considered as pure rotation of the first 

cylinder with respect to its center 

(instantaneous axis A) with angular velocity 

ω1 and pure rotational motion of the A-axis 

with respect to axis B with a different 

angular velocity ω2. ω1 and ω2 are parallel 

vectors with respect to different frames 

(similar problem of rolling one cone along 

the surface of the other fixed one with both 

cones having common vertex is considered 

in [7] and [8]) and, according to the 

mathematical rule, their sum is  

 � = �� + �� (2) 
 

However, in this case, the application  of the 

mathematical rule for vector additionis not 

enough to find the location of axis of 

rotation for which resultant motion of any 

point of the first cylinder is purely rotational 

with angular velocity ω. Eq. (2) does not 

define ω2 or the magnitude of the resultant 

instantaneous angular velocity ω. To resolve 

above problems, additional kinematics 

relationships must be used. 

 

Taking into account thatforrotation of the 

point on the rim of the first cylinder, the 

length of arc OO/  is equal to the distance 

traveled in the same time by the point due to 

rotation with respect to axis A (Fig. 2b), one 

can see that for rolling without sliding 

 �� = ��

��

��
 (3) 

 

Since the triangle rule foraddition of linear 

velocities can be applied in a non-relativistic 

approach, velocity v of any point ofthe first 

cylinder with respect to the second 

stationary cylinder is 

v = v1 + v2 

where v1 is velocity with respect tothe A axis 

and v2 is the velocity caused by rotation of 

the A axis with respect to axis  B.For a point 

on the axis of rotation v = 0, v1= -v2 (Fig. 2c) 

can be accomplished only if the axis of 

rotation is a line of contact of the two 

cylinders (O-axis) for which Eq. (3) holds. It 

means that the first cylinder motion in frame 

Bcan be considered as pure rotation with 

angular velocity ω with respect to the O-

axis.   

For the case of rolling of the first cylinder 
inside the hollow second cylinder (Fig. 2d),  
Eq. (11) holds, while angular velocities ω1 
and ω2 are antiparallel and Eq. (3) must be 
replaced by 

 �� = −��

��

��
  

For both cases (rolling along internal or 
external surfaces), angular velocity with 
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respect to instantaneous O-axis can be 
written in the form 

� = ��(1 ±
��

��
) 

As r2 approaches infinity (flat surface), the 
last equation transforms to a well known 
equality ω = ω1. 

 

 

 a   b  c d               

Fig 2: Smooth rolling of the first cylinder (radius r1) on the external surface of the second 
stationary cylinder (a), its vertical projection (b) and vector diagram for addition of angular 
velocities (c); vector diagram of angular velocities for rolling of the first cylinder inside of the 
second hollow cylinder (d).  

Conclusion 

In mathematics, the rule of addition (triangle 
rule) of vectors is defined axiomatically, and 
conversion of vector components (three 
numbers) for transition from one Cartesian 
system of coordinates to another is defined 
by algebraic and trigonometric formulas. In 
physics, there are some occasions when 
operation of vector addition is based on its 
meaning and experimental justification.  

It is obvious that physical restrictions on 
speeds cannot be explained by mathematics 
but special theory of relativity does set a 
limit for the speed of an object. Actually, all 
special relativity theory expressions are 
introduced with the use of a light signal 
exchange (the method of Einstein's 

synchronization). The light-signal method is 
used for time synchronization and for 
measuring length. This means that 
kinematics of the special theory of relativity 
is based on experiments (real or mental) 
which lead to rules of addition for velocities 
that are different from the triangle rule. 
Moreover, as a peculiarity of the special 
theory of relativity, the general law of 
velocity composition is not commutative [9] 
while the Galilean velocity composition law 
is commutative. Einstein’s velocity addition 
is commutative only when u and v are 
parallel (Eq. (1)). 

In some instances, the point of application of 
resultant force is important.  However, 
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vector algebra alone does not allow for 
locating of this point. For example, centers 
of gravity and buoyancy, which are the 
points of application of the forces of gravity 
and buoyancy, represent unique points of an 
object or system (the centers of gravity and 
buoyancy are not necessarily inside the 
object) which can be used to describe the 
system's response to external forces and 
torques. For example, the center of gravity 
of an extended body or system of masses is 
distinguished by the fact that it will remain 
at rest or moving at constant velocity unless 
the body is acted on by a net external force. 
The center of gravity may also be defined by 
implying that the torque about the origin 
would be the same if the entire weight acted 
through the center of gravity instead of 
acting through the individual masses. 
Similar rules should be used to find the 
center of bouncy. It means that principles of 
physics (Newton’s Laws) must be exploited 
to locate the point of application of the 
resultant force. Another example, given in 
this paper, illustrates that to find 
instantaneous angular velocity (magnitude 
and location of axis of rotation) of a rolling 
cylinder on the surface of the second one, 
the vector addition rule of vector algebra is 
not enough – definitions of instantaneous 
axis of rotation and kinematics relationships 
are needed to be used. 

The transformation of electric and magnetic 
fields in moving systems of coordinates 
cannot be found using solely mathematical 
principles of vector operations. These 
transformations are not the same as 
transformation of vectors. When it comes to 
electric and magnetic field transformations, 
electric and magnetic fields are coupled. 
Electric and magnetic field vectors, as well 
as the vector of the electromagnetic force, 
are not invariant to different moving inertial 
frames, and the special theory of relativity 
allows us to find the laws of conversion of 
electric and magnetic fields and of Lorenz’s 
force [2]. 

Typically, the considered specifics of vector 
addition are not the topic of introductory 
physics textbooks. It seems that some 
particularities of vector addition should be 
mentioned in the introductory physics class. 
Also, a brief review of polar and axial 
vectors, sliding and bond vectors would be 
helpful when students encounter problems 
similar to the ones presented here. 
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Abstract 
 

Generations of physicists have at some point wondered about the role of complex numbers in quantum theory.  

None have had this point explained.  Taking this as a pedagogical issue, this article elucidates the origins of the 

complex requirement and draws the connection between these origins and the requirement that the state 

vector be complex.

 
 

1. Introduction 
A recent article by Sivakumar[1] highlights an 

important pedagogical void which has long plagued 

the teaching of introductory and fundamental 

principles of quantum theory.  That is, there is no 

generally accepted explanation available for the 

apparent requirement for complex numbers in the 

mathematical formulation of the theory.  Sivakumar 

provides a simplified demonstration (due to Sakurai[2] 

and Townsend [3]) that, in fact, the complex numbers 

are required.  In this article, we continue beyond the 

demonstration and attempt to explain the underlying 

issues. 

Quantum theory employs unit vectors to 

mathematically represent states of physical objects.  

In the following, we will identify four requirements 

which must be satisfied by these vectors.  We then 

show that the four requirements are not satisfied by 

real vectors, but can be satisfied by complex vectors. 

 

 

In the next section, we begin by simply stating the 

four requirements.  We then devote an individual 

section to each requirement and discuss the physical 

and theoretical origins of that requirement.Turning 

from origins, we then consider them simply as a set of 

requirements on vector structure.  By identifying this 

set of specific requirements on the vectors, we see 

clearly at exactly what point and for exactly what 

reason real vectors fail to satisfy the requirements. 

We note up front that the article intent is pedagogical.  

Accordingly, points are presented in what is, 

hopefully, an intuitive, and conceptual way.  We ask 

some leeway in completeness and rigor. 

We also note that some closely related issues are put 

aside.  For example, why the theory adopts use of 

vectors and the Born rule as a representational 

convention is an important foundational question.  

Here, we accept as a starting point that the theory 
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does this.  By making these choices, we focus on the 

question of, assuming that vectors are to be used in 

this way, why must the vectors be complex. 

 

2. The Requirements 

As mentioned, the theory uses vectors to represent 

states of physical objects.  In particular, we will be 

interested in the representation of angular 

momentum states.  It is in representing these states 

that the complex requirement arises. 

The following four requirements must be satisfied by 

any vector, V, used by the theory to represent an 

angular momentum state.  We will show that they are 

not satisfied by real vectors. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors{ bi 

}(i = 1 , n).  Each constraint is of the form, pi = l ( V , bi ) l 
2 

(where the parenthesis indicates inner product). 

R2:  Vector V is n-dimensional. 

R3:  Vector V must vary with two real variables, “r” 

and “c”. 

R4:  The set of constraints mentioned in R1 vary 

parametrically with the variable “r” above.  That is, pi 

= pi( r ) 

In the next sections, we discuss these requirements 

individually with emphasis on their origins. 

 

3. Requirement R1 

In this section we state and discuss requirement R1. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors { bi 

}(i = 1 , n) .  Each constraint is of the form, pi = l(V , bi)l
2. 

Discussion: 

In constructing the mathematical structure of any 

physical theory, some convention must be adopted for 

the representation of physical phenomena by 

mathematical structures.  Quantum theory adopts, by 

postulate, the following representational convention: 

P1:  States of physical objects are represented by unit 

vectors, V. 

P2:  The probability for a transition between two 

states is represented by the “Born Rule”.  The “Born 

Rule” yields the probability as an inner product 

function on two vectors, V and b, which represent the 

two physical states involved in the transition, p = l ( V , 

b ) l 2 . 

The important point that we recognize in this section 

is that adoption of the Born Rule, in fact, imposes a 

constraint on vector V relative to vector b. 

The familiar use of the Born Rule is to enter with the 

two state vectors, V and b, and obtain the transition 

probability, p.  Here, we are recognizing a different 

perspective.  It is the probability that is the observed 

physical fact.  The vectors are merely mathematical 

structures employed to represent physical states.  By 

adopting the Born convention to represent transition 

probabilities we are required to choose vectors which 

yield the correct probability value.  From this 

perspective, the Born Rule, in fact, defines the vector 

pair (a partial definition) by specifying their relation.  

Consequently, we recognize a Born Rule expression as 

a “Born Constraint” on a state vector, V, relative to a 

transition state vector, b. 

In addition to recognizing that the Born Rule imposes 

Born Constraints, requirement R1 also claims that 

there are n independent Born Constraints (with 

respect to the basis set).  How do we know this? 

A Born expression, p = l ( V , b ) l 2 , represents the 

probability for a single transition from one state to 
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another.  It is observed physical fact, however, that an 

object in a given state can transition into one of some 

number, n, of alternative possible transition states.  

Each transition has some observed probability, pi , and 

since they are mutually exclusive and exhaustive,   (i = 

1 , n) ( pi ) = 1 .  This fact about probabilities imposes a 

requirement on the set of Born expressions 

representing the probabilities for the set of possible 

transitions. 

That is: 

 (i = 1 , n) ( pi ) =  (i = 1 , n) (l ( V , bi ) l 
2 ) ,     (Eqn. 1) 

We can recognize this as, in fact, a requirement on the 

vector space used to represent states by the Born 

rule.  That is, the vector space must come equipped 

with a defined L2 vector norm. 

The L2 vector norm is defined as follows: 

l V l =  (i = 1 , n) (l ( V , bi ) l 
2 ) . 

If vector V is a unit vector, then, 

 (i = 1 , n) (l ( V , bi ) l 
2 ).    (Eqn. 2) 

We see then that the choice to represent a set of 

transition probabilities by the Born Rule (Eqn. 1) has 

imposed the requirement that the vector space must 

be defined to have an L2 vector norm (Eqn. 2). 

Recognizing that the vector space has an L2 vector 

norm is useful as follows.The set of vectors{ bi }(i = 1 , n)in 

(Eqn. 2)are an orthonormal basis set.  Consequently 

there is a set of n individual Born Constraints on 

vector V, one associated with each basis vector.  These 

constraints are independent because each is relative 

to a basis vector that is orthogonal to all of the others. 

We therefore have the result R1 stated above.  Any 

vector V used by the theory to represent the state of 

an object must satisfy requirement R1. 

We note, in passing, an interesting and pedagogically 

useful point.  The explanation of why quantum theory 

employs Hilbert space vectors to represent states is 

sometimes opaque.  Here we understand that the 

theory makes an, early and fundamental commitment 

to the use of vector spaces which have an L2 structure.  

If one generalizes the structure of a vector space in 

every way, dimensionality, etc., but retains the L2 

structure, then that is the set of Hilbert spaces.  

Quantum theory employs Hilbert spaces because the 

theory makes use of the L2 structure. 

 

4. Requirement R2 

In this section we state and discuss requirement R2. 

R2:  The vector is n dimensional. 

Discussion: 

Having done the work of the previous section, we 

immediately recognize this requirement on any state 

vector.  As explained, vector V is in a vector space 

spanned by the n orthonormal basis vectors { bi }(i = 1 , 

n).  Consequently, V is n dimensional. 

 

5. Requirement R3 

In this section we state and discuss requirement R3. 

R3: Vector V must vary with two real variables, V (r, c). 

Discussion: 

It is an observed physical fact that angular momentum 

states vary as a function of orientations or directions 

in physical space.  The point is general, but can be 

seen by considering a simple example of two spin 1/2 

objects.  Suppose one object interacts with a Stern-

Gerlach apparatus oriented in the z direction and 

deflects up along that direction.  The second object 
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interacts with a machine oriented along the 

(direction and deflects up along that direction.  

Subsequent to the interactions, these two objects are 

in objectively different physical states.  What does it 

mean to be in different states?  It means that 

subsequent observations made on the objects1 will 

yield different results.  They are observably different.  

We can state this same physical fact in another way by 

saying that angular momentum states vary with 

orientations in physical space. 

It is a general point that in constructing a 

mathematical theory, for any mathematical object 

chosen to represent the physical state, that 

mathematical object must have the ability to vary as 

the physical state does.  In particular, any vector we 

employ to represent angular momentum states must 

have the ability to vary with orientations in physical 

space.  We can recognize this explicitly by writing the 

state vector as a function of orientation, V ( O ), where 

“O” is an orientation in physical space.  

Orientations in three dimensional physical space vary 

with two degrees of freedom.  Typically, polar 

coordinates, ( are chosen to label spatial 

orientations.  Here it will be useful to choose a 

different coordinatization.  Select an arbitrary 

orientation, O2 , then let real variables ( r , c ) label 

variation in radial and circumferential degrees of 

freedom relative to O2 . 

We can explicitly recognize this variation in two 

degrees of orientation freedom by writing the above 

state vector, V ( O ), as V ( r , c ) with “r” and “c” 

coordinates as defined. 

We therefore have requirement R3 as given above.  

We note that the point here is to recognize that any 

vectors representing angular momentum states must 

                                                           
1 The difference involves probabilities and 
consequently is observed on ensembles of 
similarly prepared objects. 

have the ability to vary as the actual physical state 

varies, i.e., with two orientation degrees of freedom. 

 

6. Requirement R4 

In this section we state and discuss requirement 
R4. 

R4:  The set of constraints mentioned in R1 vary 

parametrically with the variable “r” above.  That is, pi 

= pi( r ) 

(Since requirement R4 references the R1 Born 

Constraints, we copy again R1. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors 

{bi}(i = 1 , n).  Each constraint is of the form, pi = l(V , bi)l
2) 

Discussion: 

In the last section, we recognized the physical fact 

that angular momentum states vary with physical 

space orientations.  Here, we recognize a second 

empirically observed fact characterizing angular 

momentum states.  That is, for two angular 

momentum states associated with two different 

physical space orientations, O1 , and O2 , the 

probability for a transition from one state to the other 

varies as a function of the separation angle between 

the two orientations. 

Here is where we can take advantage of the “r” and 

“c” coordinates defined earlier.  If we take O2 to be 

our arbitrary fixed reference, then the separation 

angle between the two orientations, O1 , and O2 , is 

given by the coordinate “r”.  Consequently, pi = pi( r ). 

For the Born Constraints to vary parametrically with 

“r” we have made an assumption.  That is, vector V is 

associated with one spatial orientation, O1 , and all of 

the transition state vectors, { bi } are associated with a 
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single orientation, O2 .  This is appropriate for angular 

momentum observations.  Suppose an object is in the 

state represented by vector, V ( O1 ).  The object then 

interacts with a Stern-Gerlach apparatus oriented 

along O2 .  In this case, there are a set of n possible 

transition states, but we note the important fact that 

they are all associated with physical space orientation, 

O2 . 

Consequently, we have the result that the initial state 

vector is subject to a set of Born Constraints relative 

to the transition state vectors, { bi }, and these 

constraints all vary parametrically with the separation 

angle parameter “r”. 

 

7. Satisfying The Requirements 

In this section we collect again the four requirements 

and show that they are not satisfied by real vectors, 

but can be by complex vectors. 

R1:  Vector, V, is subject to n independent constraints 

with respect to an orthonormal basis set of vectors { bi 

}(i = 1 , n) .  Each constraint is of the form, pi = l(V , bi)l
2 

R2:  Vector V is n dimensional. 

R3:  Vector V must vary with two real variables, “r” 

and “c”. 

R4:  The set of constraints mentioned in R1 vary 

parametrically with the variable “r” above.  That is, pi 

= pi( r ) 

We show first that real vectors do not satisfy these 

requirements as follows: 

Point 1:  Number of variables present 

Assume V is real.  Real vectors vary with one real 

variable per vector dimension.  Requirement R2 

requires that V is n-dimensional.  Therefore, V varies 

with n variables. 

Point 2:  Number of constraints present 

We see from R4 that the set of R1 constraints vary 

parametrically with variable “r”.  If we consider any 

fixed value of “r”, then the R1 constraints impose n 

independent constraints on V (with respect to the 

orthonormal basis set { bi }. 

Points 1 and 2 imply:  It follows that vector V is fully 

specified with respect to the basis set { bi } (for any 

fixed “r”).  There are n variables and n independent 

constraints.  All variables present are assigned values 

by the constraints. 

Therefore if vector V is real, and satisfies 

requirements, R1, R2, and R4, then it: 

1. Is fully specified by “r”, and 
2. Varies as a function of “r”. 

 

Therefore:Having satisfied requirements, R1, R2, and 

R4, vector V cannot satisfy requirement R3.  Vector V 

varies with and is fully specified by “r”.  Consequently, 

it is not possible for the vector to vary (nontrivially) in 

the second variable, “c”, as is required by requirement 

R3. 

We have shown that if vector V is real then it does not 

satisfy the set of requirements.  Having done this 

analysis, however, one sees how substituting complex 

vectors for real vectors avoids the constraint 

limitation.  The constraint encountered by real vectors 

is due to the availability of only n variables in the face 

of n constraints.  A complex vector, however, provides 

2n independent real variables.  In the face of only n 

constraints, a 2n variable complex vector provides 

sufficient freedom to vary in both “r” and “c” degrees 

of freedom. 

 

8. Discussion 
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Hopefully the analysis presented in this article is of 

pedagogical value.  We have separated out issues in 

order to provide good access to the role of complex 

number in the theory. 

We have identified a set of four specific requirements 

on the vectors employed by the theory.  The goal was 

to facilitate two different perspectives linked by this 

set of requirements. 

One perspective is mathematical.  One can disregard 

the origins of the requirements and consider them 

simply as given.  From this starting point, the exercise 

is one of vector structure.  One can observe the 

interplay of freedom and constraint considerations 

that prevent the requirements from being satisfied by 

real vectors. 

The other perspective is physical.Here we disregard 

the mathematical implications, and trace back the 

origins of the requirements.  What specific features of 

the physical phenomena or adopted theoretical 

conventions impose these requirements? 

The set of four requirements therefore serves as a 

point on which to stand and contemplate both 

available perspectives.   From there, the student of 

foundational quantum theory can find a traceable 

connection all the way from the physical and 

theoretical origins through to their end consequence, 

a particular mathematical detail in the formal theory, 

the presence of complex numbers.  More importantly, 

the student has a useful framework to separate out 

issues and make their own evaluation of the 

requirements, their origins, and their implications. 

We point out two particular results of our analysis. 

It is sometimes commented in the foundational 

literature that to explain some particular 

mathematical detail of the theory would be to 

elucidate its physical origins.  Here we see that there is 

an identifiable physical origin.  The complex 

requirement is, in part, a consequence of the fact that 

angular momentum states vary in two physical space 

orientation degrees of freedom.  There is, however, a 

second equally important origin.  It is the theory’s 

adoption of a particular representational convention 

that imposes very substantial pairwise constraints on 

the vectors employed.  Thus we see that, in this case, 

elucidating physical origins is not sufficient.  We also 

must elucidate the theoretical representational 

conventions adopted. 

We also mention a second result.  We now have an 

answer to the big question, why are complex numbers 

required by the theory?  The fundamental reason that 

they are required is to resolve a disappointingly 

mundane issue of freedom versus constraint.  Quite 

simply, they provide more variables than real vectors.  

State vectors are subject to the significant “Born 

Constraints” yet must also honor a freedom demand 

when representing angular momentum states.  The 

vectors must satisfy both.  As we have seen, real 

vectors come up short on available variables.  

Consequently, we find complex vectors employed to 

represent states of physical objects. 
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Theoretical Physics is Fun: starts the preface to this 

collection of nuggets. I feel, that is about the apt 

definition to describe what is regarded as Theoretical 

Physics. Perhaps that it is fun justifies the pursuit of 

such a subject as an independent study   more than any 

of its many accomplishments.  Paddy, as Thanu 

Padmanabhan is known to many of us, brings together 

in this collection 26 pedagogic delights that will surely 

augment the understanding of many topics in Classical 

Mechanics, Quantum Mechanics, Special and General 

Relativity, Thermodynamics etc.  covered in many 

traditional UG and PG programs in colleges and 

University. Some of these topics have earlier appeared 

in the sequence 'Curiosities in Theoretical Physics' in 

Volumes 22(2005) - 24(2007) of this journal (IAPT 

Physics Education) as well as many more in several 

issues of Resonance (of Indian Academy of Sciences, 

Bangalore), as provided in the references in the book. I 

am delighted that they have now appeared in a well-

connected, nevertheless self-contained, compilation.    

Physics is driven by experiments and appears to 

encompass all of Natural Sciences. Dirac is supposed to 

have remarked that his equations for electrons explain 

most topics in Physics and all of Chemistry. Physics has 

thereafter had major influence on the analytical 

developments in Biology, particularly since the 

development of Molecular Biology and other 

hyphenated Life Science directed subjects. Most, if not 



Physics Education                                                                                  Apr – Jun 2015                                                                                                                                                
  
 

Volume 31 No. 2       2                      www.physedu.in 

all Engineering disciplines, derive their basics from 

Physics. Where does Theoretical Physics belong? Is it 

really a part of Applied Mathematics or is it more a vital 

corner of Physics, which in fact is clearly the 

experimental quest of the Nature. Does it depend on 

unambiguous experimental signals or is it an attempt 

to get an aesthetically pleasing viewpoint? As one plods 

through the 26 beauties with Padmanabhan, one 

cannot escape savouring the delightful part of the 

nature revealed by the tools of Theoretical Physics.    

Everyone knows that planets move in ellipses – 
however, few know that they actually move in circles in 
the velocity space. Even for parabolic and hyperbolic 
trajectories in Kepler/Coulomb problem, the projectiles 
move in circular arcs in velocity space!  
 
Inverse square force law is very special. Here Runge – 
Lenz vector is an additional conserved quantity, and is 
a cause of what is referred to as dynamical symmetry 
or accidental symmetry. In case you have been 
wondering what it specifies in an elliptical orbit, Paddy 
makes it clear that it is related to the vector that is 
directed from the centre of force, which is located at 
one of the two foci of the ellipse, to the other focus.  If 
we choose to plot the position vector r and the velocity 
vector (rather a quantity with dimension of length, say, 
v’= L × v/|E|), while r describes an ellipse, v’ traces a 
circle about the second focus!   
 
A spherically symmetric mass or charge distribution 
indeed causes a 1/r potential and consequent inverse 
square law outside. Is the converse true? Does inverse 
square law always imply spherically symmetric 
distribution of source? It is somewhat contrary to 
intuition that the answer is no! A simple example is 
from the method of images in Electrostatics. A 
conducting sphere has charges induced on the surface 
(clearly not a spherically symmetric distribution, indeed 
dipolar) that we know is equivalent to an image charge 
at a specific image point within the sphere for the force 
field in the region outside the sphere; and hence should 
lead to 1/r2 force field. Padmanabhan shows that even 
a planet shaped like a deceased(?) potato through 
some explicit inversion transformation can become 

one that will lead to 1/r type potential outside a 
defining sphere containing the weird shaped mass 
distribution.     
 
Three body problem is notoriously hard. However 
there are tractable 3-body problems in a few special 
cases. If one of the three is light enough that it does not 
influence on the heavier pair, there are stable 
configuration for the threesome. To analyze them we 
may go to the co-moving rotating frame of the heavier 
pair and look for the potential extrema. There are 5 
such points named after Lagrange and two of them are 
stable.  It is surprising that the configuration is an 
equilateral triangle whatever be the actual masses (so 
long as one of them light as compared to other two) 
and the nature makes good use of it. At the Lagrange 
points L4 and L5 (which incidentally are local maxima of 
potential contours, nevertheless stable configuration 
with Coriolis forces providing the stability) of Sun – 
Jupiter system are located hundreds of Asteroids. They 
are referred to by Astronomers as Trojans and are given 
names after Greek (in L4 region) and Trojan (in L5 
region) mythical heroes! 
      
We know that classical mechanics is what one should 
get from Quantum Mechanics when the Planck 
constant goes to zero (and when the phase of the wave 
functions rapidly oscillate). How does one pick the 
classical endpoint? The variational principle that we 
use in classical Physics emerges naturally. It is 
remarkable, as the example clarifies, that we can better 
understand aspects of classical mechanics when we 
approach it from the quantum regime! 
 
I am surprised to learn that even for describing a free 
particle motion, rather for defining the relevant 
Lagrangian, fully relativistic form is logically better than 
the nonrelativistic limit. Likewise Klein Gordon 
equation is more logical than the Schroedinger 
equation that it leads to in the non-relativistic limit.  
 
Several text books show how to solve for quantum 
levels for Simple Harmonic motion both by means of a 
differential equation and by algebraic methods using 
ladder operators. Hydrogen atom states can also be 
obtained by algebraic means – though this is known to 
many, most textbooks have not exposed how this is 
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done. What is involved is no more than what one knows 
from angular momentum algebra. It also happens to be 
the best way to drive home the fact that the energy 
levels depend only on the principal quantum number 
(independent of l values).  
 
It is indeed curious to know that the Hydrogen problem 
can be paraphrased as harmonic oscillator in four 
dimensions with some appropriate constraints. That 
means the only problem that we can solve exactly in 
Quantum Mechanics (apart from the free particle in a 
box) is the simple harmonic motion and (the myriad 
forms it assumes on each occasion, including Hydrogen 
atom as we find now and indeed the theory of Strings).  
 
Astrophysicist S Chandrashekhar described the Black 
Hole as a perfect end state – a state believed to be 
characterized by just Mass, Angular Momentum and 
Charge. When they acquired entropy and temperature 
without any clue on its internal structure and degrees 
of freedom associated with them, it was puzzling. 
Quantum Mechanics comes to the rescue with Hawking 
radiation.  Is there a simple way to attribute 
Temperature to a Black Hole?  
 
Probability plays a significant role in the nature of 
physical phenomena.  We first encounter it in the topics 
of Heat and Thermodynamics. The Second law of 
thermodynamics introduces a measure of randomness 
as an extensive variable called Entropy. Maximizing 

entropy is the way to go, says the Second Law of 
Thermodynamics. Quantum mechanics are forever 
about probability amplitudes. Is there a connection? 
Feynman path integrals (for time evolution of the 
states) are closely related to Wiener integrals in 
probability summations of equilibrium systems with 
the temperature 1/β playing the role of imaginary time. 
In this context Random walks are delightful tools to 
analyse the many natural phenomena. There are two 
beauties in this collection for you to marvel.      
 
The collection is a highly suitable pedagogic material 
and should be a must read for anyone who is interested 
in Physics, either for a career or for pleasure. It should 
require no more expertise than is available to an 
advanced undergraduate student of Physics or allied 
disciplines. I recommend that this is definitely acquired 
by all college libraries.  
 
Finally why 26? Is there any numerical significance? I 
suppose it does not have anything to do with the 
number of required dimensions for a String theory with 
bosonic co-ordinates?  
   
 

****** 
 
 
 

_______________________________________________________________________________________________
 
Excerpts from the Book …. 

Chapter Highlights: 

 

1. The Grand Cube of Theoretical Physics 
The ‘big picture’ of theoretical physics can be 
nicely summarized in terms of a unit cube made 
of the fundamental constants G, h, c−1 

representing the three axes. The vertices and 
linkages of this cube — which we will explore in 
different chapters of this book — allow you to 
appreciate different phenomena and their inter-
relationships. This chapter introduces the Cube of 

Theoretical Physics and relates it to the rest of the 
book. 
 

2. The Emergence of Classical Physics 
Quantum physics works with probability 
amplitudes while classical physics assumes 
deterministic evolution for the dynamical 
variables. For example, in non-relativistic 
quantum mechanics, you will solve the 
Schrodinger equation in a potential to obtain the 
wave function ψ(t,q), while the same problem — 
when solved classically  will lead to a trajectory 
q(t). How does a deterministic trajectory arise 
from the foggy world of quantum uncertainty? 
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We will explore several aspects of this 
correspondence in this chapter, some of which 
are nontrivial. You will discover the real meaning 
of the Hamilton-Jacobi equation (without the 
usual canonical transformations, generating 
functions and other mumbo-umbo) and 
understand why the Hamilton-Jacobi equation 
told us pa = ∂aS = (−∂tS, ∇S) = (E, px py pz) even 
before the days of four-vectors and special 
relativity. We will also address the question of 
why the Lagrangian is equal to kinetic energy 
minus potential energy (or is it, really?) and why 
there are only two classical fields, 
electromagnetism and gravity. In fact, you will see 
that classical physics makes better sense as a limit 
of quantum physics! 
 

3. Orbits of Planets are Circles!1 
The orbits of planets, or any other body moving 
under an inverse square law force, can be 
understood in a simple manner using the idea of 
the velocity space. Surprisingly, a particle moving 
in an ellipse, parabola or a hyperbola in real space 
moves in a circle in the velocity space. This 
approach allows you to solve the Kepler problem 
in just two steps! We will also explore the peculiar 
symmetry of the Lagrangian that leads to the 
conservation of the Runge-Lenz vector and the 
geometrical insights that it provides. Proceeding 
to the relativistic versions of Kepler/Coulomb 
problem you will discover why the forces must be 
velocity dependent in a relativistic theory and 
describe a new feature in the special relativistic 
Coulomb problem, viz. the existence of orbits 
spiraling to the center.  
 

4. The Importance of being Inverse-square  
This chapter continues the exploration started in 
the previous one. The Coulomb problem, which 

                                                           
1 Curiosities in Theoretical Physics: IV IAPT Phys Edu 23 No. 

3 Art. no. 7(2006 -07) 

corresponds to motion in a potential that varies 
as r−1, has a peculiar symmetry which leads to a 
phenomenon known as ‘accidental’ degeneracy. 
This feature exists both in the classical and 
quantum domains and allows some interesting, 
alternative ways to understand, e.g., the 
hydrogen atom spectrum. We will see how one 
can find the energy levels of the hydrogen atom 
without solving the Schrodinger equation and 
how to map the 3D Coulomb problem to a 4D 
harmonic oscillator problem. The (1/r) nature of 
the potential also introduces several peculiarities 
in the Scattering problem and we will investigate 
the questions:  
(i) How come quantum Coulomb scattering leads 
exactly to the Rutherford formula? What 
happened to the ħ?  
(ii) How come the Born approximation gives the 
exact result for the Coulomb potential? What do 
the ‘unBorn’ terms contribute?! 
 

5. Potential surprises in Newtonian Gravity2 
How unique is the distribution of matter which 
will produce a given Newtonian gravitational field 
in a region of space? For example, can a non-
spherical distribution of matter produce a strictly 
inverse square force outside the source? Can a 
non-planar distribution of matter produce a 
strictly constant gravitational force in some 
region? We discuss the rather surprising answers 
to these questions in this chapter. It turns out that 
the relation between the density distribution and 
the gravitational force is far from what one would 
have naively imagined from the textbook 
examples. 
 

6. Lagrange and his Points 
A solution to the 3-body problem in gravity, due 
to Lagrange, has several remarkable features. In 

2 Curiosities in Theoretical Physics: I IAPT Phys. Edu. 22 No. 

4 art.no. 2(2005-06) 
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particular, it describes a situation in which a 
particle, located at the maxima of a potential, 
remains stable against small perturbations. We 
will learn a simple way of obtaining this 
equilateral solution to the three body problem 
and understanding its stability. 
 

7. Getting the most of it! 
Extremum principles play a central role in 
theoretical physics in many guises. We will 
discuss, in this chapter, some curious features 
associated with a few unusual variational 
problems. We start with a simple way to solve the 
standard brachistochrone problem and address 
the question: How come the cycloid solves all the 
chronic problems? (Or does it, really?). We then 
consider the brachistochrone problem in a real, 
(1/r2), gravitational field and describe a new 
feature which arises: viz. the existence of a 
forbidden zone in space not accessible to 
brachistochrone curves! We will also determine 
the shape of a planet that exerts the maximum 
possible gravitational force at a point on its 
surface — a shape which does not even have a 
name! Finally, we take up the formation of the 
rainbows with special emphasis on the question: 
Where do you look for the tertiary (3rd order) 
rainbow? 
 

8. Surprises in Fluid Flows 
The idealized flow of a fluid around a body is a 
classic text book problem in fluid mechanics. 
Interestingly enough, it leads to some curious 
twists and conceptual conundrums. In particular, 
it leads a surprising divergence which needs to be 
regularized even in the text book case of fluid flow 
past a sphere! 
 

                                                           
3 Curiosities in Theoretical Physics: II IAPT Phys. Edu. 23 

47(2006-07) 

9. Isochronous Curiosities: Classical and 
Quantum 

The oscillatory motion of a particle in a one 
dimensional potential belongs to a class of exactly 
solvable problems in classical mechanics. This 
chapter examines some lesser known aspects of 
this problem in classical and quantum mechanics. 
It turns out that both V(x) = ax2 and V(x) = ax2 + 
bx−2 have (1) periods of oscillation which are 
independent of amplitude in classical physics and 
(2) equally spaced energy levels in quantum 
theory. We will explore several features of this 
curious correspondence. We will also discuss the 
question of determining the potential from the 
period of oscillation (in classical physics) or from 
the energy levels (in quantum physics) which are 
closely related and clarify several puzzling 
features related to this issue. 
 

10. Logarithms of Nature 
Scaling arguments and dimensional analysis are 
powerful tools in physics which help you to solve 
several interesting problems. And when the 
scaling arguments fail, as in the examples 
discussed in this chapter, we are led to a more 
fascinating situation. A simple example in 
electrostatics leads to infinities in the Poisson 
equation and we get a finite E from an infinite φ! 
I also describe the quantum energy levels in the 
delta function potentials and show how QFT helps 
you to understand QM better! 
 

11. Curved Spacetime for pedestrians3 
The spacetime around a spherical body plays a 
key role in general relativity and is used in the 
crucial tests of Einstein’s theory of gravity. This 
spacetime geometry is usually obtained by solving 
Einstein’s equations. I will show how this metric 
can be obtained by a simple 
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— but strange — trick. Along the way, you will 
also learn a three-step proof as to why gravity 
must be geometry, the reason why the Lagrangian 
for a particle in a Newtonian gravitational field is 
kinetic energy minus potential energy and how to 
obtain the orbit equation in GR, just from the 
principle of equivalence. 
 

12. Black hole is a Hot Topic4 
A fascinating result in black hole physics is that 
they are not really black! They glow as though 
they have a surface temperature which arises due 
to purely quantum effects. I will provide a simple 
derivation of this hot result based on the 
interpretation of a plane wave by different 
observers.  
 

13. Thomas and his Precession5 
Thomas precession is a curious effect in special 
relativity which is purely kinematical in origin. But 
it illustrates some important features of the 
Lorentz transformation and possesses a beautiful 
geometric interpretation. We will explore the 
physical reason for Thomas precession and its 
geometrical meaning in this chapter and in the 
next. 
 

14. When Thomas met Foucault 
The Foucault pendulum is an elegant device that 
demonstrates the rotation of the Earth. We 
describe a paradox related to the Foucault 
pendulum and provide a geometrical approach to 
determine the rotation of the plane of the 
pendulum. By introducing a natural metric in the 
velocity space we obtain an interesting 
geometrical relationship between the dynamics 
of the Foucault pendulum and the Thomas 
precession discussed in the previous chapter. This 

                                                           
4 Curiosities in Theoretical Physics: V IAPT Phys. Edu. 24, 

67(2007-08)  

approach helps us to understand both 
phenomena better. 
 

15. The One-body Problem 
You might have thought that the one-body 
problem in physics is trivial. Far from it! One can 
look at the free particle in an inertial or a non-
inertial frame, relativistically or non-
relativistically, in flat or in curved spacetime, 
classically or quantum mechanically. All these 
bring in curious correspondences in which the 
more exact theory provides valuable insights 
about the approximate description. I start with 
the surprising — and not widely appreciated — 
result that you really can’t get a sensible free-
particle Lagrangian in non-relativistic mechanics 
while you can do it in relativistic mechanics. In a 
similar vein, the solution to the Klein-Gordon 
equation transforms as a scalar under coordinate 
transformations, while the solution to the 
Schrodinger equation does not. These 
conundrums show that classical mechanics makes 
more sense as a limiting case of special relativity 
and the nonrelativistic Schrodinger equation is 
simpler to understand as a limiting case of the 
relativistic Klein-Gordon equation! 
 

16. The Straight and Narrow Path of Waves 
Discovering unexpected connections between 
completely different phenomena is always a 
delight in physics. In this chapter and the next, we 
will look at one such connection between two 
unlikely phenomena: propagation of light and the 
path integral approach to quantum Field theory! 
This chapter introduces the notion of paraxial 
optics in which we throw away half the solutions 
and still get useful results! I also describe the role 
of optical systems and how the humble lens acts 
as an analog device that performs Fourier 

5 Curiosities in Theoretical Physics: VII IAPT Phys Edu 24, 

149(2007-08)  
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transforms. In passing, you will also learn how 
Faraday’s law leads to diffraction of light.  
 

17. If Quantum Mechanics is the Paraxial 
Optics, then ... 

The quantum mechanical amplitude for a particle 
to propagate from event to event in spacetime 
shows some nice similarities with the 
corresponding propagator for the 
electromagnetic wave amplitude discussed in the 
previous chapter. This raises the question: If 
quantum mechanics is paraxial optics, what is the 
exact theory you get when you go beyond the 
paraxial approximation? In the path integral 
approach to quantum mechanics you purposely 
avoid summing over all the paths while in the path 
integral approach for a relativistic particle you are 
forced to sum over all paths. This fact, along with 
the paraxial optics analogy, provides an 
interesting insight into the transition from 
quantum field theory to quantum mechanics and 
vice versa! I also describe why combining the 
principles of relativity and quantum theory 
demands a description in terms of fields. 
 

18. Make it Complex to Simplify 
Some of the curious effects in quantum theory 
and statistical mechanics can be interpreted by 
analytically continuing the time coordinate to 
purely imaginary values. We explore some of 
these issues in this chapter. In quantum 
mechanics, this allows us to determine the 
properties of ground state from an approximate 
evaluation of path integrals. In statistical 
mechanics this leads to an unexpected 
connection between periodicity in imaginary time 
and temperature. The power of this approach can 
be appreciated by the fact that one can derive the 
black hole temperature in just a couple of steps 
using this procedure. Another application of the 
imaginary time method is to understand 
phenomena like the Schwinger effect which 
describes the popping out of particles from the 

vacuum. Finally, I describe a non-perturbative 
result in quantum mechanics, called the over-the-
barrier-reflection, which is easier to understand 
using complex paths.  
 

19. Nothing matters a lot 
The vacuum state of the electromagnetic field is 
far from trivial. Amongst other things, it can exert 
forces that are measurable in the lab. This curious 
phenomenon, known as the Casimir effect, is still 
not completely understood. I describe how the 
probability distribution for the existence of 
electromagnetic fields in the vacuum can be 
understood, just from the knowledge of the 
quantum mechanics of the harmonic oscillator. 
This chapter also introduces you to the tricks of 
the trade in quantum field theory, which are 
essential to get finite answers from divergent 
expressions - like to prove that the sum of all 
positive integers is a negative fraction! 
 

20. Radiation: Caterpillar becomes Butterfly 
The fact that an accelerated charge will radiate 
energy is considered an elementary textbook 
result in electromagnetism. Nevertheless, this 
process of radiation (and its reaction on the 
charged particle) raises several conundrums 
about which technical papers are written even 
today. In this chapter, we will try to understand 
how the caterpillar (1/r2, radial field) becomes a 
butterfly (1/r, transverse field) in a simple, yet 
completely rigorous, manner without the Lienard-
Wiechert potentials or other red-herrings. I will 
also discuss some misconceptions about the 
validity of ∇·E = 4πρ for radiative fields with 
retardation effects. 
 

21. Photon: Wave and/or Particle 
The interaction of charged particles with 
blackbody radiation is of considerable practical 
and theoretical importance. Practically, it occurs 
in several astrophysical scenarios. Theoretically, it 
illustrates nicely the fact that one can think of the 
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radiation either as a bunch of photons or as 
electromagnetic waves and still obtain the same 
results. We shall highlight some non-trivial 
aspects of this correspondence in this chapter. In 
particular we will see how the blackbody radiation 
leads a double life of being either photons or 
waves and how the radiative transfer between 
charged particles and black body radiation can be 
derived just from a Taylor series expansion (and a 
little trick)! Finally, I will describe the role of 
radiation reaction force on charged particles to 
understand some of these results. 
 

22. Angular Momentum without Rotation6 
Not only mechanical systems, but also 
electromagnetic fields carry energy and 
momentum. What is not immediately apparent is 
that certain static electromagnetic configurations 
(with no rotation in sight) can also have angular 
momentum. This leads to surprises when this 
angular momentum is transferred to the more 
tangible rotational motion of charged particles 
coupled to the electromagnetic fields. A simple 
example described in this chapter illustrates, 
among other things, how an observable effect 
arises from the unobservable vector potential and 
why we can be cavalier about gauge invariance in 
some circumstances. 
 

23. Ubiquitous Random Walk 
What is common to the spread of mosquitoes, 
sound waves and the flow of money? They all can 
be modelled in terms of random walks! Few 
processes in nature are as ubiquitous as the 
random walk which combines extraordinary 
simplicity of concept with considerable 
complexity in the final result. In this and the next 
chapter, we shall examine several features of this 
remarkable phenomenon. In particular, I will 

                                                           
6 Curiosities in Theoretical Physics: V IAPT Phys. Edu. 23 

285(2006-07) 

describe the random walk in the velocity space for 
a system of gravitating particles. The diffusion in 
velocity space can’t go on and on — unlike that in 
real space — which leads to another interesting 
effect known as dynamical friction — first derived 
by Landau in an elegant manner. 
 

24. More on Random Walks: Circuits and a 
Tired Drunkard 

We continue our exploration of random walks in 
this chapter with some more curious results. We 
discuss the dimension dependence of some of the 
features of the random walk (e.g., why a drunken 
man will eventually come home but a drunken 
bird may not!), describe a curious connection 
between the random walk and electrical 
networks (which includes some problems you 
can’t solve by being clever) and finally discuss 
some remarkable features of the random walk 
with decreasing step-length, which is still not 
completely understood and leads to Cantor sets, 
singularities and the golden ratio — in places 
where you don’t expect to see them.  
 

25. Gravitational Instability of the Isothermal 
Sphere 

The statistical mechanics of a system of particles 
interacting through gravity leads to several 
counter-intuitive features. We explore one of 
them, called Antonov instability, in this chapter. I 
describe why the thermodynamics of gravitating 
systems is non-trivial and how to obtain the 
mean-field description of such a system. This 
leads to a self-gravitating distribution of mass 
called the isothermal sphere which exhibits 
curious features both from the mathematical and 
physical points of view. I provide a simple way of 
understanding the stability of this system, which 
is of astrophysical significance. 
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26. Gravity bends electric field lines 

Field lines of a point charge are like radially 
outgoing light rays from a source. You know that 
the path of light is bent by gravity; do electric field 
lines also bend in a gravitational field? Indeed 
they do, and — in the simplest context of a 
constant gravitational field — both are bent in the 
same way. Moreover, both form arcs of circles! 
The Coulomb potential in a weak gravitational 

field can be expressed in a form which has 
unexpected elegance. The analysis leads to a 
fresh insight about electromagnetic radiation as 
arising from the weight of electrostatic energy in 
the rest frame of the charged particle, and also 
allows you to obtain Dirac’s formula for the 
radiation reaction in three simple steps 

***** 
 

 
______________________________________________________________________________________ 
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