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EDITORIAL 

 

 

 
This issue comes to you with one more detailed 
article on gravitational waves even as one more 
wave was registered by the LIGO detectors. 
Beyond this, we have other articles ranging from 
phase transition to special relativity, including 
one on the height of mountains. 
 
 
 
 

 
 
I hope you will enjoy reading this issue. My 
seasons greetings to all the readers of 'Physics 
Education'. 

 
M. S. Santhanam 

Chief Editor 
Physics Education    
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Abstract

A spectacular prediction of Einstein’s general theory of relativity is gravitational waves. A
century ago - in 1916 - Einstein predicted the existence of gravitational waves.
Gravitational waves have now been detected by the LIGO detectors in the US. The
physical existence of the waves was established long before by the observations of the
Hulse-Taylor binary pulsar whose orbit decays exactly as predicted by Einstein’s general
theory of relativity. Weakness of the gravitational force implies that the waves are
extremely difficult to detect - one must effectively measure distances much smaller than
the size of a proton. During the past half century, technology has taken immense strides
and the current advanced detectors are now capable of reaching the requisite sensitivity to
detect the waves. Gravitational waves carry information about their dramatic origins and
about the nature of gravity that cannot be otherwise obtained. A new astronomical
window to the universe has been opened. This article will describe the physics of
gravitational waves, the technological feats necessary for the detector to achieve
unprecedented sensitivities, the current and future global efforts in this direction, the
gravitational wave event that was detected, the Indian initiative and contribution to the
global effort and the astrophysics that we can learn from this.
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1 Introduction

History was created on 11th February 2016,
when it was announced that gravitational
waves (GW) had been directly detected [1].
The two LIGO detectors of the US detected
gravitational waves emitted by the collision of
two black holes of about 30 solar mass each
on 14th of September, 2015 at 9:50:45 UTC
which is at about 15:20 hrs Indian standard
time. The data from both detectors, one in
Louisiana and the other in Washington state,
clearly shows almost identical waveforms in
both detectors with time difference of about
7 milliseconds which is consistent with the
geographical separation of 3000 km (10 ms
GW travel time) between the detectors. This
infact marks a three fold discovery: (i) di-
rect detection of GW, (ii) direct detection
of black holes and (iii) detection of a black
hole binary system. The impact of the dis-
covery is enormous on astronomy and gener-
ally on science. It has not only detected black
holes but has confirmed general relativity in
the strong field regime. It has given rise to
the birth of a new astronomy - Gravitational
Wave Astronomy by opening a new window
to the universe. The GW window will com-
plement other windows, namely, the optical
one opened by Galileo four centuries ago, ra-
dio, infrared, ultraviolet, X-ray and γ-ray in
electromagnetic astronomy and also the neu-
trino. Whenever a new window has been
opened it has brought with it unexpected dis-
coveries. Thus it is not unreasonable to ex-
pect the unexpected and all the more, be-
cause now even the physical interaction is a
different one, namely, that of gravity.

The key to gravitational wave detection
is the very precise measurement of small
changes in distance. In the 1960s, Joseph We-
ber began his efforts to detect gravitational
waves [2]. In a decade of pioneering experi-
ments he investigated resonant bar detectors
which were suspended, seismically isolated,
aluminium cylinders. His work, though in-
conclusive encouraged others to build next
generation detectors, namely, cryogenic reso-
nant bars and laser interferometric detectors
of arm lengths of tens of metres. However,
it was soon realised that there were inher-
ent limitations to the design of bar detectors
in terms of scalability and narrow band re-
sponse. A better design was a laser interfer-
ometric design which was naturally suited to
the quadrupolar nature of GW waves. For
laser interferometers, the precise measure-
ment is the distance between pairs of mir-
rors hanging at either end of two long, mutu-
ally perpendicular vacuum chambers. A GW
passing through the instrument will shorten
one arm while lengthening the other. By
using an interferometric design, the relative
change in length of the two arms can be mea-
sured, thus signalling the passage of a GW.
However, the distance measurements are phe-
nomenally small - one-thousand’th the size
of a proton! And performing such incredibly
small measurement is in fact a feat in tech-
nology requiring long arm lengths, high laser
power, and extremely well-controlled laser
stability [3].

In this article we will first describe the
physics of GW, laser interferometric detectors
and noise sources, the recent detection of the
GW event, the astrophysics we expect from

Volume 32, Number 2, Article Number: 1 www.physedu.in



Physics Education 3 Apr - Jun 2016

the new astronomy and the future global net-
work of detectors which includes the detector
in India - LIGO-India [4].

2 From Newton to Ein-

stein

The theory of gravitation one usually learns
at first is Newton’s theory of gravity and the
inverse square law. Newton’s theory not only
explained terrestrial gravity - the legendary
falling of an apple - but also the motions of
astronomical objects such as the planets and
the moon, and in particular Kepler’s laws.
It came to be known as the universal the-
ory of gravitation because it unified terres-
trial gravity with gravity in space as applied
to astronomical objects. Its range extended
from macromolecules to galaxies and was a
resounding success. So then why do we need
another theory of gravity?

In 1905, Einstein presented to the world
his special theory of relativity [5]. The spe-
cial theory of relativity essentially deals with
measurements of distance, time, mass etc.
when the experimenter is moving with re-
spect to the system of objects he is mea-
suring. The principle of relativity says that
the laws of physics must be the same for all
observers moving uniformly with respect to
each other. Special relativity does not con-
cern itself with any specific physical law but
requires all physical laws to conform to it.
Thus classical mechanics, electromagnetism
and quantum physics should obey special rel-
ativity. And gravity is no exception. New-

ton’s theory of gravity is not consistent with
the special theory of relativity; it is simply
unacceptable to have physical theories incon-
sistent with each other. For example, spe-
cial relativity requires that all signals must
travel at finite speeds, in fact less than or
equal to the speed of light in vacuum. But
the gravitational force field as described by
Newton’s theory by the inverse square law
is instantaneous, that is, there is no propa-
gation of gravitational forces; the field equa-
tions of Newton’s theory do not contain time
- the inverse square law has no time in its
description. Thus from this conceptual point
of view a new theory of gravity was needed
in which gravitational interaction propagates
at finite speeds. Although at the beginning
of the last century, it was observed that there
was a discrepancy in Mercury’s orbit - the ad-
vance of perihelion of Mercury - Einstein was
more concerned with the conceptual problem.
Einstein’s theory of gravity, the general the-
ory of relativity (GTR), incorporates the spe-
cial theory of relativity. More importantly, it
has come out in flying colours in all gravita-
tion experiments conducted so far - the ob-
servations match the theory. Instead of just
tinkering with Newton’s theory, Einstein for-
mulated conceptually a completely different
theory - the general theory of relativity which
is also a theory of gravitation [6].

We describe the theory in a prescriptive
manner. Matter and energy (described by
the energy momentum stress tensor) curve
the spacetime in its vicinity. Gravitation is
the manifestation of the curvature of space-
time. Note that it is a four dimensional cur-
vature - the spacetime is curved - and that
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space and time have already become a single
entity in special relativity. So for instance,
if we consider our solar system with the Sun
as a central body producing the gravitational
field and planets responding to this field and
orbiting around it, in Einstein’s theory, the
Sun curves the spacetime around it and the
planets move along the straightest possible
paths they can in this curved geometry of
spacetime. So the orbit of the planet appears
curved because the spacetime is curved. The
planet strives to follow a “straight” path, but
since the spacetime itself is curved and so the
“straight” path appears curved. Compare the
situation with a sphere. A sphere is an ex-
ample of the simplest curved space. On the
sphere the great circles are the “straightest”
possible paths - but they are remarkably dif-
ferent from the straight lines of Euclid’s ge-
ometry. Such paths are called geodesics.

It remains to prescribe how the matter dis-
tribution curves spacetime [7]. This is accom-
plished by Einstein’s field equations1,

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1)

where on the left-hand side (LHS) we have
terms describing the curvature in terms of
the Riemann tensor and the metric and on
the right-hand side (RHS) we have the stress
tensor of the matter distribution. The con-
stants G and c denote respectively the New-
ton’s gravitation constant and the speed of
light. On the LHS appear the Ricci tensor

1Details on Einstein’s equations are available in
standard textbooks on GR. However, the readers do
not need those details to understand this article.

Rµν and the scalar curvature R, which are de-
rived from the Riemann tensor Rµνλσ. These
equations are the analogue of Newton’s equa-
tion:

∇2φ = 4πGρ , (2)

where φ is the Newtonian gravitational po-
tential and ρ is the mass density of matter.
But Einstein’s equations are much more com-
plicated. They are 10 coupled non-linear sec-
ond order partial differential equations for 10
components of the metric tensor gµν - the
metric tensor is symmetric and so has 10 in-
dependent components in 4 dimensions (ac-
tually the number of independent equations
reduces to six because we have four degrees
of freedom in the choice of coordinates). The
situation is far more complex than Newton’s
equation or even Maxwell’s equations of elec-
trodynamics and therefore the equations are
extremely difficult to solve. Unless one as-
sumes enough symmetries, which effectively
reduces their complexity, solutions are hard
to come by. For example, no exact analytic
solution so far exists for the two body prob-
lem in GTR. It is only after years of clever
hard work and only recently, that progress
has been possible. Solutions can be obtained
by a combination of methods involving post-
Newtonian approximations [8, 9], numerical
relativity [10] and black hole perturbation
theory [11].

Further GTR reduces to Newton’s theory
of gravitation in the limit of weak fields and
slow motion as it must, because a new the-
ory must certainly explain phenomena ex-
plained by the old theory in its regime of
validity; but the new theory may extend be-
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yond the old theory’s regime of validity. This
happens with GTR. When velocities are not
small compared to the speed of light and
when the fields are strong, Newton’s theory
can no longer describe gravitational phenom-
ena accurately and reliably - the spacetime
can no longer be considered as a small devia-
tion from the flat (non-curved) spacetime of
special relativity - GTR must be used.

The successes and predictions of GTR are
spectacular. GTR predicts the expanding
universe, black holes and gravitational waves
among many other phenomena. In this ar-
ticle we will concern ourselves mainly with
GW.

3 The physics of gravita-

tional waves

Einstein’s equations admit wave solutions -
this is readily seen if we make a weak field
approximation [12]. A weak GW is described
by a metric perturbation hµν in general rela-
tivity. Typically, for the astrophysical GW
sources which are amenable to detection,
hµν ∼ 10−22. Consider a spacetime which dif-
fers slightly from the Minkowski spacetime of
special relativity. So the Minkowski metric
will be slightly modified. Writing,

gµν = ηµν + hµν , (3)

where ηµν = diag{1,−1,−1,−1} is the
Minkowski metric tensor and where hµν is
a perturbation on this ‘Minkowski back-
ground’. To the linear order in hµν , it can be
easily shown (after a fair amount of algebra)

in a certain gauge - transverse and traceless
(TT) [13] - that Einstein’s field equations re-
duce to the wave equations:

�hµν =
16πG

c4
Tµν , (4)

where the � is the D’Alembertian operator.
It is apparent from this equation that firstly,
GTR predicts GW and secondly, GW travel
with the speed of light because the velocity
c occuring in the � operator is the speed of
light as seen below:

� ≡ ∂2

c2∂t2
−∇2 . (5)

Thus GW are waves in the metric field gµν .
Now the curvature or the Riemann tensor
is essentially formed by taking the second
derivatives of the metric - a very complicated
formula; details of which need not concern
us here. Thus GW can be described also as
waves in the curvature of spacetime. And it
is the curvature which can be measured with
the help of test masses and thus is a physical
field. Thus, one may use either the metric or
the curvature to describe gravitational waves.

We can deduce the properties of GW from
GTR. We list them below:

• GWs travel with the speed c ∼ 3 × 105

km/sec.

• GWs are transverse.

• GWs have two polarisations.

It is easy to visualise the two polarisa-
tions in the TT gauge; the hµν can be ex-
pressed in terms of just two amplitudes, h+
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and h×, called the ‘plus’ and ‘cross’ polarisa-
tions. The two polarisation states are easily
understood, if we examine the effect of the
waves on test particles. The test particles
are just free test masses. A single free mass
particle cannot detect a wave (or any grav-
ity) because of the equivalence principle of
GTR - one can just transform to the freely
falling frame of the test particle and the par-
ticle then will remain at rest in this frame
and thus will not detect any GW. We need at
least two spatially separated particles to ob-
serve the effect of GW; one tracks the varia-
tion in the separation between the particles as
a function of time. Since in GTR the metric is
a second rank tensor, it is customary to take
a ring of test particles and take the reference
particle at the centre. If a weak monochro-
matic gravitational wave of + polarisation is
incident on a ring of test-particles, the ring is
deformed into an ellipse as shown at the top
of Figure 1. Phases, half a cycle apart, of the
GW are shown in the figure. For the × polar-
isation the ellipses are rotated by an angle of
45◦. A general wave is a linear combination
of the two polarisations.

4 Detection of gravita-

tional waves

We will confine ourselves to interferometric
detection [3]. The figure 1 shows a schematic
diagram of an interferometer. If we select two
masses on this ring of test masses at right an-
gles and monitor their distance with respect

time

h

Figure 1: Upper: A circular ring of test parti-
cles is deformed into an ellipse by an incident
GW (image taken from [14]). Phases, half
a cycle apart are shown for the + polarisa-
tion. The length change in the interferomet-
ric arms is also shown schematically. Lower:
a schematic diagram of an interferometer is
drawn (Image: Caltech/MIT/LIGO Lab.).

to the centre of the ring, which we take to be
the reference point, we will find that during
one half cycle of the wave one arm shortens
while the other arm elongates. In the next
half cycle of the wave the opposite happens.
By using a laser interferometric arrangement
a passing GW will produce a time-varying
path difference which can be detected on a
photodiode.
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However, there is a catch! The changes in
distances are exceedingly small in astrophys-
ical situations. For example, a neutron star
binary at distance of 100 Mpc 2 - a typical
distance to a GW source - will produce a dif-
ferential length change of ∼ 10−16 cm. for
test masses kept few kilometres apart, which
is the typical length of the arm of a large
scale ground-based interferometric detector!
For a GW source, h (a typical component of
hµν) can be estimated from the well-known
Landau-Lifschitz quadrupole formula. This
formula can be obtained by integrating the
inhomogeneous wave equation (4) under cer-
tain assumptions. The formula relates the
GW amplitude h to the second time deriva-
tive of the quadrupole moment (which has
dimensions of energy) of the source. For ob-
taining order of magnitude estimates, we can
strip the tensor indices of the formula and
then it reads:

h ∼ 4

r

G

c4
Ekinetic

nonspherical, (6)

where r is the distance to the source and
Ekinetic

nonspherical is the kinetic energy in the non-
spherical motion of the source. If we consider
Ekinetic

nonspherical/c
2 of the order of a solar mass

and the distance to the source ranging from
galactic scale of tens of kpc to cosmological
distances of Gpc, then h ranges from 10−17 to
10−22. These numbers then set the scale for
the sensitivities at which the detectors must
operate.

How does the quantity h relate to the
change in distance between the test particles?

2These are units which astronomers use; 1 Mpc or
mega parsec is ∼ 1019 km.

The following formula answers this question.
Let L be the distance separating the test
masses, then the change in distance δL due
to a GW with metric perturbation h is given
by,

δL ∼ hL . (7)

This result is easily obtained by integrat-
ing the geodesic deviation equation. The
geodesic deviation equation is justified for
ground based detectors because typically the
wavelength of the GW - few hundred km or
more - is much greater than the distance be-
tween the test masses, namely few km, so
that the worldlines of the test masses could
be thought of as “neighbouring”.

However, since detection involves impos-
sibly small measurements, the noise in the
detector needs to be suppressed by several
orders of magnitude in order that there is
a chance of extracting the signal from the
noise by statistical signal detection methods.
There is a host of noise sources in inter-
ferometric detectors which contaminate the
data. At low frequencies there is the seis-
mic noise. The seismic isolation is a sequence
of stages consisting of springs and pendu-
lums and heavy masses. Each stage has a
low resonant frequency about a fraction of
a Hz. The seismic isolation acts as a low
pass filter, strongly attenuating frequencies
much higher than the resonance frequency
of the isolation system. This results in a
‘noise wall’ at low frequencies at around 10
Hz. Also below 10 Hz is the gravity gradi-
ent noise which is difficult (if not impossible)
to shield. At mid-frequencies upto few hun-
dred Hz, the thermal noise is important and
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is due to the thermal excitations both in the
test masses - the mirrors - as well as the seis-
mic isolation suspensions. At high frequen-
cies the shot noise from the laser dominates.
This noise is due to the quantum nature of
light. From photon counting statistics and
the uncertainty principle, the phase fluctua-
tions are inversely proportional to the square
root of the mean number of photons arriv-
ing during a period of the wave. Thus, long
arm lengths, high laser power, and extremely
well-controlled laser stability are essential to
reach the requisite sensitivity.

5 Gravitational waves

discovered

The two LIGO detectors of the US in
Louisiana and Washington state detected
gravitational waves on 14th of September,
2015 at 9:50:45 UTC [1]. The data from both
detectors clearly shows almost identical wave-
forms in both detectors with time difference
of about 7 milliseconds which is consistent
with the geographical separation of 3000 km
(10 ms GW travel time) between the detec-
tors. The waveforms are shown in units of
the strain of h = 10−21.

The signal was emitted by two black holes
of individual masses 28 amd 36 M� which
coalesced to form a remnant black hole of
mass 62 M� and angular momentum J =
0.67GM2/c, where M is the mass of the fi-
nal black hole. These masses are given in the

Figure 2: The upper two rows show the GW
strains for the two detectors at Louisiana (L1)
and Washington State (H1) (image taken
from [1]). For visual comparison in the upper
right panel H1 data are shown time shifted
and inverted to take into account their ge-
ographical separation and different orienta-
tions. The third row shows residuals and the
bottom row shows time-frequency represen-
tation of strain data. It is apparent from this
plot that the frequency of the signal increases
with time.

source frame. The energy emitted in GW was
3 M�c

2 which amounts to ∼ 5% of the total
mass. The waveform sweeps through a fre-
quency range from 30 Hz to about 250 Hz in
10 cycles lasting for ∼ 0.2 sec. The combined
signal-to-noise from two detectors is ∼ 24.
The estimated distance to the binary black
hole is about 410 Mpc. The false alarm prob-
ability for the event is less than 2×10−7. The
characterstics of the waveform show that this
cannot be a neutron star binary nor a neutron
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star - black hole binary. Exhaustive investi-
gations were carried out to rule out environ-
mental and instrumental noise. The signal is
consistent with GTR.

Figure 3: The cumulative advance of perias-
tron is shown as a function of time in years
from 1975 to 2005, taken from [15]. The black
dots are the observation points while the con-
tinuous curve is the prediction of GTR.

Much before this, few decades ago, the ex-
istence of GW had been established for which
the radio astronomers Hulse and Taylor were
awarded the Nobel prize. Hulse and Taylor
[16] discovered the binary pulsar PSR 1913
+ 16 and subsequent observations showed
energy loss and decrease in orbital period

of the system [17]. This decay in the or-
bit is exactly as predicted by GTR. The bi-
nary system loses energy through GW, thus
shrinking in its orbit and steadily decreasing
its period P . The Ṗ can deduced from the
quadrupole formula and also the rate of en-
ergy loss through GW. The rate of decrease in
the period Ṗ ∼ −2.4× 10−12 which amounts
to about 75 microseconds per year. But be-
cause of this the periastron (the epoch at
which the stars are closest to each other) ad-
vances. The figure above shows the cumula-
tive advance in periastron of the orbit plotted
versus the year [15]. The observations exactly
agree with the predictions of GTR.

Although this observation establishes the
existence of GW it is not a direct detection,
because we do not observe the waves them-
selves; we infer their existence from their ef-
fect on the orbit of the binary pulsar.

The direct detection of GW however, has
opened a new window to the universe and
given rise to the birth of a new astronomy -
Gravitational Wave Astronomy.

6 Gravitational wave as-

tronomy

6.1 Global network of interfer-
ometric detectors

A global network of geographically widely
separated detectors is essential for GW as-
tronomy [18] as they are required to (i) lo-
calise GW sources in the sky, (ii) increase
detection confidence, (iii) increase duty cycle
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and (iv) determine polarisation which would
give us information on the orientation of the
GW source.

The era of advanced detectors has arrived
with the state of the art technology which will
be capable of observing GW sources and do-
ing GW astronomy. With these future goals
in mind, a radical decision has been taken
by the LIGO of the US - to build one of the
detectors in India in collaboration with In-
dia [4]. The reason for this decision is clear
- it is to increase the baseline and have a de-
tector far removed from other detectors on
Earth, which has several advantages, such as
improving the localisation of the GW source,
which can then make it feasible to follow up
a GW event with electro-magnetic telescopes.
There are two LIGO detectors of armlength
4 km in the US, one at Hanford, Washington
and one at Livingston, Louisiana geographi-
cally separated by 3000 km. The first obser-
vation run called O1 of the two LIGO detec-
tors has just taken place which lasted for 4
months. The detectors operated at a sensi-
tivity few times better than the initial detec-
tors. The goal in the next few years will be
to improve the sensitivity few times, thereby
increasing the volume of the universe the de-
tectors are sensitive to by about an order of
magnitude.

In Europe the VIRGO project of Italy and
France has constructed a 3 km armlength de-
tector. After commissioning of the project in
2007, it also had science runs. The GEO600
is a German-British project, whose detector
has an armlength of 600 metres and is con-
structed near Hannover. One of the goals
of GEO600 is to develop advanced technolo-

gies required for the next generation detec-
tors with the goal of achieving better sensi-
tivity.

Japan was the first (around the year 2000)
to have a large scale detector of 300 m arm-
length - the TAMA300 detector under the
TAMA project - operating continuously at
high sensitivity. Now Japan is constructing a
cryogenic interferometric detector called the
KAGRA. The purpose of the cryogenics is to
reduce the thermal noise in the mirrors and
the suspensions and thus increase sensitivity
at midrange frequencies.

6.2 The IndIGO consortium
and the LIGO-India project

GW research in India had a 25 year legacy
and wide recognition in the international GW
community. Two groups at IUCAA, Pune
and Raman Research Institute (RRI), Ban-
galore contributed significantly to the global
effort, mainly in data analysis of GW signals
buried in the noisy detector data and com-
putation of the inspiraling compact binary
waveform employing post-Newtonian meth-
ods. A lot of trained manpower was created
from the students and postdoctoral fellows
from these two groups and currently they are
occupying key faculty positions both in India
and abroad. Given this background, a con-
sortium called Indian Initiative in GW obser-
vations (IndIGO) was formed in 2009. The
aim of this consortium is to foster and pro-
mote GW research in India, interact actively
with the international community and build
up a community of Indian scientists compe-
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tent in GW research in theory and experi-
ment. The consortium has proposed a GW
detector - LIGO-India - in collaboration with
the US, on Indian soil.

The LIGO-India project has been recently
approved in principle. The goal of the project
is constructing and then operating an ad-
vanced interferometric gravitational wave de-
tector in India. A timely opportunity to leap-
start gravitational wave research and astron-
omy in India has arisen through the possibil-
ity of the LIGO Laboratory offering and Na-
tional Science Federation (NSF), US agree-
ing to transfer one set of components pre-
pared for the advanced LIGO-interferometer,
as part of the collaborative effort. Indian sci-
entists will install and operate the detector as
well as build the entire infrastructure includ-
ing the ultra-high vacuum vessels and tubes
required to house the interferometer at a suit-
able, gravitationally and seismically quiet site
in India and operate it as part of the global
network of detectors for gravitational wave
astronomy during the next two decades. The
proposal to build and operate the Indian de-
tector is timed to be in this exciting decade
of the first detection and observations of GW.
To be a key partner in this global endeavour
with an interferometer detector built and op-
erated in India is the goal of this project.

6.3 GW astrophysical sources

Several types of GW sources have been envis-
aged [19, 20] which could be directly observed
by Earth-based detectors: (i) burst sources –
such as binary systems consisting of compact
objects such as neutron stars and/or black

holes in their inspiral, merger and ring down
phase; burst sources such as supernovae –
whose signals last for a time much shorter,
between a few milli-seconds and a few min-
utes, than the typical observation time; (ii)
stochastic backgrounds of radiation, either of
primordial or astrophysical origin, and (iii)
continuous wave sources – e.g. rapidly rotat-
ing non-axisymmetric neutron stars – where
a weak sinusoidal signal is continuously emit-
ted.

We will discuss here only the compact co-
alescing binary sources because this is the
type of source which has been detected - a
black hole binary. Compact coalescing bina-
ries emit enormous amount of GW energy,
and also they are clean systems to model;
the inspiral waveform can be computed accu-
rately to several post-Newtonian orders [8, 9]
adequate for optimal signal extraction tech-
niques such as matched filtering to be used.
In the past decade IUCAA has focussed on
the design, validation and implementation
of search algorithms for inspiraling binaries
[21, 22]. Numerical relativity has been able to
make a breakthrough by continuing the inspi-
ral waveform to the merger phase and even-
tually connect it with the ringdown of the
final black hole [10]. The full waveforms are
obtained by stitching together the inspiral,
merger and ring down waveforms. The full
waveform consisting of inspiral, merger and
ring down can also be obtained directly from
numerical relativity alone, but this is compu-
tationally very expensive at the moment.

The astrophysical inferences from the cur-
rently detected event are as follows [1]. Stel-
lar mass black holes of more than 25M� ex-
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ist and also form binaries within a Hubble
time. From the data and the current event,
one may estimate the median rate of such
events, which turns out to be about 16 events
per Gpc3 per year for a false alarm rate of
one per century. One can also deduce how
much stochastic background can be produced
from the above event rate. An upper limit of
1.2× 10−22 eV/c2 can be put on the mass of
the graviton from dispersion arguments.

7 The road ahead

Given the situation that the detectors sensi-
tivity will improve in the next few years, one
expects to detect many more sources such as
the black hole binary event already detected.
From these detections we may be able to learn
many new aspects in astrophysics, such as the
population of black holes of various masses,
their distrbution, the GW stochastic back-
ground they may produce etc. Also we should
be able to observe neutron star - neutron
star and neutron star - black hole binaries.
We could also have detections of continuous
wave sources such as isolated spinning neu-
tron stars, accreting neutron stars etc.

A new window to the universe has been
opened and this may bring to us new type of
astrophysical sources never imagined. When-
ever a new window has been opened, it has
brought with it surprises. To cite an example,
let us consider radio astronomy. It brought
to us pulsars, the cosmic microwave back-
ground, radio jets etc. These were completely
new discoveries not seen by optical telescopes.
Astronomies in other frequency bands have

also brought to us new information not avail-
able through other windows. This wealth of
information from different channels has seen
the rise of multi-messenger astronomy where
one studies a given astrophysical source pool-
ing together information from the different
windows available.

There are also plans to build GW detec-
tors in space. The advantage here is that one
can go to very low frequencies of a fraction
of a Hz or even mHz. For groundbased de-
tectors a natural limit occurs on decreasing
the lower frequency cut-off below ∼10 Hz, be-
cause of the gravity gradient noise which is
difficult to eliminate below 10 Hz. Thus, the
ground based interferometers will not be sen-
sitive below the limiting frequency of ∼10 Hz.
But on the other hand, there exist in the
cosmos, interesting astrophysical GW sources
which should be emitting GW below this fre-
quency such as the galactic binaries, massive
and super-massive black hole binaries. If we
wish to observe these sources, we need to go
to lower frequencies. The solution is to build
an interferometer in space, where such noises
will be absent and will allow the detection
of GW in the low frequency regime. There
are plans to build such detectors, such as the
eLISA [23] and DECIGO [24] in future. But
this may take 20 years or more.

The ground-based detectors and the space-
based detectors complement each other in the
observation of GW in an essential way, anal-
ogous to the way optical, radio, X-ray, γ-ray
observations do for electromagnetic waves.
As both these types of detectors begin to op-
erate, a new era of GW astronomy is on the
horizon and a radically different view of the
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Universe is expected to emerge.
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Abstract 
An acceleration of g can bring a space vehicle to nearly the speed of light in less than a year. In this paper we 

study one possibility for such relativistic travel, as measured by both travelers and earthbound observers. 

Udergraduates who encounter special relativity toward the end of their introductory, calculus based physics 

course should find the paper’s mathematics accessible, and be stimulated by its extension of the usual 

topics. The sections can be either studied as presented, or offered as problems for investigation and solution 

by the students. 

 

1. Introduction 
 

The fact that the mass of an object increases without 

limit as its speed approaches c does not of itself 

prevent the object from attaining a speed arbitrarily 

close to c. In the following examples we investigate 

changes in time, mass and distance when traveling at 

relativistic speeds, acknowledging the technical 

challenges to actually doing so. We will be 

particularly interested in comparing earthbound 

measurements with those of the travelers launched 

into space. With some guidance, students introduced 

to special relativity in a calculus based physics course 

should readily understand this study, intended to 

challenge and stimulate them [1]. 

The familiar equation t = v/g reveals—perhaps 

surprisingly—that a constant acceleration of g 

(9.80665 m/s2) takes an object from a speed of 0 to c  

 

 

(299,792,458 m/s) in just 30,570,323 s or 

353.8231829 days. The number of days it takes with 

an acceleration of g to reach various fractions of c, 

with no relativistic considerations, is shown in 

column 1 of table 1. 

Although we might adopt any acceleration for this 

non-relativistic example, we use g because it is 

familiar to us both intellectually and experientially. 

Moreover, it requires a force not unreasonable to 

expect a future space vehicle to maintain, given that 

even today we can generate a much greater 

acceleration for several minutes after launch. Thus 

we will assume that g is not only the constant 

acceleration for the non-relativistic version of column 

1, but also the initial acceleration for the two 

relativistic versions tabulated in columns 2 and 3. 
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Note that we are not assuming that a constant 

acceleration is maintained. Rather we make a 

different assumption, one that seems to place a more 

sensible demand upon the mechanism of a space 

vehicle than that of constant acceleration. We assume 

a constant delivery of force—as measured by 

earthbound observers—one which launches the 

vehicle with an acceleration of g but which later 

produces a different acceleration as mass or time are 

relativistically modified. This force continues until a 

prescribed speed is attained, after which the vehicle 

can coast. Of course a model with constant force is 

only one possibility, although it is surely more 

practical than a model with constant acceleration, 

which could demand impossible outputs as mass 

increases. Students are encouraged to invent their 

own models with different assumptions. 

 

2. Measurements from the earth, 

assuming external propulsion and 

relativistic mass increase 
 

The achievement of relativistic speeds seems more 

likely to come about through a technology which 

utilizes an external source of propulsion rather than 

one which uses onboard fuel [2,3]. Even a cargo of 

matter-antimatter—the most promising current 

prospect—would be prohibitively heavy. The student 

might like to research the possibility of solar sails, 

and calculate the dimensions needed for feasible 

travel [4]. The prospects for utilizing “dark energy” 

seem more remote at this time, but may eventually 

materialize. Whatever the mechanism, since our 

study assumes an external source of propulsion, we 

will encounter no decrease in mass due to 

consumption of fuel. (We note that the assumption of 

a diminishing supply of onboard fuel leads to very 

different scenarios and equations from those studied 

in this paper.) 

Time:  Assume that the space-time coordinate system 

used by observers on the earth is an inertial frame of 

reference. That is, the accelerations due to the earth’s 

rotation and all other circular motions are negligible 

and can be disregarded.  

In our model, if m0 is the rest mass of the vehicle, a 

force of m0g is continuously applied until 

acceleration is no longer needed. As the speed v 

increases, the mass increases by a factor of  

1 1- v2 c2 , as measured by the earthbound 

observers [5]. Since force is the derivative of the 

relativistic momentum, we have: 

d (m0v / 1- v
2

c
2
)

dt
=m0 g ,    (1) 

and after integration we obtain   

 
v

1- v2 c2
= gt  or   

     

 t =
v

g 1- v
2

c
2

.   (2)                          

 

If we let u = v/c then, with 0 ≤ u ≤ 1, 

t =
c

g

æ

è
ç

ö

ø
÷

u

1-u
2

        (3) 

 

The number of days needed to reach various values 

of u is shown in column 2 of table 1. Compare these 

with those in column 1, where t = v/g. Since 
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u

1- u2
> u  for 0 ≤ u ≤ 1, the values in column 2 are 

always greater than those in column 1, with a ratio 

approaching ¥  as u approaches 1. Thus the vehicle 

can never achieve the speed of light, but can get 

arbitrarily close to it. As its mass increases without 

limit, it takes longer and longer to increase its speed 

by the slightest increment. 

Let us remind ourselves that equation (3) and the 

values in column 2 specify how observers on earth 

measure the vehicle’s motion. They are not the 

measurements of the travelers themselves, which we 

will consider below.       

Distance: While the time to attain any particular 

speed is understandably greater when mass is subject 

to relativistic increase, is the same true for the 

distance traveled? If we call the target speed vt, then 

the non-relativistic distance traveled from launch 

until vt is attained is the familiar  

s1 = gt dt = vt

2
2g

0

v t /gò , or, if  ut = vt /c,   

s1 =
c

2
u

2

t

2g
   (4) 

 The distance traveled with relativistic mass increase 

is 

s2 = v dt = gc
t

c2 + (gt)2
dt

0

tt

ò
0

vt

ò .  

The upper limit of the integral, tt , signifies 

v
t

g 1- v
2

t c
2

 , obtained directly from (2), while the 

equivalence  v =
gtc

c2 + (gt)2
 is an algebraic 

consequence of (2). After integration   

 s2 =
c2

g

c

c2 - v2
t

-1
æ

è

ç
ç

ö

ø

÷
÷
,    

and with ut = vt /c this becomes   

s2 =
c2

g

1

1-u2
t

-1
æ

è

ç
ç

ö

ø

÷
÷
.        (5) 

It is easily shown that s2> s1 for all t > 0. Inspection 

of (5) reveals that as ut®1, s2®¥. This is to be 

expected, since for the earthbound observers the 

vehicle will be traveling at a speed near c for an 

amount of time that according to (3) increases 

without limit. 

3. Measurements by the travelers 

Time:  How will the situation change if we take into 

account time dilation, whose effects the travelers’ 

measurements will reflect?  

Let T be the elapsed time since launch according to 

the travelers’ onboard clock. T is a function of t, the 

time as measured by the observers on earth. This 

function depends upon the vehicle’s entire history of 

motion, not just upon what is occurring at the 

moment. By contrast, history will prove irrelevant to 

the travelers’ measurement of instantaneous speed, V. 

That is, we will see that regardless of the vehicle’s 

history, the speed measured by the observers and the 

speed measured by the travelers are always equal. 

This of course is an ambiguous statement, but before 

we clarify what it means, let us show the simple 

derivation. Let s represent the distance traveled since 

launch as measured by the observers, and S the 

distance as measured by the travelers.  For any brief 

interval, time dilation yields: 
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 dT = 1- v2 c2 dt  

But since the travelers measure the space outside 

them to be moving past their window at a velocity of 

v, length contraction yields [6]:  

dS = 1- v2 c2 ds , and thus the instantaneous speed 

measured by the travelers is    

V =
dS

dT
=

1- v2 c2

1- v2 c2

ds

dt
=

ds

dt
= v

              

(6)  

Time dilation apparently compensates for length 

contraction, but again, what exactly does (6) assert? 

We can interpret it with a simple example. Suppose 

that both the observers and the travelers, with much 

more knowledge of the solar system and galaxy than 

we have, specify event A to be the vehicle’s passage 

past a particular comet in the Oort cloud (perhaps 

even specifying that the vehicle’s vector of motion is 

perpendicular to a line from the vehicle to the center 

of the comet.) Then the speed v which the observers 

measure at event A will equal the speed V which the 

travelers seeon their speedometer at their own event 

A. That is, the observers and the travelers will agree 

on the vehicle’s speed at the moment event A occurs. 

There is no confusion as to whether these two equal 

speeds are “happening at the same time,” which is 

not only confusing but also meaningless. We can, 

however, say something definite about time: as we 

will show below, if the travelers measure event A 

happening at time T, and the observers measure it 

happening at time t, then T<t. That is, the travelers 

measure its occurrence at an earlier time on their 

clock than the observers do on theirs. 

We will use equation (6) to obtain T as a function of t 

for the specific motion portrayed in (2), but now as 

measured by the travelers. Without noticing anything 

strange, since they are not comparing their 

measurements to those of the observers, the travelers 

are subject to two relativistic effects: a dilation of 

time, and a contraction of the space outside as it flies 

by their vehicle.  

Solving for v in (2) gives v =
tgc

c2 + (gt)2
, and 

substituting this into 

dT = 1- v2 c2 dt  yields 

 

dT = 1-
t 2g2c2

c2 (c2 + (gt)2 )
dt =

c2 + t2g2 - t2g2

c2 + (gt)2
dt =

c

c2 + (gt)2
dt . 

 

   Integrating and solving for the constant of 

integration gives: 

T =
c

g
sinh-1 gt

c

æ

è
ç

ö

ø
÷ , or                          (7)                       

t =
c

g
sinh

gT

c

æ

è
ç

ö

ø
÷        (8)                           

Replacing t in (2) with t from (8) produces the 

equation 

c

g
sinh

gT

c

æ

è
ç

ö

ø
÷ =

v

g 1- v2
c

2
, which yields  
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 T =
c

g
ln

v+ c

c2 - v2

æ

è
ç

ö

ø
÷     (9) 

Letting u = v/c,  

 T =
c

g
ln

u +1

1- u
2

æ

è
ç

ö

ø
÷.             (10) 

This is still less than satisfactory, for T on the left 

side of (10) represents the travelers’ measurement of 

time, while u on the right side is the fraction of c as 

measured by the observers. However, since for any 

event A the speed V equals the speed v, u could just 

as well be equated with V/c, and (10) would be 

exclusively in terms of the travelers’ measurements. 

The value of T for various speeds u is given in 

column 3, table 1. The entire column is in italics to 

indicate that it represents the measurements of the 

travelers. T<t for all u, an inequality which grows 

with increasing u. 

A note on measurement: Before calculating the 

distance as measured by the travelers, let us briefly 

consider the term measurement itself. This is a term 

used repetitively, not only in this paper but in all 

physical discussions. While the term conjures up—

and indeed almost always signifies—an observation 

using some calibrated instrument or apparatus, it 

might be useful to explore the concept somewhat. 

Consider this line of reasoning. Between the above 

event A and a later event B, such as the encounter 

with a second comet, there is an interval of time and 

distance measured differently by the observers and 

the travelers.  (To be clear, here the word “interval” is 

not being used to designate the invariant quantity 

[(cDt)2 - (Dx)2 ]1/2 .) Let us say that during this interval 

the traveler (we will assume female), using her 

onboard clock and her right index finger placed on 

her left wrist, calculates that during this interval her 

pulse has held steady at 60 beats per minute. An 

observer on earth, with electromagnetic access to the 

traveler’s pulse but using his own clock, will 

calculate that the traveler’s pulse began the interval 

at, say, 40 beats per minute, and after the vehicle’s 

acceleration through the interval, finished at 35 beats 

per minute. Between events A and B the total number 

of beats had to be the same for the traveler and the 

observer, but the onboard clock measured fewer 

minutes than the clock on earth. To the observer, the 

traveler’s heart seemed to beat increasingly slowly, 

while the traveler herself felt quite normal.  

Any onboard activity would give a similar result. For 

example, the observer would measure a male 

traveler’s facial hair to be growing slowly, although 

by the onboard clock the traveler himself would 

shave according to his usual schedule. To the 

observer the traveler’s speech would get slower and 

slower as the vehicle accelerated, as would the 

appearance of emotionson his face, or even—if the 

capacity to register this had been discovered—the 

succession of his thoughts. None of these activities 

would appear or feel unusual to the traveler. To him 

the onboard clock itself would advance normally, 

although the observer would perceive it as slowing 

down compared with his own clock.  

The statement that time itself slows down can be 

misleading, although it does give a sense that 

something more substantial than a mere appearance is 

actually happening. One must remember that in this 

study it ultimately refers to a measurement by a clock 

in an inertial frame, of activities that are accelerating 

relative to that inertial frame. (A more complete 

understanding is beyond the scope of this paper, but a 

comprehensive and comprehensible reference is [7].) 

Distance:  Taking a closer look at columns 2 and 3, is 

there some contradiction here? If the travelers take 

only 936.45 days to reach u = .99 (column 3), and the 

observers measure it as 2483.10 days (column 2), 

how could the speeds always be the same at every 

event along the route, such as event A? Wouldn’t the 
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travelers measure an average speed much faster than 

that measured by the observers? We can resolve this 

difficulty by considering the contraction of exterior 

distance as measured by the travelers.  

How far do the travelers measure that they have gone 

since the moment of launch until the moment they 

attain a speed of vt? Call this distance s3.  

s3 = V dT
0

tt

ò . Using (9), integrating, and replacing  vt/c by ut yields 

s3 =
c2

2g

æ

è
ç

ö

ø
÷ ln

1

1-ut
2

æ

è
ç

ö

ø
÷.                (11) 

Substitution of various values of u into (5) and (11) indicates that for 0 < u < 1, the travelers’ distance will be 

shorter than the distance observed from earth. However, we can be more convincing than this. Consider two 

specific events, B followed closely by C. The observers and travelers see the same speed at B and the same speed 

at C, and thus the same difference dut. The observers measure the distance between these events as ds2 while the 

travelers measure it as ds3. Consider the ratio 

ds3

ds2

=
ds3 dut

ds2 dut

=

d
c2

2g
ln

1

1-ut
2

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ dut

d
c2

g

1

1-u2
t

-1
æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç

ö

ø

÷
÷

dut

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

=
ut 1-ut

2( )
ut 1-ut

2( )
3/2
= 1-ut

2 .  (12) 

Since ds3 < ds2  for all such intervals, integrating to 

find the distance between launch and any later event 

will always result in s3 < s2. Comparing (11) with (5), 

we find that at u = .5, s3/s2 = .93 and at u = .99, s3/s2 = 

.32.  In fact, by applying L’Hôpital’s rule to the ratio 

s3/s2 , we can show that s3 / s2 ® 0 as u®1. To sum 

up, although the time measured is less for the 

travelers, so is the distance. Thus the equality of 

speeds shown in (6) is compatible with the briefer 

travel times of column 3. 

Although we will not consider it here, we might note 

that once the travelers are moving at a speed near c 

the passage of time is so slow by their measurement 

that within their lifetime they can reach distant 

locations in the galaxy or even beyond [8,9]. 

While the assumption of a constant delivery of force 

may be too simple and even unrealistic, it generates 

an interesting question: how does the vehicle’s power 

output—the delivery of energy per unit of time—

depend upon time as time itself dilates? That is, how 

do the travelers measure the delivery of force? We 

leave this for the motivated student to research. 

4. Data 

Table 1. Exterior propulsion. Time to reach u=v/c,  

or V/c to nearest hundredthof a day. In columns  

1 and 2, t is time for observers; in column 3, T is time  

for travelers. c = 299,792,458 m/s, g=9.80665 m/s2 

U=v/c 1 2 3 

.9999 353.79 25017.19 1752.03 

.99 350.28 2483.10 936.45 

.98 346.75 1742.47 812.93 

.95 336.13 1076.48 648.13 
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.90 318.44 730.55 520.91 

.80 283.06 471.76 388.71 

.70 247.68 346.82 306.87 

.60 212.29 265.37 245.25 

.50 176.91 204.28 194.36 

.40 141.53 154.42 149.90 

.30 105.15 111.27 109.52 

.20 70.76 72.56 71.73 

.10 35.38 35.56 35.50 

1:No relativistic effects; t = v /g. 

2:Relativistic mass increase, no time dilation; as  

observed from earth; t = c g( ) u 1- u2( ). 
3: Relativistic mass increase, time dilation; as  

experienced by the travelers; 

T = c g( ) ln (u+1) 1-u2( ) . 

5. Conclusion: turning student 

questions into research 

Let us look at three examples of questions which open 

the way to stimulating research. (Like many other 

instructors, I’ve finally learned to resist giving too 

complete an answer.) 

A thoughtful student will inevitably reason like this: 

since the travelers see the earth accelerating away 

from them, why not reverse the calculations? Now the 

traveler measures the observer’s clock to be going 

slow. What happens when the vehicle returns to earth 

35.28 35.56 35.50and the two clocks are compared 

side by side? How can they both be slow? Isn’t there 

some contradiction? No, in fact, there isn’t. The earth 

is assumed to carry a fixed, inertial frame of 

reference, while the vehicle carries an accelerating 

frame, not only because of its acceleration of g, but 

also because of the further acceleration it requires to 

turn around and return to earth. Our calculations 

apply to inertial frames only, and these accelerations 

would affect the clock on the vehicle but not the clock 

on earth. The situation is not symmetric. Research the 

“twin paradox.” 

Another student might point out the imprecision in 

our calculations: the effects of general relativity, 

which we have not included in this study, would 

surely modify our results. True, but the effects of 

accelerating at g are indistinguishable from those of 

the earth’s gravitational field, which we know from 

experiment has a negligible effect on mass and time 

[10]. Our calculations are accurate to several decimal 

places beyond the hundredths to which we’ve 

rounded off.  

A third questioner, perhaps a down-to-earth 

engineering student, might dismiss relativistic travel 

as mere fantasy, theoretically impossible, beyond any 

feasible technology. This is the stuff of pop  

culture, why bother with it? Perhaps so, but an overly 

conservative attitude—however well informed—can 

be too restrictive. At the end of the nineteenth century 

many scientists believed that physics had reached its 

culmination. Probably the most celebrated comment 

to this effect was A.A.Michelson’s of 1894 [11]: “The 

more important fundamental laws and facts of 

physical science have all been discovered, and these 

are so firmly established that the possibility of their 

ever being supplanted in consequence of new 

discoveries is exceedingly remote.” Perhaps every 

era, satisfied with its accomplishments, believes it has 

made the ultimate discoveries [12]. This attitude is 

somewhat tempered today, for recent discoveries—

the acceleration of the universe’s expansion, or the 

finding of the Higgs boson in 2012—have clearly 

posed new fundamental questions. Without apology 

we can speculate sensibly about the future and make 

tentative assumptions such as those in this paper. 
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Abstract 

Mount Everest is the world’s highest mountain and it has a height of about 9Km. The 

estimation of the maximum of height of a mountain on earth using basic physics is done by 

famous Physicist victor Weisskopf (1908 – 2002). According toWeisskopf, the height of a 

mountain on earth cannot be more than 44Km. If the height of a mountain is more than this 

critical value, the mountain would start sinking. During the sinking processes, the 

directionality of the bonds between the atoms of the solid rock below breaks due to the 

weight of the mountain. As a result, solid rocks below melt and flow aside. This value was 

estimated by taking the solid rock below the mountain as SiO2 and the ratio of liquefaction 

energy to binding energy of the solid rock was supposed to be same as that of ice. Actually, 

this maximum value of the height of a mountain is less than 44Km because the rock below is 

warm and needs less energy to liquefy. Weisskopf has also derived a formula in terms of 

fundamental constants for calculating the critical height of a mountain on any planet with 

same material structure as earth, if the number of nucleons in the planet is known. 

1.Introduction 

Mount Everest is the world’s height peak in the 

eastern end of Himalayas and it has a height of 

about 9Km. Mountains on earth cannot grow 

above 9Km. The answer is if a mountain is very 

high, it would start sinking due to its own 

weight. 

Victor Weisskopf (1908 -2002) was a famous 

physicist. He had made significant contributions 

in nuclear physics and quantum 

electrodynamics. Weisskopf served as professor 

in physics at MIT from 1946 to 1960. He was 

the director of CERN from 1960 to 1965. After 

leaving CERN, Weisskopf   returned to MIT in  

 

 

1965. At MIT he became in1967 head of 

department of physics, a post he held until 

1973.Every summer CERN organizes visits for 

local high school students. The estimation of the 

maximum height of a mountain is one of the 

lectures given to high school students by 

Weisskopf. According to him, the maximum 

height of a mountain on earth is around 44Km. 

Weisskopf emphasized the importance of using 

basic knowledge in physics as a means to make 

reasonable estimates. 

Weisskopf has also derived a formula in terms 

of fundamental constants for calculating the 

critical height of a mountain on any planet with 
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same material structure as earth, if the number 

of nucleons in the planet is known. 

The rest of the paper is organized as follows. 

The estimation of the height of a mountain on 

earth by Weisskopf is given in Section 2. The 

height of a mountain in terms of fundamental 

constants is presented in Section 3. Conclusion 

is given in Section 4. 

2.Estimation of the height of a mountain on 

earth by Weisskopf 

The following derivation is from the lecture 

notes(1969) of Victor Weisskopf. 

If a mountain is very high, it would start sinking 

due to its weight. The force due to the weight of 

the mountain is sufficient to break the 

directionality of the bonds between the atoms in 

the rock. This makes the underlying rock melt 

and flow aside so that the mountain sinks. 

The shape of the mountain is taken as shown in 

Fig.1. Let the mass of the mountain be M and its 

height be h. Let it sink by a distance x . 

 

 

 

h 

 

 

 

 

 

 

Figure1. Mountain of height h 

Loss in gravitational energy when the mountain 

sinks by x  

= Mgx (1) 

This loss in gravitational energy is used to 

liquefy the rock below. If the mountain has to 

sink by a distance x , a layer of thickness x  

below the mountain must melt and flow away. 

The energy required to liquefy a layer of 

thickness x  

=Eliq ( )n x a (2) 

Where 

   Eliq = Liquefaction energy (i.e. latent heat of 

melting) per molecule 

n   Number of molecules per unit volume of 

the rock 

a Area of cross-section of the base of the 

mountain 

Equating (1) and (2), we get 

Mgx  = Eliq ( )n x a  

 Mg =Eliq n a (3)    

Now we conclude that if the mass M of the 

mountain is less than that given by (3), the 

mountain will not sink. Hence the masses of 

stable mountains is given by 

liq
n a

g

EM  (4) 

Let m denote the mass of a molecule of the rock, 

and A  is the number of protons and neutrons in 

a molecule. If mp denotes the mass of a proton, 

then m  A mp, taking the mass of a neutron  

approximately equalto the mass of a proton. 

Then the mass M of the mountain can be 

written as 

 
 

ll 

x 

M 

Liquefied rock flows to side 

x 
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M  = volume of the mountain  number of 

molecules per unit volumemass of a molecule 

 = ha n m   

 = h a n A mp(5) 

Substitution of (5) in (4) gives 

 liq

p

h
E

Ag m
 (6) 

 The above expression shows that the height of a 

mountain must be less than the critical valuehc = 

Eliq /Agmp for the mountain not to sink into 

earth. 

When a solid melts, the whole bonds between 

the atoms are not broken, just the directionality 

of the bonds are broken. This enables a liquid to 

flow andthe energy necessary to break the 

directionality of bonds, i.e to liquefy, is less 

than the binding energy. To calculate Eliq, 

Weisskopf has compared the latent heat of 

melting of ice ( � 80 cal/gm) with that of latent 

of vaporisation of water ( � 540cal/gm). The 

latent heat of melting of ice is approximately 

one-seventh of latent heat of vaporisation of 

water. Weisskopf has applied this ratio for ice to 

solids at the baseof the mountain. The binding 

energy of a solid is the energy applied to a solid 

to tear it completely into separate atoms. The 

binding energy of a solid is more than the 

energy required to tear a liquid into separate 

atoms. It would be a good estimate to assume 

that for a solid the melting energy is about one-

tenth of binding energy. So Weisskopf takes 

Energy of melting  ~1/7 energy of vaporisation 

~1/10  Binding energy of solid 

Hence we have 

liq
BE  (7) 

where  β = ~0.1and B   binding energy of the 

solid per molecule. 

Substituting (7) in (6), we obtain 

0.1

p

B
h

Ag m
 (8) 

B isabout 2.7ev for SiO2,the main constituent of 

the rock. The mass number of silicon atom is 28 

and that of oxygen is 16. So, A  28 + 2 16 = 

60 for SiO2. 

mp = 1.672× 10-27Kg and g   9.8 m/S2 

Using the above values in (8), we get 

19

27
0.1 2.7 1.6 10

60 9.8 1.672 10
h m




   

  
 

43941m  

44h Km   

Therefore, the height of a mountain on earth 

must be less than 44Km to be supported by rock 

at its base. Actually, the upper limit is smaller 

than 44Km because the rock at the base of the 

mountain is warm and needs less energy to 

liquefy. The height of world’s top five 

mountains is given in Table 1. 

 

Table1. Five world’s highest mountains 

 

Rank Mountain Height 
in Km 

1 Everest 8.8498 
2 K2(Mount 

Godwin Austen) 
8.6106 

3 Kanchenjunga 8.5859 
4 Lhotse 8.5161 
5 Makalu 8.4630 
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Mount Everest is the world’s highest mountain 

and it has height of about 9Km. The highest 

mountain on moon is Mons Huygens, which has 

a height of 5.5Km. The highest mountain 

Maxwell Montes on the planet Venus is about 

11Km. Boosaule Montes is the highest 

mountain on Jupiter’s moon IO and has a height 

of 17.5Km.  The highest mountain on Mars is 

Olympus Mons, which has a height of about 

22Km. Olympus Mons is about 2.5 times higher 

than Everest. Hence, the estimation given by 

Weisskopf for the maximum height of a 

mountain on earth seems to be valid for other 

planets as well. 

3.Height of a mountain in terms of 

fundamental constants by Weisskopf 

Equation (6) shows that on other planets the 

maximum height (critical height) of a mountain 

would be different because the acceleration due 

to gravity g changes and the planet may be 

made of different material. So, Weisskopf has 

expressed (8) in terms of fundamental constants 

eliminating g . 

The force of attraction between the mass m1 and 

the earth is given by 

1
21

E

E

g Gm Mm
R

  

2
E

E

g GM
R

  (9) 

where ME = mass of the earth 

RE = radius of the earth 

G=gravitational constant=6.67×10-11m3/Kg-S2 

Let NE = number of nucleons in the earth 

Taking the mass of a proton approximately 

equal to the mass of a neutron, we can write 

ME=NEmp(10)       

The earth consists mostly of SiO2 (A = 60) and 

iron (A = 67). The SiO2 molecule and the iron 

atom have approximately the same value of A. 

Therefore, the number of molecules in earth = 

NE /A 

The radius of SiO2 molecule is taken 

approximatelyequal to that of iron atom. The 

radius of both SiO2 and iron is written as fao 

with f � 4. 

Where ao = Bohr radius = 0.528 Å 

The radius of the hydrogen atom in the ground 

state is called Bohr radius. 

Volume of earth = number of molecules in earth 

× volume of a molecule 

 
3

34 4

3 3
E

E oA
N faR     

 
1

3

E o

EN
faR

A
 

 
 
 

(11) 

Using (10) and (11) in (9), we get 

22
3

1
E p

g

E o

A
GN m

faN


  
  

   

(12) 

The fine structure constant for gravity is defined 

as 

2

39

5.9 10
p

G c

Gm



  

(13) 

This constant is a dimensionless constant.From 

(13) we get 

2
G

p

c
G

m
 

                  (14) 

Where, 
2

h


  
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h  = Planck’s constant =6.62×10-34J-S 

c = speed of light in vacuum 

Using (14) in (12), we obtain 

 
2

12
33

1
G

E

p

c
g

o

NA
m fa
 

  
 
 

 
 
 

 (15) 

Substituting (15) in (8), the critical height hc of 

the mountain is given by 

ch 

1 5
3 3

2 20.1 1 1 1
o

G

B

c
E

f a
AN

 
  
 

   
  
  



(16) 

The binding energy B of the rock can be written 

as 

B  Rydberg 

1Rydberg (Ry) =
4

2

2
em e


= 13.6 ev 

Bohr radius = 
2

2o

e

a
m e

   

The fine structure constant  is defined as 

2
1

137c
e  �


 

Where,  

me = mass of an electron  

e   = charge of an electron 

Using the above values in (16), we obtain 

1 5
3 3

2 1 1
0.1

2
c

o G E

h f
a AN




 
   

 

   
  
  

(17) 

Where, 1
5

 �   for SiO2 . 

The above expression (17) gives hc /ao in terms 

of dimensionless constants and it can be used to 

calculate the critical height hc of a mountain on 

any other planet, if the number of nucleons in 

that planet is known and that planet has same 

material structure as earth. We cannot use (17) 

for a celestial object with a material structure 

different from that of earth as Eliq in that case 

would be different. 

4.Conclusion 

 The maximum height of a mountain on earth 

according to the estimation of Victor Weisskopf 

using basic physics is about 44Km. Actually, 

the maximum height of a mountain is less than 

44Km because the rock at the base of a 

mountain is warm and needs less energy to 

liquefy. On other planets, the maximum height 

of a mountain would be different because the 

acceleration due to gravity g  changes and the 

planet may be made of different material. 

Weisskopf has also derived a formula in terms 

of fundamental constants for calculating the 

critical height of a mountain on any planet with 

same material structure as earth, if the number 

of nucleons in the planet is known. Mount 

Everest is the world’s highest mountain and it 

has a height of about 9Km.The highest 

mountain on Mars is Olympus Mons, which has 

a height of about 22Km. So, the estimation 

given by Weisskopf for the maximum height of 

a mountain on earth seems to be valid for other 

planets as well. 

References 

[1] G.Venkataraman, Why Are Things The Way 

They Are? , (Universities Press,1992). 

______________________________________________________________________________ 

  



Physics Education                                     1                                    Apr – Jun 2016 
 

 
 Volume 32, Issue 2, Article Number: 4.                                                                          www.physedu.in  
 

 
Ice Phase Transition as a Sample of Finite System Phase transition 

      

M.R.Khoshbin-e-Khoshnazar     

Physics Department,  
Curriculum Development Center Organization & Educational Planning,  

P.O.Box 15855-363,Tehran, Iran 
E-mail: khoshbin@talif.sch.ir 

                                                   
(Submitted: 11-04-16) 

 

Abstract 

A phase is a physically homogeneous part of a substance separated from other parts of the system by an 
interface. Claim is that a transition from one phase to another at a given pressure occurs at a strictly 
constant temperature, and e.g. for the ice, it remains solid until it temperature reaches its melting point 
at 0°C. At that point, the ice stops getting warmer and begins to melt without a temperature change. 
Experiments show this claim is not correct and should be modified. The discussion concerning phase 
transitions in finite systems is certainly an interesting subject. Thermodynamic phase transitions are only 
defined for infinite systems. It has been shown this feature is common aspect in nuclear matter phase 
transitions, as well. 

 

Key Words:  Phase transition, Ice Phase transition, finite size, percolation, textbook 

  

Phase Transition  

I have reviewed the discussion on phase changes in 

several introductory physics textbooks [1-7] and 

found that all of them either imply or state outright 

that a body will not undergo a phase change until 

the entire body reaches the transition temperature.  

This is of course not the case; otherwise an entire 

ice cube would melt at once rather than from the 

outside in!  Only Young and Freedman [2] hint at  

 

this by stating “If we add heat slowly, to maintain 

the system very close to thermal equilibrium, the 

temperature remains at 0oC until all the ice is 

melted.” In the discussion of phase transitions, none 

of the texts explicitly mentions the possibility of a 

thermal gradient within the body or that the entire 

body does not typically change phase 

simultaneously. When I contacted with Jearl Walker 

(author of Fundamentals of Physics and The Flying 

Circus of Physics) about this matter, he wrote me in 

private letter :"…of course, I agree with you. What I 

say in class is that if I hold a blowtorch to an ice 

sheet…,I can get liquid water running down over 

the remaining subzero ice. However, I do not to get 

into that much details in the textbook because we 

can not do homework problems…So, I hope that the 
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real details, such as you have done, are brought out 

in upper level thermodynamic courses…"      

Actually, some years ago it has been shown in an 

abandoned paper [8] -by an experiment- that the ice 

has no definite melting point and is melting at a 

temperature below 0°C and gradually melts by 

increasing temperature: The ice has been placed in 

the cylindrical plastic glass and then the system puts 

in the water of a  big tank (isothermal source). Since 

the temperature of the water in the big tank does not 

change significantly when the ice melts, it chose as 

an isothermal source. To avoid any error they placed  

thermometer’s probe on the center of  block ice 

surface and recorded the temperature as a function 

of time. The ice initial temperature was -4.2 °C, and 

that temperature gradually increased to 0.0 °C over 

a total time of  about 15 minutes. This is exactly 

what one would expect. At time = 0, the entire block 

was at a temperature of -4.2 °C. The temperature at 

the probe increased only very slowly since it was 

insulated from the environment on all sides . As 

heat from the surroundings was gradually conducted 

through the ice to the probe, the temperature 

readings slowly increased, asymptotically 

approaching 0.0 °. In °C approximately 1/3 of the initial 

ice volume has been melted. While thermodynamics tell us:" 

in the typical transformation ice(-4.2°C) to ice(0°C),the 

ice does not change (melt) until to reach 0°C and 

then melts in an isothermal process in 0°C (see 

fig.1)."While their experiment showed that in 0°C 

one-third of the initial ice volume has been melted 

and the phase change occurs in the earlier time and 

temperature (in that experiment, approximately in -

3.6°C) in an non-isothermal process. Results has 

been shown in Fig.2. In other words, the suggested 

typical phase transition(fig.1) is not correct  and first 

part of it should be replaced by Fig.2. As it 

explained, it relates to heat flowing per time across 

area of the ice for temperature gradient which 

known as thermal conductivity.  

 

 Fig.1 suggested typical phase change for water which 

introduced in introductory  physics textbooks . [Adapted 

from: freespace.virgin.net/m.eckert/new_page6.htm]    

 
Fig. 2 The temperature vs time data which is fitted by 

polynomial curve (red curve). 

The reason is that the ice at the center would not 

begin to melt until the temperature there reached 

0ºC. In other words, this problem can only be solved 

by treating differential thickness elements and by 

recognizing that the ice temperature is not uniform 

during the phase transition though the temperature 

at the interface where the melting occurs is fixed at 

0oC.  
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Note that we addressed finite-size and finite-time 

corrections to the infinite-time bulk phase transition 

idealization of  water. The suggested typical phase 

change figure is correct in the infinite size limit, 

given an arbitrary long time scale to establish 

equilibrium. In other words, the thermodynamic 

phase transitions are only defined for infinite 

system. Of course, just about everything in a 

introductory textbook is idealized and full of 

caveats, not all of which are mentioned and in an 

introductory treatment it is simply not possible to 

cover all real-world complications in all physical 

processes, but the discussion concerning phase 

transitions in finite systems is certainly an important 

and interesting subject and it should be noted. 

 Amazingly, I recently informed about some other 

papers which suggested same feature is common 

aspect in nuclear matter phase transitions, as well 

[9-12]. As we noted already, the strict 

thermodynamic sense phase transitions are only 

defined for infinite systems- theoretically, systems 

for which the number of elementary constituents is 

comparable to Avagadro's number. There are 

similar investigations of finite-size modifications of 

nuclear matter phase transitions that they do not just 

constitute small modifications, but that they 

dominate the observables. The task of theoretical 

calculations based on finite discrete lattices is to 

extrapolate to infinite lattice size. In the nature there 

are a few systems with numbers of constituents on 

the order of 102 to 105.One of them is the 

fragmentation of atomic nuclei. For decades, there 

have been speculations that we may be able to see a 

phase coexistence between the Fermi liquid of 

ground state nuclei and the hadronic gas phase of 

individual nucleons and / or small cluster. There is 

similar feature might also for molecular 

fragmentation ( for Buckyball these studies were 

undertaken). Another phase transition postulated for 

finite systems is that between a hadron gas (where 

quarks and gluons are confined in color singlet) and 

plasma of quarks and gluons where they can move 

freely across the entire volume. Under laboratory 

conditions, this phase transition could be able to 

explored by central collisions of high-energy heavy 

ions at beem energies above 10 Gev per nucleon. 

What all of these mesoscopic systems have in 

common is that their thermodynamic state variables 

can not be observed directly. All systems are only 

transiently excited to the energies that are sufficient 

to explore the phase transition.  

It may be percolation theory [13] could be explained 

this feature. In such systems, the injection of 

excitation energy results in constituents moving 

apart from each other beyond the range of the 

interaction. This bond breaking causes neighbors to 

loose contact with each other. Consitituents that are 

still contacted via bonds will end up as clusters in 

detectors. 
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Abstract 

 Matrix method in paraxial ray optics is essential for methodical understanding in graduate 
physics students. However, there is almost no text book which gives a complete description about the 
matrix method of paraxial ray optics, in particular, the mechanism of reflection. So in this article the 
matrix method of reflection from plane and curved surfaces will be dealt with in details and for 
completeness refraction in optical systems will also be explained.    
 
 

1. Introduction 
 Paraxial ray optics is essential for 
understanding of geometrical optics especially for 
an optical system consisting of several reflecting 
and refracting surfaces. Also it is an essential part 
of undergraduate physics syllabus. However there 
is almost no standard text book [1–5] which gives 
a complete description about the matrix method of 
paraxial ray optics, in particular, the mechanism 
of reflection although in two recent books on 
optics [6–7] an introductory outline have been 
made. So in this article the matrix method of 
reflection from plane and curved surfaces will be 
explained in detail and for completeness 
refraction at plane surface will also be considered. 

 
2. Basic ideas 
 A combination of reflecting or refracting 
surfaces or a combination of thin lenses or a thick 
lens produces an optical system and for lenses it is 
called lens system. We take x axis as the axis of 
the optical system and configure this system with 
small aperture such that only paraxial rays enter 
the system. These paraxial rays are very close to 
the principal axis (x axis) and make very small 
angle with it. For this we take cylindrical  

 
symmetry such that a set of paraxial rays lie in a 
plane making same small angle of inclination. 

 
3. Coordinate of a ray 

 
Figure 1 

 We consider an optical system L and a 
paraxial ray PL as shown in figure 1. The 
coordinates of point P can be specified by the 
distance from the x axis and the inclination of the 
ray PL with principal axis (x axis) measured in 
counter clockwise direction (for measurement in 
the clockwise direction the angle will be 
negative). The slope of PL is  tan  and it 
will vary with medium. So we choose a new 
coordinate   tan . Thus the 

coordinates of the paraxial ray at P will be ),( y , 

where y  is the distance of point P from x axis or 

principal axis and the refractive index of the 
medium is  . Of course, the coordinate at L will 
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differ inside and outside the optical system 
because of refractive index. 
 
4. Translation matrix 

 
Figure 2 

 We take a paraxial ray P1P2 specified by 
inclination and distance from principal axis (x 
axis). The coordinates of P1 and P2 will be 
respectively ),( 11 y  and ),( 22 y . From geometry 

shown in figure 2 the slope of paraxial ray P1P2 is 
same and so for xxx  12  and for small angles 

for paraxial rays we get 
 121212 tantan    

Also

 /tan)( 11111212 xyxyxxyy   

Hence in matrix notation 
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Here 








2

2

y


 and 









1

1

y


 are two column matrices 

defined as the coordinate of the paraxial ray P1P2 
at points P1 and P2 respectively. The 22   square 

matrix 









1/

01

x
T  is called translation 

matrix. Here x  is the translation along x axis of 
point P1 to point P2 and the refractive index of the 
medium is  . It should be noted that determinant 

of translation matrix is unity, i.e. 1||det  TT . 

We can also write the matrix equation as 
]1[]2[ T . 

 
5. Reflection at a plane surface 

 
Figure 3 

 We take an incident paraxial ray P1A 
which after reflection at A by a plane mirror 
produces a reflected ray AP2 as shown in figure 3. 
From laws of reflection we know the angle of 
incidence is equal to the angle of reflection. Also 
at the point of incidence P1→A and P2→A. Thus 
the angles subtended with dotted line parallel to x 
axis by incident and reflected ray will be i1  

and r 2  (or r2 ). The negative sign is 

due to the fact that angle of incidence and angle of 
reflection are measured in the opposite direction 
from the x axis or principal axis (angle in counter 
clockwise direction measured from the dotted line 
is positive while in clockwise direction is 
negative). Thus ri   gives 
 )tan(tantantan 21   ri  

Or,  21    

Also  yyy  12  
Hence in matrix notation 
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Here 



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

2

2

y


 and 









1

1

y


 are two column matrices 

defined as the coordinate of the paraxial ray P1P2 
at points P1 and P2 respectively which are very 
close to point A on the reflecting plane surface. 

The 22   square matrix 









10

01
FR  is called 

the reflection matrix for plane surface. It should 
be noted that determinant of reflection matrix is 
negative unity, i.e. 1||det  FF RR . We can 

also write the matrix equation as ]1[]2[ FR . 

This is the essential difference between reflection 
and refraction.  

 
6.Reflection at a concave surface 

 
Figure 4 
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 In case of reflection at a concave spherical 
surface we take an incident paraxial ray P1A 
which after reflection at A by a spherical mirror 
produces a reflected ray AP2 (figure 4). Also at 
the point of incidence P1→A and P2→A. In this 
case we have to measure angles from principal 
axis for which a horizontal line is drawn at A. 
Thus the angles subtended with dotted line 
parallel to x axis by incident and reflected rays 
will be 1 i  and   2r  respectively.Here 

 is the angle subtended by AC, the radius of 

curvature with positive direction of x axis or 
principal axis. From laws of reflection we know 
angle of incidence is equal to angle of reflection 
or 

)()(tantan 21   riri  

Or, 12 2    

Or, Ry /2 112    

Here the radius of curvature of the spherical 
mirror is R  and so Ry /1 . 

Also  yyy  12  

Hence in matrix notation 
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The 22   square matrix 









10

/21 R
RF


 is 

called reflection matrix for concave spherical 
surface. It should be noted that determinant of 
reflection matrix is negative unity i.e. 

1||det  FF RR . For R  we have plane 

reflecting surface and 









10

01
FR . We can also 

write the matrix equation as ]1[]2[ FR . 

 
7. Reflection at a convex surface 

 
Figure 5 

 In case of reflection at a convex spherical 
surface we take an incident paraxial ray P1A 

which after reflection at A by the mirror produces 
a reflected ray AP2. Also at the point of incidence 
P1→A and P2→A. Here we have to measure 
angles from principal axis for which a horizontal 
line is drawn at A. Thus from figure 5 the angles 
subtended with dotted line parallel to x axis by 
incident and reflected ray will be respectively 

)(1  i  (  is measured from the dotted line 

in clockwise direction and so negative) or 

)(1  i and )()( 2  r ( 2  is 

negative because it is measured in the clockwise 
direction)or )()( 2  r . Hence from 

laws of reflection we know angle of incidence is 
equal to angle of reflection or 

)tan()tan(tantan 21   ri  

[or, )tan()tan(tantan 21   ri ] 

Or,   21  

Or, Ry /22 11212    

If the radius of curvature of the spherical mirror 
be R  then Ry /1 . 

Also yyy  12  

Hence in matrix notation 
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The 22   square matrix 









10

/21 R
RF


 is 

called reflection matrix for convex spherical 
surface. It should be noted that determinant of 
reflection matrix is negative unity i.e. 

1||det  FF RR . For R  we have plane 

reflecting surface and 









10

01
FR . We can also 

write the matrix equation as ]1[]2[ FR . 

 
8. Object image relation for spherical 
mirror 
 It is now easy to derive the system matrix 
for an object at a distance u  from the surface of 
the mirror and the corresponding image distance 
  in case of reflection at the spherical curved 
surface as follows: 
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Object → Translation → Reflection → 
Translation → Image 
 ]1[]2[ uT  

 ]2[]3[ FR  

 ]3[]4[ T  

Or, ]1[]1[]2[]4[ STRTRT uFF    
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Equating the coefficient of 1  to zero (or for axial 

point object and image 014  yy ) we get 

 P
fru


1211


 

 
9. Refraction at a plane surface 

 
Figure 6 

 We take an incident paraxial ray P1A 
which after refraction at A by aplane interface 
separating two medium 1 and 2 with refractive 
indices respectively 1  and 2 , produces a 

refracted ray AP2. From laws of refraction we 
know Snell’s law is valid. Also at the point of 
incidence P1→A and P2→A. Thus the angles 
subtended with dotted line parallel to x axis by 
incident and reflected ray will be i1  and 

r2 . Thus 

 122121 sinsin   riri  

Also yyy  12  

Hence in matrix notation 
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 and 
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 are two column matrices 

defined as the coordinate of the paraxial ray P1P2 
at points P1 and P2 respectively. The 22   square 

matrix 









10

01
RR  is called the refraction 

matrix for plane surface. It should be noted that 
determinant of refraction matrix is unity, i.e. 

1||det  RR RR . This gives the difference 

between reflection and refraction as stated earlier. 
We can also write the matrix equation as 

]1[]2[ RR . 

 
10. Conclusions 
 It is now a simple task to derive the 

refraction matrix for refraction at spherical 

surface, the object – image relation, the system 

matrix for lens and lens system, so on. All these 

are mentioned in the standard text books 

mentioned above. 

 Thisformalism clearly depicts the insight 

concept of matrix method of paraxial ray optics 

based on the undergraduate theoretical 

knowledge. Emphasis is given so that 

undergraduate students can think of new and 

novel ideas to increase their skill to create new 

and novel problems for proper understanding. 
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Abstract

Given the equation motion of a moving charged particle in a controlled electromagnetic
field, this paper proves that its velocity-trajectory motion converges to an specified
velocity-surface in the 3-D Euclidean dimensional space. This is basically realized by just
manipulating the electric field of an electromagnetic field. Lyapunov theory is invoked to
test our statement; besides, a numerical example is provided to support our theoretical
contribution. Finally, we consider that the exposition of this paper could be of interest to
undergraduate students.

1 Introduction

The second Lyapunov method, also called
The Direct Lyapunov Method, is now widely
used to analyse stability motion of dynamic
systems due to its simplicity and efficiency.
This theory has been applied, for instance, in
physics, astronomy, chemistry, biology, and

so on. The main benefit of Lyapunov theory
is its ability to conclude stability of systems
(stability in the sense of Lyapunov) without
explicitly integrating the differential equa-
tions involved in our system. This method
is basically a generalization of the idea that a
energy function, the Lyapunov function, asso-
ciated to a system to be analysed, is decreas-
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ing along the system trajectory. For a brief
discussion on this theory, see, for instance [1].

On the other hand, and motivated by ap-
plications where the natural operation mode
is periodic, for instance, orbital stabilization
of mechanical systems (see, e.g., [2] and refer-
ences therein), stability analysis of a velocity-
surface for a moving charged particle in a
electromagnetic environment is here analysed
by using Lyapunov theory. That is to say,
given the motion of a travelling charged par-
ticle in a controlled electromagnetic field, we
prove that its velocity-trajectory converges to
an specified velocity-surface in the 3-D Eu-
clidean dimensional space. At last to say, the
use of a Lyapunov function to conclude or-
bital stability of dynamical systems is also
covered in [3].

The rest of this paper is organized as fol-
lows. Section II gives the problem statement
and a solution to it. Section III shows a nu-
merical experiment to support our theoreti-
cal affirmation. Finally, Section IV states the
conclusions.

2 Velocity-surface

stability analysis

The objective of this section is to demon-
strate that it is possible to produce a 3-
D-velocity-surface such that any velocity-
trajectory of a charged particle in motion
starting close enough to this surface, will con-
verge to it as time goes on. This is realized by
manipulating the electric field of an electro-
magnetic field. Lyapunov theory is the math-

ematical tool employed to stablish this state-
ment.
The equation describing the motion of a

charged particle Q in a electromagnetic fields
is defined by

m
dv

dt
= Q[v×B+ E], (1)

where B and E are the magnetic and electric
fields, respectively; v is the velocity of the
charged particle in this electromagnetic envi-
ronment, and m is the particle mass. Let us
suppose that the electric field (a controlled
one) is

E = v(k− | v |), (2)

where | · | is the vector Euclidean norm, and
k ∈ R is a positive parameter at our disposal.
Then, equation (2) in (1) produces

m
dv

dt
= Q [v×B+ v(k− | v |)] . (3)

Let us use the next candidate Lyapunov
function:

V (t) = v · v. (4)

Then, its time-derivative along the system
trajectory (3) yields

V̇ (t) =
dV (t)

dt

=
2Q

m
[v · (v×B) + v · v(k− | v |)]

=
2Q

m
[v · v(k− | v |)] . (5)
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Observe that V̇ (t) is positive if | v |< k

and negative if | v |> k. This means
that the velocity-surface equation (VSE),
| v |= k, is locally attractive; i.e., for any
velocity-trajectory starting close enough to
this velocity-surface, the system trajectory
(3) will converge to it. On the other hand,
if the origin of the system (3) is the only
equilibrium point; then, any trajectory, but
the origin, will converge to the VSE1. In
resume, we arrive to the following result.

Theorem 1.- Given the dynamic of a
charged particle in motion (1), its velocity-
trajectory will locally converge to the
velocity-surface established by | v |= k,
k ∈ R+, if we set the electric field as E =
v(k− | v |) in an electromagnetic field. More-
over, if the system only has the origin as its
unique equilibrium point; then, any velocity-
trajectory starting anywhere but the origin
will converge to the stated velocity-surface.

3 Numerical example

This section describes a numerical example.
Hence, if v = vxi+ vyj+ vzk, and B = Bxi+
Byj + Bzk, then the corresponding ordinary
differential equations of (3), yields

v̇x =
Q

m
(Bzvy − vzBy + pvx),

v̇y =
Q

m
(Bxvz − vxBz + pvy),

1Almost the same lines of thinking are employed
by [3] to conclude orbital stability in one of the given
examples.

v̇z =
Q

m
(Byvx − vyBx + pvz),

where p = k −
√

v2x + v2y + v2z . Using k = 2
and the charged particle with Q = 8µc and
mass m = 0.5µ kg, simulation results of the
above system are shown in Figures 1, 2 ad 3.
Each figure present the same experiments us-
ing trajectories generated by three different
sets of initial conditions. The blue line cor-
responds to vx(0) = −3.5, vy(0) = 0.0, and
vz(0) = 3.5; the red line for the case when
vx(0) = 0.0, vy(0) = 0.0, and vz(0) = −1.5;
and the yellow one with vx(0) = 0.0, vy(0) =
−4.0, and vz(0) = 0.0. All of them in meter
per second. Finally, a free space motion is
assumed. From these figures, we can appre-
ciate that these trajectories converge to the
expected velocity-spherical-surface (the green
surface shown in the mentioned figures).
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Figure 1: Simulation result using Bx = Bz =
0.02T and By = −0.02T.
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Figure 2: Simulation result using By = Bz =
0.02T and Bx = −0.02T.
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Figure 3: Simulation result using Bx = Bz =
−0.02T and By = 0.02cos(0.002t)T.

4 Conclusion

Lyapunov theory was used to prove stabil-
ity of a specified velocity-surface of a moving
charged particle in a controlled electromag-
netic field. We assumed that the electric field
is manipulable, and we set E = v(k− | v |).
Obviously, and according to the Lyapunov
theory, other velocity surfaces are possible by
changing the term | v |, for instance, to an el-

lipsoid, if | v | is replaced by

√

v2
x

a2
+

v2
y

b2
+ v2

z

c2
,

and so far.
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Abstract 

In the standard model (SM) of particle physics neutrinos are massless and chargeless spin ½ 

particles. But the discovery of neutrino oscillations has shown that neutrinos have mass. From 

neutrino oscillations, we know only differences of mass-squared but not the absolute masses of 

individual neutrinos. In this article, we discuss neutrino oscillation and neutrino mass briefly. 

 

1. Introduction 

According to the standard model (SM) of 
particle physics fundamental constituents of 
matter are of two types: quarks and leptons [1]. 
This model assumes three generations (or 
families) of quarks and three generations of 
leptons (Table 1). Quarks are called (up, down), 
(charm, strange), and (top, bottom). The leptons 
consist of three flavours of charged leptons, the 

electron e , muon   and tau  , together 

with three flavours of neutrinos – the electron 
neutrino e , muon neutrino   and tau neutrino 

 . All neutrinos are assumed to be massless 

and neutral. 
 
  Neutrinos are the second most abundant 
particles in the universe (photons are first). 
Neutrinos are very elusive and hardly interact 
with matter [2–7]. They do not enjoy 
electromagnetic and strong interactions but take 
part only in the weak interactions.  They only 
interact with charged fermions and massive 
gauge bosons through the weak interaction. 
Neutrinos are copiously produced in the sun, in 

cosmic rays and even in laboratories. They are 
produced via the following processes: 
 (a)  ee  , : Beta decay  e , Fission  e  and 

Fusion  e  reactions. 

  (b)    , : Pion decay   (  or the 

charge conjugate process). 
 (c)    ,,, ee : Muon decay 

( ee      or the charge conjugate 

process). 
 

  
Solar neutrinos are produced through process (a) 
while atmospheric (i.e. cosmic ray) neutrinos 
come from (b) and (c). Accelerator neutrinos 
rely on (b); reactor antineutrinos result from 
fission reactions (a). There are other neutrino 
sources e.g. supernovae etc. Physicists detected 
the first neutrinos from a supernova in 1987 
when a star collapsed some 150,000 light-years 
away in the Large Magellanic Cloud, the galaxy 
nearest to the Milky Way. 
 

Table 1: Three generations of Leptons and 
Quarks 
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2. Neutrino Puzzles and Neutrino 

Oscillation  

In the 1960s, John Bahcall was trying to 

calculate what types of nuclear processes are 

occurring in solar fusion [2]. He predicted that 

the reaction   HH )other(2  He  

generates around 10107  neutrinos/(cm2.s) on 

earth. Around 100 billion solar neutrinos are 

passing through our body every second. But 

they interact so weakly with other matter that 

remarkably little is known about them. The 

fusion reactions that take place in the sun only 

produce electron neutrinos. In order to detect 

these neutrinos he teamed up with 

experimentalist Ray Davis. Ray Davis and his 

team built a tank to hold 380,000 litres of 

perchloroethylene in the Homestake Gold Mine 

in South Dakota. They detected the solar 

electron neutrino flux at earth which was about 

1/3 of the theoretical value. This was known as 

“solar neutrino puzzle”. A similar discrepancy 

was also seen in atmospheric neutrinos. 

Atmospheric neutrinos are created as a 

consequence of cosmic ray protons from space 

hitting earth’s atmosphere (which contains 

protons and neutrons). High energy 

proton/proton or proton/neutron collisions 

produce charged pions. These charged pions 

decay into muons and muon neutrinos. Then 

muons decay into an electron, an electron 

neutrino and a muon neutrino. Thus atmospheric 

neutrinos predict that for every electron neutrino 

there should be two muon neutrinos. But from 

IMB and Kamiokande experiments it was 

observed a ratio of one to one. This was 

“atmospheric neutrino puzzle”. 

In 1996, the SuperKamiokande detector was 

built in a zinc mine under 1,000 meters of solid 

rock in Japan. It was filled with 50,000 tons of 

ultra-pure water (not heavy water) and was 

designed to detect atmospheric neutrinos [7]. 

These neutrinos interact with atomic nuclei in 

the water to produce electrons, muons or tau 

leptons. Atmospheric neutrinos are mostly muon 

neutrinos. In 1998 [8], SuperKamiokande 

collaboration discovered that muon neutrinos 

converted or oscillated to tau neutrinos as they 

passed through the earth. The SuperKamiokande 

collaboration announced the first evidence for 

neutrino mass. Neutrinos oscillate in flavour 

because they have mass [9,10]. The 

SuperKamiokande was also used to study solar 

neutrinos. The fusion reactions that take place in 

the sun only produce electron neutrinos. But 

these neutrinos can subsequently oscillate into 

both muon neutrinos and tau neutrinos. Though 

the experiment was able to detect the solar 

neutrinos, it was unable to distinguish different 

neutrino types. Meanwhile, the Sudbury 

Neutrino Observatory (SNO) was constructed in 

a nickel mine under more than 2,000 meters of 

rock in Canada. Its tank was filled with 1,000 

tons of heavy water. It was designed to study 

solar neutrinos. The SNO [11,12] could identify 

the electron neutrinos because it was filled with 

‘heavy water’, which contains hydrogen nuclei 

with an extra neutron. The combined data from 

SuperKamiokande and SNO determined how 

many muon neutrinos or tau neutrinos were 

incident at the detector. The SNO results also 

provided further evidence for neutrino mass and 

confirmed that the total number of neutrinos 

from the sun agreed with theoretical 

calculations. 
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Takaaki Kajita was the team leader of the 

SuperKamiokande collaboration and Arthur B. 

McDonald directed the Sudbury Neutrino 

Observatory. On 6th October 2015, the Royal 

Swedish Academy of Sciences has announced to 

award the Nobel Prize in physics for 2015 

jointly to Takaaki Kajita, University of Tokyo, 

Kashiwa, Japan and Arthur B. McDonald, 

Queen’s University, Kingston, Canada “for the 

discovery of neutrino oscillations, which shows 

that neutrinos have mass”. Their work has been 

published in an international reputed journal – 

Physical Review Letters [8,11,12].  

3. Quantum Mechanics of 

Neutrino Oscillation 

B. Pontecorvo [13] in 1958 and Z. Maki, M. 

Nakagawa and S. Sakata [14] in 1962 proposed 

that neutrino oscillation is a quantum 

mechanical effect. Neutrinos must have some 

mass for oscillations to occur. If neutrinos have 

finite masses, each flavour eigenstate ( e ,   

and  ) can be expressed by a combination of 

mass eigenstates 1 , 2  and 3  with mass 1m , 

2m  and 3m  [15–17]. For simplicity let us 

discuss two flavour neutrino oscillation for 

example, between  ande . Let  e  be the 

 e  mixing angle. If a neutrino were 

produced as an e  at the source and travelled a 

distance L, the probability that it oscillated into 

a   is given by: 

 

 












 



 

E

Lm
P ee

.27.1
sin.2sin

2
22 












 L
A 2sin.   ,                    (1) 

where 
227.1 m

E


 

  acts as an oscillation 

length and  eA 2sin 2  as the amplitude of 

oscillation; 2
1

2
2

2 mmm   in eV2 measures 

the difference of mass squares between the 

neutrinos, E  is the neutrino energy in GeV, 

and L in km is the distance of the detector from 

the neutrino source. Basically there are two 

variables: and2m . From equation (1) it is 

clear that 

 (a) The ideal distance of the detector from the 

source for observing the oscillations is 

2/L , so that 1sin 2 










 L
.  

(b) 2m  is dependent on (E/L); for small values 

of 2m one needs small values for (E/L) to see 

the oscillations. 

Here, we discuss oscillation between only two 

neutrino flavours  ande . These flavour 

states can be expressed as the superposition of 

the mass eigenstates 21 and  : 

cs

sce

21

21 ;





 


 ,     (2) 

where  sinandcos  sc . For two 

flavours a single angle,  , suffices to 

completely specify one basis in terms of the 

other. Consider now the state vector of an e  

produced at t = 0. Thus, initially        

21)0(   sc
e

 .  (3) 

If the stationary states 1  and 2  

correspond to energies E1 and E2 respectively, 

then at a later time the state vector will be: 
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tEis

tEict








  .          (4) 

The probability,  tP e ,;0,   of the state 

)(t (originating as a e  at t = 0) appearing 

as a   is 
2

)(t


 and is seen to be: 

 tP e ,;0,  = 

2
21

22 )(exp)(exp tEitEisc   .     (5) 

The neutrinos are expected to have small 

masses, im , and are in the ultrarelativistic 

regime 













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p

m
pE i

i
2

2

 where p ( >> mi ) is 

the magnitude of the neutrino momentum. In 

this situation, we can rewrite the probability 

given in eq. (1): 

 tP e ,;0,   e2sin 2 










 L2sin ,     (6) 

In the right hand side, the first factor is a 

consequence of the “mixing” while the second 

factor leads to the “oscillatory” behaviour. For 

vacuum oscillations, the former, dependent on 

the mixing angle  e , is a constant but in the 

Mikheyev-Smirnov-Wolfenstein (MSW) [18] 

matter effect, it changes with the matter density. 

From eq. (6) 

 tP ee ,;0,    = 1 -  tP e ,;0,    

   e2sin1 2 










 L2sin .         (7) 

From eq. (7) it is seen that  tP ee ,;0,   is less 

than unity. The essential ingredients for this are 

twofold: 

   (i) The neutrinos must be massive and non-
degenerate (  02m  is finite). 

   (ii) The mass eigenstates of the neutrinos 

21 ,  must be different from the flavour 

eigenstates )02sin(,   ee . 
 

An important theme of neutrino flavour change 

is the MSW effect, which is a matter-enhanced 

neutrino oscillation; in this case, the conversion 

xe    results from interaction between e  and 

solar electrons as the neutrinos travel from the 

centre of the sun. This effect originates from the 

additional interactions of a neutrino in a 

medium. It is well-known that interactions 

increase the inertia and mass is a measure of 

inertia. Thus, interactions in a medium result in 

a varying neutrino mass. While the solar 

neutrinos produced in the interior are coming 

out they pass through dense regions of the sun 

and experience the MSW effect. They interact 

with the solar electrons    ee   

giving to a contribution to the effective mass. 

From eq. (1) it is clear that the oscillation in 

flavour depends not on the mass of any 

particular neutrino type, but rather on the mass-

squared difference between the flavours. 

4. Neutrino Mass 

The origin of neutrino masses is one of the 
biggest puzzles in particle physics today 
[6,7,19,20]. Although there are strong evidences 
for neutrino masses, till date we do not know the 
mechanism responsible for the generation of 
neutrino masses. Experiments have determined 
that neutrinos 21 and   have similar mass 

with 1  being lighter than 2 . But till today we 

do not know whether 3  is much higher in mass 

(“normal hierarchy”) or much lower in mass 
(“inverted hierarchy”). The absolute masses of 
neutrinos are not known, but a wide variety of 
experiments and theoretical models are setting 
their limits. A few of them are discussed below. 
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(i) Beta decay: 

A nucleus with an overabundance of neutrons 
can transform to a more stable nucleus by 
emitting an electron and an antineutrino. This 
kind of process is known as beta (  ) decay. 

The mass of the neutrino can be determined 
from the endpoint of the  -spectrum. The 

upper limit on the absolute scale of the electron 
neutrino mass is obtained from the tritium beta 

decay [21] as   2em   eV. 

(ii) Neutrinoless double beta decay:  

Double beta decay    is a nuclear transition 

(Z, A)    (Z+2, A) in which two neutrons 
bound in a nucleus are simultaneously 
transformed into two protons plus two electrons 
(there may be some light particles also). (i) In 
the two-neutrino double beta decay mode 
 2 , there are e2  emitted together with 

e2 . The lepton number is conserved for this 

mode and this mode of decay is allowed in the 
standard model of electroweak interaction. (ii) 
In the neutrinoless double beta decay mode 

 0 , only the e2  are emitted and nothing 

else. This neutrinoless double beta decay occurs 
when the two antineutrinos, instead of 
manifesting themselves as real states, 
“annihilate”. This can only occur if neutrinos 
are their own antiparticles. This mode violates 
the law of lepton number conservation and is 
forbidden in the standard model. Hence its 
observation may lead to a signal of “new 
physics”. The lepton number violation can 
generate a lepton asymmetry in the early 
universe, which will be able to explain the 
present baryon asymmetry of the universe.  

Neutrinoless double beta decay is the only 
experiment that can probe the Majorana nature 
of the neutrino (i.e. the neutrino and 
antineutrino are identical) [22–25]. The values 
of the neutrino mass-squared differences are 
known, but the absolute values of neutrino 
masses are elusive. The observation of 
neutrinoless double beta decay would not only 
reveal the neutrinos are Majorana fermions, but 
would also provide information regarding the 

absolute values of the neutrino masses. The two-
neutrino double beta decay has already been 
experimentally observed. There is possible 
evidence of neutrinoless double beta decay in 
the Heidelberg-Moscow experiment [22] but so 
far,  neutrinoless double beta decay has not yet 
been observed conclusively [25].  

Assuming Majorana nature of neutrino, a strong 

limit on the mass eigenstate of e  is obtained as 

5.04.01 m  eV from neutrinoless double 

beta decay experiments with Germanium 
[26,27] and Tellurium [22,28]. Furthermore, the 
search for the 0  decay is the only way to 

probe the Majorana nature of neutrinos and one 
of the most promising ways to search for lepton 
number violation. 

(iii) Neutrino oscillations: In this method, 

neutrino mass squared differences 2
jim  

22
ji mm   are determined. The two different 

2m  values are  0.39.12  atmm  

23 eV10  and  


4.0
3.0

2 0.8solm  25 eV10 . 

This range and indicated error bars show the 
present sensitivity. This mass determination is 
independent of the charge conjugation 
properties of neutrinos. 
 
(iv) Cosmological observations: From cosmic 
microwave background and large scale structure 
data, the size of fluctuations is observed at 
different scales. Since the light neutrinos would 
have smeared out fluctuations at small scales, 
the power spectrum at small scales is sensitive 
to the neutrino mass. Although the absolute 
mass of the neutrinos have not yet been 
determined, there is an upper bound on the sum 
over all neutrino masses from cosmological 

observations [29]: 






,,

61.0
ei

i
m  eV, which 

are to some extent model- and analysis 
dependent [30]. This mass determination is 
independent of the Majorana or Dirac nature of 
neutrinos. 
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5. Conclusion 

The electron-neutrinos produced from the sun 
were measured to be less than what was 
predicted by the standard solar model and 
experiments with the atmospheric neutrinos 
demonstrate that there was a depletion of 
atmospheric muon-neutrinos while there was no 
depletion of electron-neutrinos. One possible 
explanation for the observed solar neutrino 
deficit is that the e  produced in the centre of 

the sun could convert itself to another type, i.e., 
 orwith  xxe , during its 

passage to the earth via a process called 
neutrino oscillation. Similarly, the atmospheric 
muon-neutrino deficit could be due to the 
conversion of   to . In this way, 

“atmospheric neutrino puzzle” and “solar 
neutrino puzzle” were resolved by neutrino 
oscillations in 1998 and 2001(2) respectively. 

2
1223

22
23 ,2sin, mm    and 12

2 2sin   have 

been measured accurately by the present 
generation experiments assuming 2-flavour 
neutrino oscillations [15]. It is also possible that 
CP invariance can be violated in the lepton 
sector. Neutrino oscillation is a quantum 
mechanical effect. Neutrinos must have some 
mass for oscillations to occur. The Nobel Prize 
in physics for 2015 has been awarded jointly to 
Takaaki Kajita, University of Tokyo, Kashiwa, 
Japan and Arthur B. McDonald, Queen’s 
University, Kingston, Canada “for the discovery 
of neutrino oscillations, which shows that 
neutrinos have mass”. From neutrino 
oscillations, we know only differences of mass-
squared but not their individual masses. 
Although the absolute masses of neutrinos are 
not known, a wide variety of experiments and 
theoretical models are setting their limits as 
discussed in section 4. Recently, Robertson [31] 
has discussed neutrino mass. According to him, 
neutrino oscillations set a lower limit of 0.02 eV 
and upper limit from measurements is 2.0 eV. 
Recently, Fritzsch [32] has calculated the 
masses of three neutrinos: eV003.01 m , 

,eV012.02 m  and eV048.01 m . 

Neutrinos show up in precision cosmological 
observations:  since they have a small mass they 
should cluster on sufficiently large scales. 
Neutrinos may also be messengers of dark 
matter annihilation in our galactic halo or in the 
core of the sun. Neutrinos are important for the 
study of the sun, stars, core-collapse 
supernovae, the origins of the cosmic rays, the 
large-scale structure of the universe, and big 
bang nucleosynthesis. These tiny neutrino 
masses are of great interest because they might 
arise from some fundamentally different 
mechanism to the way the masses of other 
particles are generated i.e. the Higgs mechanism. 
Although the SM is very successful to explain 
many low as well as high energy phenomena in 
particle physics but within the framework of this 
model it is not possible to realize the massive 
neutrinos. The existence of neutrino mass is one 
of the signatures of new physics beyond the SM 
[33–35]. 

There are still many things about neutrinos that 
we need to know. A few of them are: (i) 
absolute mass of neutrinos (ii) whether 
neutrinos are Majorana particles ( ii   ) or 

Dirac particles ( ii   ), (iii) What is the 

pattern of neutrino masses (normal mass 
hierarchy or inverted mass hierarchy)? (iv) Why 
neutrino masses are so small or why there is 
such a large gap between the neutrino and the 
charged fermion masses? (v) CP violation in 
neutrino (lepton) sector, etc. We hope the results 
from further experiments will provide us the 
answer to these problems in near future. 

The Karlsruhe Tritium Neutrino Experiment 

(KATRIN) in Germany is taking data to make a 

very precise measurement of the electron energy 

spectrum from beta decay. We hope we can 

know the mass of neutrinos from KATRIN and 

astronomical surveys very soon. The current 

generation of oscillation experiments including 

Double Chooz, RENO, Daya Bay, T2K and 

NOvA, will try to resolve the neutrino mass 

hierarchy. From the ongoing and future neutrino 

experiments, we expect more surprises. 

Neutrinos have and will continue to provide 
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important information on structure formation in 

the early universe, earth, solar and supernova 

physics, nuclear properties, and rare decays of 

charged leptons and hadrons [36]. The study of 

neutrino physics and the implications of the 

results connect many disciplines together, from 

particle physics to nuclear physics to 

astrophysics to cosmology. Thus, neutrino 

physics continues to be a very exciting field and 

may also bring us new surprises in this 21st 

century.  
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Problem no 1: 
 A heavy uniform rectangular lamina is submerged 
vertically in still water. One corner of the lamina is 
pulled above water by a vertically suspended string 
so that its diagonal lies on the water surface as 
shown in figure 1.Find the specific gravity of the 
lamina 

Solution to problem no 1: 

Let 2a and 2b be the breadth and length of the 

lamina ABCD of weight W submerged in water, T 

be tension of the vertical taut string fastened at its 

corner A; BD is the diagonal lying on the water 

surface above which is the portion BAD and below 

which is the portion BCD of the lamina; G is the 

Center (middle point) of the lamina such that BG = 

GD. 

Let O be the Center of pressure at which the force 

W1 of buoyancy acts vertically upwards. This is 

illustrated in figure 1. Obviously the lamina floats in 

still water under the action of forces: 

1. Tension T of the string acting vertically upwards 

at A and passing through E on the horizontal line 

BD and through I on side BC  

2. Weight W of the lamina acting vertically 

downwards at the mid point G of diagonal BD .  

3. Force W1 of buoyancy as depicted above , pass 

through F on the diagonal BD and through the point 

O which is also the centroid of the portion BCD 

immersed in water. This is depicted in figure 1. 

If ρ and ρ₀ be the densities of the lamina and water 

respectively and t the thickness , then we have  

            W = 2a.2btρ = 4 abtρ 

W₁ = also weight of water of volume equal to that 

of the immersed portion BCD i.e. half the volume of 

the lamina = 2abtρ₀                                                   (1) 

For flotation i.e. equilibrium of the lamina, 

resolving the forces horizontally and vertically and 

taking moments of the forces about G₁, we get 

because of (1) 

T = W -W₁ =2abt (2ρ - ρ₀)                                (2) 

T.EG = W₁ . GF                                               (3) 

Which in consequence of (1) and (2) becomes 

2abt(2ρ - ρ₀)EG=2abtρ₀ .GF 

and hence the specific gravity of the lamina 

becomes S = ρ/ρ₀ = ½ (GF/EG + 1)                   (4) 

Now we need to find GF and EG by geometry. 

In the rectangular lamina, AB = CD = 2a , BC = AD 

=2b so that diagonal  

BD = √�² + �2  ; ∠� = ∠� = ∠� = ∠� = 900 
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In the right angled triangle BDC , H being the 

midpoint of side CD ,  

BH = √�² + 4�2 and O being the centroid i.e. the 

Centre of pressure, 

OH = BH/3 = √�²+4�2/3  

OB = 2BH/3 = 2/3 .  

√�² + 4�2                                                         (5)   

BG = GD = (1/2) BD = √a²+�2 

BE = ABcos∠ABD = 2acos∠CDB = 2acos∠CDB = 

(2a²)/ (√a² + b² ) ( ∠B = ∠E = 90⁰) 

EG = BG – BE = √a²+ b² - 2a²/(√a²+ b²) = (b²- 

a²)/(√a² + b²)                                                     (6) 

Let ∠DBH = θ, ∠DBC = θ₁ , ∠CDH = θ₂, so that 

Cos(θ₁ - θ₂) = cosθ₁cosθ₂ + sinθ₁sinθ₂  

= (b/(√a² + b²) ).2b/(√a² + b²) + a/(√a² + b²).a/(√a² + 

4b² ) 

Or,  

Cosθ =cos(θ₁ - θ₂) = a² +2b²/(√a² + b²)(√a²+4b²) (7) 

By (5), BF = OB cosθ = (⅔) √a² + 4b²(a² + 

2b²)/((√a² + b²)(√a² +4b²)) = ⅔(a² +2 b²)/√a² + b² 

∠F = 90⁰ 

GF = BF – BG = (⅔)(a² + 2b²)/(√a² + b²) - (√a² + b²) 

= (b² - a²)/3(√a² - b²)                                          (8) 

Using (6) and (8) in (4) we get 

S = ½( (b² - a²)/3(b² - a²) + 1) = ⅔   (b≠a)             (9) 

which is independent of the dimensions of 

rectangular lamina. This shows that if any 

rectangular lamina is submerged in a liquid in this 

manner, its density will be two third the density of 

the liquid. 

DISCUSSION : If the density of water ρ₀ = 1, from 

(9) the density of the lamina ⅔ gm/c.c. The 

foregoing finding reveals that without the string the 

lamina can float with its one third portion above the 

water. From (1) and (2) one can get the weight of 

the lamina and tension of the string as 

 W = 8abt / 3 and  

T = 2abt/3  

Which shows that the tension is ⅟₄ th times the 

weight of the lamina. 
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Problem No. 2: 

A motor car undertakes a trip downhill, on level and 

then returns to same spot along the same route. It 

travels downhill, on level and uphill with speeds v₁, 

v₀ and v₂ respectively with the same constant 

horsepower. Consider the hill as inclined plane and 

the road resistance with the same co-efficient of 

friction. Find the inclination of the hill and the 

coefficient of friction. 

Solution to problem no 2: 

Let μ and α be the coefficient of friction of the road 

along the hill and on the level, and the inclination of 

the hill to the horizontal , g the acceleration due to 

gravity and m the mass of the car. By the definition 

of Horsepower H, (vide figure 2) 

H = applied force x velocity = ( mgμ cosα - mgsinα) 

x v₁ = mgμv₀                                                   (1) 

= (mgμcosα + mgsinα ) x v₂ = H.P 

While traveling on the hill of inclination α to the 

horizontal, the normal reaction on the car is 

R = mgcosα  

and the frictional force on it is  

F = μR = mgμcosα 

Where as the gravitational force on it is  

G = mgsinα 

When it moves on level ground, normal reaction = 

mg and the frictional force = μmg When the car 

travels with constant horsepower and with uniform 

velocity, the resultant of the frictional force, 

gravitational force and the force applied by the 

engine becomes zero and its equations of motion are 

given (1) 

μcosα – sinα = μv₀/v₁                                        (2) 

 μcosα + sinα = μv₀/v₂                                      (3) 

Solving (2) and (3) one gets  

μcosα =( μv₀/2) (1/v₁ + 1/v₂) and sinα = 

(μv₀/2)(1/v₂ - 1/v₁) 

Which lead to tanα = μ(v₁ - v₂)/(v₁ + v₂ )          (4) 

Or , √ ( 4 - v₀²(1/v₁ + 1/v₂)² ) / v₀(1/v₁ - 1 /v₂) 

  

 

______________________________________________________________________________________ 
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