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First time that India (ISRO) has deployed satellites in 
two different orbits during a single launch, lanched 
on Monday 27 Sep. 2016. 
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EDITORIAL 

 

 

This issue of Physics Education comes to you with 

the cover page sporting a rocket launch. Last 

week, the Indian Space Research Organization 

(ISRO) launched satellites in two different orbits 

from a single PSLV rocket. This month ISRO 

launched GSLV rocket that can successfully put 

2000 kg class artificial satellites in 

geosynchronous orbits. In June this year, ISRO 

launched 22 satellites from a single launch. It has 

been a successful year for ISRO. Around the 

world, these are exciting times as well for space 

flight ventures. The privately held US based 

company SpaceX is attempting smooth landing of 

rockets back on earth for reusing them. It has also 

set the sights on making travel to Mars a routine 

exercise. 

While on Many decades back, Vikram Sarabhai, 

the pioneer of India's space program, had clearly 

spelt out the need for India to join the space 

explorers club, not for elusive status tag it offers 

but for societal benefits. He said, “There are some 

who question the relevance of space activities in a 

developing nation. To us, there is no ambiguity of 

purpose. We do not have the fantasy of competing 

with the economically advanced nations in the 

exploration of the moon or the planets or manned 

space-flight. But we are convinced that if we are 

to play a meaningful role nationally, and in the 

community of nations, we must be second to none 

in the application of advanced technologies to the 

real problems of man and society“. ISRO has not 

only fulfilled his vision of contributing to India's 

requirements, but has gone beyond to explore the 

moon and the Mars. 

 
M. S. Santhanam 

Chief Editor 
Physics Education    
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Abstract 

The atomic radius of a chemical element is a measure of the size of its atoms. Atomic radii 

represent the sizes of isolated and electrically neutral atoms. In this paper, simple calculations 

for radii of hydrogen, helium and neon are given. Victor Weisskopf has calculated the radii of 

different atoms. To calculate the potential energy of electrons due to mutual repulsion among 

them, Weisskopf has assumed that the effective distance reff between two electrons is r/0.6, 

where r is the radius of the orbit of electrons. There is a good agreement between the 

calculated values and the experimentally measured values of the radii of atoms. The atomic 

radii gradually decrease along each period of the periodic table, from the alkali metals to the 

noble gases; and increase down each group.  The radii of isolated neutral atoms range 

between 0.3 and 3 angstroms. The radius of an atom is a function of its environment. 

 

1. Introduction 

Victor Weisskopf has calculated the radii 

of different atoms. To calculate the 

potential energy of electrons due to mutual 

repulsion among them, Weisskopf has 

assumed that the effective distance reff 

between two electrons is r/0.6, where r is 

the radius of the orbit of electrons. The 

atomic radius of a chemical element is a 

measure of the size of its atoms. Atomic 

radii represent the sizes of isolated and 

electrically neutral atoms. 

The rest of the paper is organised as 

follows. The sizes of the hydrogen atom, 

helium atom and neon atom are given in 

Section 2, Section 3 and Section 4 

respectively. General discussion on atomic 

size is presented in Section 5. Conclusions 

are given in Section 6. 

 

2. The size of hydrogen atom 

 According to Bohr, electrons go round the 

nucleus in certain circular orbits, known as 

Bohr orbits. The velocity v  of the electron 

in a circular orbit of radius r satisfies the 

quantization condition 

             𝑚𝑒𝑣𝑟 = 𝑛ħ                       (1) 

where, 𝑚𝑒 the mass of the electron is 9.1 x 

10-31 Kg. 

ħ = ℎ/2𝜋, h = Planck’s constant = 6.62 x 

10-34 J-s  

n  = No. of the orbit of the electron = 

1,2,3,.......   

n  is known as principal quantum number. 

According to (1), the angular momentum 

of an electron revolving around the 

nucleus in a circular orbit is an integral 

multiple of  .Only those circular orbits 

for which (1) is true are allowed. 
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Let us find out the radius of first Bohr 

orbit of hydrogen atom. The kinetic energy 

K  of electron revolving around the proton 

in hydrogen atom is given by 

                      𝐾 =
𝑝2

2𝑚
                      (2) 

where 𝑝 = 𝑚𝑒𝑣 = the momentum of the 

electron. Electrons can behave both as 

particles and waves, known as de Broglie 

waves. According to de Broglie, the 

electron wavelength   is given by 

                       𝜆 = ℎ/𝑝                    (3) 

Using (3) in (1), we have for first orbit 

( 1)n   

              𝑟 =
ħ

𝑚𝑒𝑣
=

ℎ

2𝜋𝑝
=

𝜆

2𝜋
 

                       2 r                   (4) 

This equation shows that one electron 

wave is wrapped around the first orbit. 

Substituting (3) and (4) in (2), we get 

           
2 2

2 2

22 ee

K h
mm r

 
                    (5) 

The potential energy V  of the electron is 

due to electrostatic interaction and 

gravitational interaction between itself and 

the proton. 

The gravitational potential energy of the 

electron = p e

g r

Gm m
V  

  

The electrostatic potential energy of the 

electron = 
2

4
e

o
r

e
V


 

  

Where, G = gravitational constant =                               

11

6.67 10


 m3/Kg-S2 

     mp= mass of a proton = 1.67 x 10-27 Kg 

   ε = permittivity of free space = 8.85 x 

10-12  F/m 

  e  = charge of an electron = 1.6 x 10-19 C.  

Now the ratio 

2 39

14

2.27 10

eg p

e

oGm mV
V e


 



  

This value shows that the gravitational 

attraction between proton and electron in 

hydrogen atom is very much weaker than 

electrostatic attraction. Hence the 

gravitational potential Vg can be neglected 

in comparison with electrostatic potential . 

The Vg n the potential energy V  of the 

electron is given by  

            
2

4
e

o

V
r

e
V


  

                      (6) 

 The total energy E of the electron is 

obtained by adding (5) and (6). 

      
22

2

42 oe

E K V
r

e
m r 

   
           (7) 

To find the value of r , when E is 

minimum, we must set the derivative 
𝑑𝐸

𝑑𝑟
 

equal to zero. 

            
22

3 2
0

4e o

dE

dr

e
m r r

      

                    2

24 o

e

r

m e
 

  

This particular value of r  when E  is 

minimum is denoted by ao, known as Bohr 

radius. 

        
2

24 oo

e

a
m e

 
  

                 = 0.528×10-10m = 0.528Å      (8) 

The state of the hydrogen atom 

corresponding to the orbit with radius 

equal to Bohr radius ao is called the 

ground state. 

Now let us consider the case where the 

electron is in the second Bohr orbit. Since 

the energy of this state is higher, it is 

known as first excited state. From (1), we 

have for the first excited state (n = 2) 

                     𝑚𝑒𝑣𝑟 = 2ħ     

             
2 2

2
e

h
r

v pm 

 
    

 

  

Using (3) in the above expression, we 

obtain 

                       2 2r                          (9) 
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This equation shows that two wavelengths 

would be wrapped around the second orbit. 

Using (9), the kinetic energy of the 

electron in the second orbit is given by  

   2 2

2 2
4

22 ee

K h
mm r

 
  
 
 

            (10) 

The potential energy of the electron in the 

second orbit is given by same equation (6).  

The energy E  of the electron in the second 

orbit is obtained by adding (6) and (10). 

              
22

2
4

42 oe

E
r

e
m r 

 
  
 
 

        Equating 

dE

dr
 to zero, we get  

          2

21
4 4 o

e

r
em


  
  
  
   

                     (11) 

Where, r1 = radius of second orbit 

Using (8) in (11), we get 

         2

1 4 2o oa ar                           (12) 

This expression shows that the radius of 

second orbit is four times the radius of first 

orbit. So, in general the radius of n th orbit 

of hydrogen atom is  
2

on a  . 

 

3. The size of helium atom  

There are two electrons in the helium atom 

and its nucleus consists of two protons and 

two neutrons. In the ground state both 

these electrons rotate in the same orbit 

around the nucleus. 

Using (5) the kinetic energy K of two 

electrons in helium is given by  

             
2

2
2

2 e

K

m r

 
 
 
 

                    (13) 

The potential energy of the two electrons 

due to the electrostatic attraction of the 

nucleus having the charge +2e is 

      
2 2

1
2 42

4 4o o
r r

e e
V

 

   
      
   
   

        (14) 

To calculate the net potential energy of 

two electrons, we have to take into account 

the electrostatic repulsion between the 

electrons also. The minimum distance 

between the two electrons is zero (Figure 

1a), but that would lead to infinite energy, 

which is unacceptable. The maximum 

possible distance between the two 

electrons is 2r (Figure 1b).  

 
 

Figure1. Two electrons in the lowest orbit of helium (a) shows a case which is ruled out because of 

infinite repulsion energy (b) shows the maximum distance between  two electrons (c) shows that the 

second electron is somewhere in the shaded region according to Weisskopf. 
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According to Weisskopf, the two electrons 

on the average are at a distance reff   apart  

(Figure 1c), such that  

                         r < reff < 2r                        (15) 

Weisskopf has assumed that the effective 

distance reff   between two electrons is 

r/0.6. 

                    
0.6eff

r
r                         (16) 

Hence, the potential energy of the two 

electrons due to electrostatic repulsion 

between them is given by 

                   
2

2

1

4 effo

e
V

r

 
 
 
 

  

Substituting (16) in the above expression, 

we get 

                 
2

2

0.6

4 o
r

e
V



 
 
 
 

              (17) 

Addition of (14) and (17) gives the net 

potential energy V  of two electrons. 

           
2

1 2
4 0.6

4 o

V
r

e
V V


                 

              
2

3.4
4 o

V
r

e


               (18) 

The total energy E of two electrons is 

found out by adding (13) and (18).                           

 
22

2
2 3.4

42 oe

E
r

e
m r 

 
  
 
          (19) 

Equating dE

dr

 to zero, the radius of the orbit 

of two electrons of helium atom in the 

ground state is given by

         
2

2

2

3.4
4 o

e

r

m e


 
 
 
 

  

Using (8) for Bohr radius in the above 

expression, we have   

   0.588 0.6o o
r a a                 (20) 

 

 

 

 4. The size of neon atom 

 
Figure 2.Arrangement of electrons in neon 

atom. 

Neon atom has 10 electrons. These 

electrons are present in two shells, K-shell 

and L-shell. K-shell has one sub shell, 1s, 

and L-shell has two sub shells, 2s and 2p. 

The electronic configuration of Ne atom is 

1s2, 2s2, 2p6. The arrangement of electrons 

in neon atom is shown in Figure 2. 

Weisskopf has calculated the radius of L-

shell. The electrons in L-shell see the 

nucleus which has a charge +10e and also 

they see the two electrons in K-shell. So,  

the net charge seen by electrons of L-shell 

is +10e - 2e = +8e. The radius L-shell is 

calculated by taking the effective nuclear 

charge as Zeff = +8e. 

The kinetic energy K  of electrons in the 

L-shell is calculated by taking it as the 

second orbit of hydrogen atom. As per 

(10), the contribution of each electron in 

L-shell to kinetic energy is  2 2

24 em r  . 

Since L-shell contains 8 electrons, we have 

     
2 2

2 2
8 324

2 2e e

K

m mr r

   
     
   
   

           (21) 
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The potential energy of 8 electrons in L-

shell is calculated by taking into account 

the electrostatic attraction on these 

electrons by the nucleus with effective 

charge +8e as well as the repulsive forces 

among these electrons. 

The potential energy of 8 electrons in L-

shell due to electrostatic attraction of 

nucleus having effective charge +8e is 

given by 

           
2

1
8 8

4 o
r

e
V



 
   
 
 

                       (22) 

The 8 electrons in L-shell are formed into 

pairs to calculate the potential energy due 

to repulsive forces among them. The 8 

electrons can be formed into 
8𝑥7

2
 =28 

distinct pairs. As in helium atom, the 

effective distance reff between two 

electrons of a pair is taken as 0.6r .Since 

there are 28 pairs of electrons, the potential 

energy of electrons in L-shell due to 

repulsive forces among them is given by 
2

2
28

4 effo

e
V

r

 
  
 
 

  

     
2

28 0.6
4 o

r

e


 
  
 
 

                      (23) 

The total potential energy V of electrons in 

L-shell is found out by adding (22) and 

(23), 

        
 

2

2

1 2
28 0.68

4 o

V
r

e
V V


     

    

2 2

47.2 47
4 4o o

V
r r

e e
 

 
      
 
 

 

                                                              (24) 

Addition of (21) and (24) gives the total 

energy E of electrons in L-shell. 

             22

2
32 47

42 oe

E
r

e
m r 

   
    

  
  

   

Equating 
𝑑𝐸

𝑑𝑟
 to zero, the radius of the orbit 

of electrons in L-shell of neon atom in the 

ground state is given by 

           
2

2

32

47
4 o

e

r

m e


 
 
 
 

  

Using (8) in the above expression, we get 

           32

47
0.7o o

r a a 
                 (25) 

Similar calculations can be made for other 

atoms using very simple physical 

arguments. In all cases, the effective 

distance between any two electrons reff in 

any orbit of radius r is taken as r/0.6. 

There is good agreement between the 

calculated value of radius of an orbit of an 

atom and the experimental value.  

In general the radius of nth shell is given 

by 

       

 

2

1 0.3
eff eff

r n

z z


  

               (26) 

Where, Zeff = effective atomic number of 

the atom 

5. General discussion on atomic size 

Table 1 compares the calculated values of 

atomic radii with the measured values for 

the first ten elements. There is a good 

agreement between the calculated values 

and the experimentally measured values of 

the radii of atoms. 

 

 

                                        Table1. Atomic radii of first ten elements 

Element Z Zeff n r in units of 

ao 

(calculated) 

r in units of 

ao 

(measured) 

H 1 1 1 1.0 1.0 

He 2 2 1 0.6 0.6 

Li 3 1 2 4.0 2.8 
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Be 4 2 2 2.4 2.2 

B 5 3 2 1.7 1.6 

C 6 4 2 1.3 1.2 

N 7 5 2 1.1 1.0 

O 8 6 2 0.9 0.8 

F 9 7 2 0.8 0.7 

Ne 10 8 2 0.7 0.6 

 
Figure 3. Variation of atomic radius with atomic number. 

The variation of atomic radius or atomic 

size with atomic number for the elements 

is shown in Figure 3. The following 

general conclusions can be drawn from 

this plot. 

1. The alkali elements Li, Na,. . . etc., 

have large radii. 

2. Following each alkali element, 

there is a progressive decrease in 

atomic radii from left to right along 

a period in the periodic table. 

3. The atomic radius increases sharply 

between the noble gas at the end of 

each period and the alkali metal at 

the beginning of the next period. 

4. As we proceed down each group of 

the periodic table, the atomic radius 

gradually increases.  

5. The variation in atomic size across 

a period is not always a smooth 

one, as irregularities are occurring 

in period 6.  

Within a given period, the atomic radius 

decreases with increasing atomic number 

owing to the effect of increasing the 

positive nuclear charge while adding 

electrons to the same level. Therefore, the 

effective nuclear charge towards the 

outermost electrons increases, drawing the 

outermost electrons closer. As a result, the 

electrons cloud contracts and the atomic 
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radius decreases. In a noble gas, the 

outermost shell is completely filled. 

Therefore, the addition of electron of next 

alkali metal will go into a new outer shell, 

accounting for the sudden increase in the 

atomic radius.  

Within a given group, the atomic radius 

increases with atomic number because of 

addition of another level. As we proceed 

downward from one atom to another 

within a group, each successive element 

has its outer electrons in a shell with larger 

value of n. The effective nuclear charge 

felt by these electrons stays nearly the 

same, so the dominant effect is an increase 

in size of the atom that accompanies an 

increase in the value of the principal 

quantum number of the outer-shell orbital. 

  

The radii of isolated neutral atoms range 

between 0.3 and 3 angstroms. Caesium is 

the largest known atom. The atomic radius 

of Cs is given variously as 273.1pm, 

265pm,    265.5pm or           260pm (1pm  

= 110-12m). Caesium has a large valence 

shell and relatively low effective nuclear 

charge.  A low nuclear charge means that 

electrons can wander further, on average, 

from the nucleus.  Rubidium also has large  

atoms, but its atomic radius is almost 

30pm less than that of caesium. 

The radius of an atom is a function of its 

environment. An example is the hydrogen 

atom, which is assigned with one radius 

when it combines with itself, a second 

radius when it combines with the elements 

of the second period, a third radius when it 

combines with the elements of the third 

period, and so on. 

 

6. Conclusion 

Victor Weisskopf has calculated the radii 

of different atoms. The atomic radius of a 

chemical element is a measure of the size 

of its atoms. There is a good agreement 

between the calculated values and the 

experimentally measured values of the 

radii of atoms. The atomic radii gradually 

decrease along each period of the periodic 

table, from the alkali metals to the noble 

gases; and increase down each group.  The 

radii of isolated neutral atoms range 

between 0.3 and 3 angstroms.  The radius 

of an atom is a function of its environment. 
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Abstract 
 

The evaluation of Boltzmann constant using V-I characteristics of diodes has been used to 
understand various aspects of fundamental physics. The use of diodes for analog and digital 
applications is based on the basic diode characteristics. The use of low-cost devices and tools for 
interfaced experiments in contrast to traditional methods provide new levels of understanding of 
the physical concepts. In the present report, the evaluation of Boltzmann’s constant has been 
carried out with the help of an interfacing device, EXPeyes junior (Experiments for Young 
Engineers and Scientists junior) (IUAC). This device in conjunction with a laptop is well suited 
to measure, record and analyzedata. The Python has been used for coding. The data has been 
analyzed with the Xmgrace.  The V-I data of the silicon diode IN4001 has been obtained. The 
value of Boltzmann constant is in agreement with the standard value. This unique way of 
performing the experiment supplements as well as complements the traditional way of 
performing experiment.  This also emphasizes the use of inexpensive devices, power of 
computing and analysis using easily accessible open software for better performing and 
understanding of physics experiments.  
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1. Introduction 
The use of ICT and interfacing of 
experiments is paving way for better 
visualization and understanding of physics 
as well as mathematical equations. These 
provide better description of various 
phenomena, states and processes. It is also 
coupled with better accuracy and precision 
as compared to conventional instruments. 
The errors in data collection are minimized 
in comparison to manual collection of data. 
The inherent features of low- cost and 
flexibility widen the prospects of inclusion 
for marginalized societies. 
 With the accessibility of computers 
and mobiles, low cost interfacing devices 
are improving the teaching-learning 
processes. The EXPeyes junior 
(Experiments for Young Engineers and 
Scientist) [1] also offers advantages such as 
open ended learning, interfacing of various 
branches such as Physics, Electronics, 
Computers and Mathematics for real-life 
applications.  
The conventional way of performing V-I 
characteristics needs power supply, 
voltmeters and ammeters. The applied 
voltage and current are measured in the 
circuit.  
 
 The V-I characteristics of diodes 
are non-linear in nature. The variation 
between applied voltage and current in the 
circuit does not obey ohm’s law. The data 
analysis of V-I measurements also provide 
useful information.  The knee voltage, 
reverse saturation current and Boltzmann’s 
Constant can be evaluated by performing 
this experiment.  
 The forward characteristics of a p-
n junction diode traditionally are obtained 
by connecting the positive of the battery to 
the p side and negative of the supply to the n 
side of the p-n diode [2]. Voltage is 
measured across the diode using a voltmeter 
(0-1 V) and current is measured in the  

 
 
circuit using an ammeter (0-100 mA). The 
manual measurements are limited by the 
least count of the instruments and it affects 
calculation of Reverse saturation current (~ 
Microamperes) due to very low value [2].  
 In contrast, the interfaced 
experiment can be performed using 
EXPeyes junior, required components and a 
laptop/desktop. This method can  
 
be used for obtaining better data and 
accuracy. The details are given as below.  
 
Description of Expeyes Junior 
 
EXPeyes Junior has been developed by Inter 
University Accelerator Center(IUAC) and it 
is interfaced and powered by the USB port 
of the computer. It has programmable digital 
and analog inputs, current source and can 
perform measurements with Pythonas an 
interface between the hardware and user [3]. 
It is worth to mention that coding in Python 
is quite simple yet apt in performance [3].  It 
can be downloaded freely on various 
platforms. A number of experiments can be 
performed using various features integrated 
on the EXPeyes junior board. In the present 
investigation a detailed study is carried out 
to measure, record and analyze the data for 
determining Boltzmann’s constant. In 
contrast to conventional ways of performing 
experiment, this method offers many 
advantages and help the students to 
understand the basics of Physics with the aid 
of electronics, computer and simulations. 
The data has been fitted using Xmgrace [4] 
using the standard Diode Equation and 
various parameters such as Reverse 
Saturation Current and Boltzmann Constant 
have been evaluated. 
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Circuit Diagram  
 
 
 
    
          1K  
  
 
 
 
Figure 1. The Circuit Diagram (using 
EXPeyes junior)  
PVS  -  Programmable Voltage Source  
IN1-   For reading Voltage 
 
 
 
 
#Code  in Python  (iv.py)  
 
frompylab import * 
importexpeyes.eyesj, time 
p=expeyes.eyej.open() 
voltage =[ ] 
current= [ ] 
f=open(‘diode_iv.dat’, ‘w’) 
v=0.0  
while v<= 5.0: 
 va=p.set_voltage (v) #  set voltage 
 time.sleep(.001)  
 vd=p.get_voltage(3) # read voltage 
(IN1)  
 i=(va-vd)/1.0   # current in 
milliamps  
 voltage.append (vd)  
 current.append (i)  
 ss= ‘%5.3f\t%5.3f’%(vd,i)  
 printss 
 f.write(ss+’\n’) 
 v=v+.050  (# 50 mV step size for 
va)  
plot (voltage, current) 
show( )   
 
 
 

 

2.Conventional Vs. Automated 
data  

The EXPeyes junior can conveniently sets 
the voltage of PVS (Programmable Voltage 
Source) in the steps using the python coding 
(in place of manual variation of voltage). 
The voltage is read by IN1 as shown in Fig.1 
and the python coding, ‘iv.py’.The current 
measurement is done by observing the 
voltage drop across 1Kresistor.  The 
measured current has been calculated by 
dividing the voltage drop by 1 Kohm 
resistor value.  

Results 

The a forward biased diode, the Voltage-
Current  Equation[5] is governed by the 
following expression  

� = �� [exp(
��

����
) −  1]  (Eq. 1) 

For a forward biased region, the Equation 
reduced to  

� = �� exp(
��

����
)   (Eq. 2)  

Where  

�� = Reverse Saturation Current  

� = Measured Current; V= Applied Voltage; 
� = electronic charge; � = Ideality Factor = 
2 (for Si Diode [6]) ;�� = Boltzmann’s 
Constant  ;  T= 300 K  

After making the circuit (Figure 2), the 
program was run on the Linux terminal with 
the following command $ python iv.py.  

The graph started showing the V-I 
characteristics of the diode instantaneously 

PVS  

IN1 
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on the screen. The data of the experiment 
was obtained in a file. The V
characteristics of the diode are shown in 
Figure 3. The data was exported to Xmgrace 
(an open access software) and fitting was 
done using the Equation,  

 

Figure 2. Automated Set-up. The circuit, 
Expeyes and Data acquisition on the 
computer  

 

The representative of the Diode Equation as  
� = ��exp(�� ∗ �)    
(Eq. 3)  

A comparison of Eq.3 with Eq.2 provides 
the following values  

 a0=    �� (Eq.4)  

 a1 = 
�

����
 (Eq.5)  

 The initial guess was inserted for the values 
of ��  and �� with tolerance of 0.01. The 

                                          4                                      Jul 
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on the screen. The data of the experiment 
was obtained in a file. The V-I 
characteristics of the diode are shown in 

data was exported to Xmgrace 
(an open access software) and fitting was 

up. The circuit, 
Expeyes and Data acquisition on the 

The representative of the Diode Equation as  
   

A comparison of Eq.3 with Eq.2 provides 

The initial guess was inserted for the values 
with tolerance of 0.01. The 

fitting was done using Xmgrace and a0 and 
a1 were evaluated using the fitting. 

 

Figure 3. V-I characteristics acquired

Figure 4 : Fitting using Xmgrace
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fitting was done using Xmgrace and a0 and 
a1 were evaluated using the fitting.  

characteristics acquired 

Figure 4 : Fitting using Xmgrace 
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The following characteristics typical of a 
diode were observed  

1. Upto a certain voltage, there is no 
increase in current with increase in voltage.  

2. After onset voltage, the current increases 
exponentially.  

3. The knee voltage has been calculated by 
extrapolating the straight line to meet the x-
axis. (0.54 volts)  

Xmgrace facilitates the fitting of observed 
data into exponential form a0*exp(a1*x). 
This yields two parameters as follows 

 a0 =   1.227e-05 mA  

a1 = 20.1033 

Chi-square: .0238664 

Correlation coefficient: 0.999914 

��=  
�.� ×������

��.���� × � × ��� � 
  = 1.326 x 10-23 �

�
 

By substituting these values in Eq.2, the 
value of Boltzmann’s constant was 
calculated,  which is in good agreement with 
the standard value of 1.38 x 10-23  J/K. 

 

Discussion:  

The interfacing of experiments 
reconsolidates the theoretical knowledge. 
The errors incorporated in acquiring the data 
are minimized with the automated data. The 
programming in Python provides a 
versatility due to simple syntax. The 
usability of such low-cost devices and other 
freely available software & tools could be 
well exploited further for improving physics 
education mediated through more 
visualization.  
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Abstract 

We developed basic magnetic actuators that use the Faraday force by the magnetic field gradient. 
These actuators can be used in physics experiments for physics or engineering students. A 
conical coil was made by winding up a copper wire around a polyimide tube; electric current 
through the coil induces a magnetic field. Using magnetic actuators, students can study the 
relationship between the magnetic field gradient and Faraday force.  
 
Keywords: Faraday force, magnetic field gradient, ferromagnet. 
 
 

1. Introduction 
Understanding magnetic force is one barrier 
to dealing with electromagnetism. In the 
subfield of condensed matter physics that 
investigates strongly correlated 4f and 5f 
electrons systems, electric field gradients are 
used to explain the interactions in electric 
quadrupoles and octapoles of atoms and 
ions. In regard to magnetic forces, the 
phenomenon of a magnet attaching to an 
iron plate occurs due to the magnetic field 
gradient. This article describes experiments 
conducted using coils and small iron rods 
that students can perform to understand the 
relationship between magnetic force and 
magnetic field gradient. Conducting wire 
was wound around a thin pipe made of 
polyimide resin to make a coil. A magnetic 
field and a magnetic field gradient were 
produced by passing an AC current through  
 
 

 
 
 
the coil. A small metal rod placed in the pipe 
vibrates on the application of current. In this  
experiment, magnetic force and potential 
from a magnetic field in the coil, which was 
generated by AC current and a magnetic 
field gradient, and the quantitative 
consideration reached about a phenomenon 
to vibrate. The magnetic force caused by the 
magnetic field gradient causes a magnet to 
attaches to magnetic bodies such as iron. 
The magnetic force called as Faraday force 
is written as [1] 

 

(1)  

where
cm is magnetic susceptibility, V is the 

volume [m3], B is the magnetic flux density 
[T], and μ0 is the magnetic permeability of 
vacuum. 
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Several scientific apparatuses use magnetic 
field gradients, for example, apparatuses for 
magnetic measurement, magnetic field 
generators, and nuclear magnetic resonance 
(NMR) and magnetic resonance imaging 
(MRI) apparatuses. 
 
1. Magnetization measuring system using a 
magnetic field gradient. 
Capacitance-type magnetometers can be 
used to measure magnetization [2].A large 
magnetic field gradient occurs in the centre 
of the main coil where the sample is placed. 
The sample then experiences a large 
magnetic force in proportion to 
magnetization, which causes it to displace. 
The displacement is measured using by the 
capacitance method, and the magnetization 
is inferred based on the displacement.  
 
2. Local large magnetic field generator [3]. 
A magnetic field generator that can produce 
a large magnetic field of the sub-tesla degree 
in the minute domain of the nanometre 
degree. A magnetic field gradient of up to 
1MT/m was produced by diverting an 
electric current to each conducting wire. 
 
3. NMR and MRI instruments. 
NMR and MRI instruments, which are used 
in research and clinical settings, have a 
magnetic field gradient (slant magnetic 
field) coil [4].For example, for medical 
usage, the magnetic resonance of internal 
protons (hydrogen atoms) of the patient is 
important, but the magnetic field at which a 
proton resonates is fixed and the position of 
the proton that resonates is identified by 
generating a gradient in the magnetic field 
using a magnetic field gradient coil. Because 
water is easy to collect, the position of the 
affected part can be identified by the 
magnetic resonance phenomenon of the 
proton. 
 

The abovementioned examples are of 
instruments that use magnetic field gradients 
and applied magnetic fields, but from a 
standpoint of the magnetic engineering, the 
application of a magnetic field to a trembler 
and a magnetism actuator is more 
interesting. 
 
In this study, we developed a magnetic 
actuator that uses the magnetic force 
generated by a magnetic field gradient, 
which can be used in physics experiments 
for physics or engineering students. 
Specifically, we fabricated a conical coil by 
winding a copper wire around a polyimide 
tube and passed an electric current through 
the copper wire. Because a magnetic field is 
generated inside a coil when an electric 
current was applied to the coil, a rod placed 
in the coil vibrates. Thus, a magnetic 
actuator that uses this vibration phenomenon 
was developed. 
 

2. Experimental, Results and 
Discussion 

2.1. Vertical magnetic actuators 

To observe the Faraday force, two kinds of 
coils were used. One was a conical coil and 
the other was a uniform winding coil. Both 
coils were made by using polyimide-coated 
copper wire (0.2 mm in diameter) wound 
around a thin plastic cylinder that has a 
2.5mm outside diameter and a 1.6mm inside 
diameter, as shown in Figure 1. For making 
the conical coil, copper wire was wound up 
at the first level 50 volumes, the second 
level 45 volumes,..., the 5th level 30 
volumes, the 6th level 20 volumes, the 7th 
level 15 volumes,..., and the 9th level 5 
volumes. The total number of volumes 
was250. The uniform winding coil was 
wound 50 volumes at5 levels. The electrical 
resistivity of each coil was 2.5 . Both the 
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coils have the same number of total volumes 
(250). When an AC current with a maximum 
value of 0.28 A and a frequency of 5.0 Hz 
was applied to the conical coil, an iron rod 
(Niraco Co., Ltd., Tokyo, Japan) placed in 
the coil ( rod diameter 0.8 mm; rod length 
50 mm) vibrated in the air, as shown in 
Figure 1(a). However, when the same AC 
current was applied to the uniform coil, as 
shown in Figure 1(b), the iron rod fell out of 
the tube. This is due to a pulling force 
(Faraday force) that acted on the iron rod in 
the conical coil. The iron-rod vibration 
amplitude was 4.8 ×10−3 m and the 
frequency was  10.0 Hz. 

(a) 

(b) 

FIG. 1:(a) Conical coil.(b) Uniform winding 
coil.  

 

The vibration of the iron rod was recorded 
on video. Students can use the video to 
determine the acceleration of the iron rod by 
noting the position of the top of the rod in 
several scenes as well as the corresponding 
times. The angular frequency ω is equal to 
2πf = 62.8 Hz. Therefore, the acceleration a 
isAω2 = 19.0 m/s2. The Faraday force Fm is 
written as 

Fm = mam = m(a+g)                                       

(2) 
 

Where m is mass of the iron rod (46.3 mg = 
4.63 × 10−5 kg), am is an acceleration due to 
the Faraday force, and g is the acceleration 
due to gravity (9.80 m/s2). Therefore, the 
Faraday force Fm is 1.30 × 10-3 N. The value 
of am is 28.8 m/s2, which is three times 
larger than that of the acceleration due to 
gravity. Consequently, a conical coil is 
useful for magnetic levitation and as a 
vertical magnetic actuator. 
 

2.2 Horizontal magnetic actuators 

 

2.2.1 Experimental results 

 
The vertical magnetic actuator in Section 2.1 
is designed to vibrate vertically. Actuators 
vibrating horizontally or in oblique direction 
can also be useful. Two horizontal magnetic 
actuators were produced and tested. If a 
conical coil that is identical with the one 
used in vertical magnetic actuator is used, 
the rod will experience on only a pulling 
force into the coil, resulting in movement in 
one direction. To try to cause an iron rod to 
vibrate horizontally, two conical coils were 
used, as shown in Figure 2. 
 
The sample was a 99.95% pure iron rod 
(Niraco Co., Ltd., Tokyo, Japan), which had 
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a diameter of0.80 mm in diameter, a length 
L of 65.0 mm, and a mass m of 0.2597 g. In 
regard to the conical coil, copper wire was 
wound on the polyimide tube, the first level 
100 volumes, the second level 95 
volumes,..., the 11th level 55 volumes, the 
12th level 45 volumes, the 13th level 40 
volumes,..., and the 20th level 5 volumes. 
The total number of volumes was 1,000. The 
uniform winding coil was wound 100 
volumes and 10 levels, with a total number 
of 1,000 volumes, as shown in Figure 3, in 
order to compare with the conical coils. The 
dimensions of the conical coils were 2.0 mm 
outer diameter, 1.7 mm inner diameter, and 
20 mm width. The electrical resistivity of 
each coil was 11.0. 

 

 

FIG. 2: Actuation of the iron rod by means 
of two conical coils with a frequency of 
5.00 Hz and a function generator voltage 
output of 1.50 Vpp. 

 

 

FIG. 3: Actuation of the iron rod by means 
of two coil of uniform winding with a 
frequency of 5.00 Hz and a function 
generator voltage output of 1.50 Vpp. 

 
The circuit for the magnetic actuator is 
shown in Figure 4. Sine wave voltages were 
generated using a function generator (NI WF 
1943, Yokohama, Japan). An audio 
amplifier (Marantz PM-17,Chofu, Japan) 
was also used to stabilize the output voltage. 
The coils were connected to the audio 
amplifier via speaker outputs. Diodes were 
used for half-wave rectification. Therefore, 
when the L coil was turned on and the 
magnetic fields applied to the iron rod, the R 
coil had no current. The results are shown in 
Table 1. The amplitudes Δx of the conical 
coil actuator were twice those of the uniform 
winding coil actuator. This result indicates 
that the conical coil is effective as a 
magnetic actuator.  
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FIG. 4:Circuit for the magnetic actuator. 

 

Table 1.Frequency and voltage dependences 

of the amplitude of vibration Δx. 

Frequenc

y 

f [Hz] 

Function 

generato

r output 

Vopp [V] 

Coil 

voltag

e 

Vapp 

[V] 

Unifor

m 

winding 

coil 

Δx 

[mm] 

Conica

l coil 

Δx 

[mm] 

3.00 1.40 2.10 0 6 

3.00 1.50 2.50 8 15 

4.00 1.40 2.10 5 7 

4.00 1.50 2.50 8 18 

4.00 1.60 2.90 10 stray 

out 

5.00 1.40 2.10 4 5 

5.00 1.50 2.50 8 19 

5.00 1.60 2.90 14 stray 

out 

 

 

2.2.2 Analysis of the Faraday force  

 

The values of the Faraday force and 
potential were calculated by using Equation 
(1). In order to calculate the force, the 
magnetic susceptibility of their on rod is 
needed. The magnetic susceptibility was 
obtained using the magnetization of the rod 
at various magnetic fields, as shown in 
Figure 5.From Figure 5, the magnetic 
susceptibility cm was determined to be 5.65. 

The unit of Wb/m2 is equal to the unit of T. 
The density of magnetic flux B [T] is written 
using the magnetic fields μ0H [T] and the 
magnetization M [Wb/m2] as 

B = 0H + M  (2)  

 

FIG. 5: Magnetization of an iron sample in 
various magnetic fields. 

The calculated results of the magnetic field 
0H(by using Biot–Savart law and the density 
of the magnetic flux B),the Faraday force 
acting on the iron rod, and the magnetic 
potential are shown in Figure 6 (conical coil 
actuator) and Figure 7 (uniform coil actuator). 
The Faraday force acting on the iron rod in the 
conical coil is 6.23 × 10−3 N (0.623 gram-
force, gf). On the other hand, the Faraday 
force acting on the iron rod in the uniform 
winding coil is 2.46 × 10−3 N (0.246 gf). The 
Faraday force in the conical coil is two and 
half times larger than that in the uniform 
winding coil. Moreover, the distance between 
the lowest points of the potential of the 
conical coils is longer than that of the uniform 
coils. Consequently, the  range of motion of 
the iron rod for the conical coils is larger than 
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that for the uniform coils, as determined by 
experiments and calculations. 
 
Students become more interested in this 
experiment when the teachers ask how the 
strength of magnetic force by which a 
magnet sticks to an iron plate compares with 
the strength of magnetic force applied by the 
magnetic field gradient of this experiment. 

 

 

(a) 

 

(b) 

 

(c) 

FIG. 6: (a) Magnetic field �0H and density of 
the magnetic flux B in the conical coil.(b) 
Faraday force acting on the iron rod per 1 
mm

3
. (c) Magnetic potential of the iron rod 

per 1 mm
3
. 
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(c) 

FIG. 7: (a) Magnetic field �0H and density of 
the magnetic flux B in the uniform coil.(b) 
Faraday force acting on the Iron rod per 1 
mm

3
. (c) Magnetic potential of the Iron rod 

per 1 mm
3
. 

 

 

3. Applications 

We give the two examples of applications of 
actuators so that students understand the 
importance of these devices. 
 

3.1 Application of the magnetic actuators 
 
The millimetre-sized micro-miniature 
trembler is one of the applications of a 
conical coil. As elucidated in this research, it 
is small and can make a trembler that 
generates a large amount of power, 
especially compared to a uniform coil. A 
trembler can be used for stirring a solution 
or a solvent in a micro-laboratory [5].  
 

3.2 Application of the Faraday force under 

a magnetic field gradient 
 
In mechanical engineering, magneto 
rheological fluids (MRF) are useful in 
magnetic dampers and magnetic actuators 

[6]. A MRF (e.g., MRF-132LD) is filled in 
the cylinder of magnetic dampers. A 
magnetic coil is placed along the flow 
channel within the piston. Depending on the 
intensity of the magnetic field in the flow 
channel, the viscosity of the passing fluid 
and hence the capacity of the damper 
changes. An accumulator inside the cylinder 
accounts for the effective volume change 
due to the movement of the piston rod. The 
Faraday force generated by magnetic fields 
in the magnetic coil induces the flow of the 
MRF. As described in this paper, when 
using a conical coil, a large Faraday force is 
generated. It is inferred that the conical coil 
can be used for a viscous expensive liquid 
because the outbreak stress is not small.  

 
4. Concluding Remarks 
We developed basic magnetic actuators that 
use the Faraday force by the magnetic field 
gradient, which can be used in physics 
experiments for physics or engineering 
students. Students can make actuators and 
perform experiments if copper wire, resin 
pipes, iron rods, and AC oscillators are 
available. Cell phone cameras can be used to 
record videos to determine positions of the 
iron rods. A conical coil was made by 
winding up a copper wire around a 
polyimide tube. Passing an electric current 
through the coil generates a magnetic field 
in the coil. When an iron rod is placed 
horizontally in the axis of the coil, a Faraday 
force due tothe magnetic field gradient acts 
on the rod when electric current is passed 
though the coil. This force causes the rod to 
vibrate. Magnetic actuators were developed 
based on this vibration phenomenon. The 
movement of the rod in the vertical direction 
and vibration were realized with the conical 
coil. However, a uniform winding coil with 
the same number of the windings was used, 
the rod could not stay vertical in the coil and 
dropped even when AC voltage was applied. 
The magnitude of the Faraday force by the 
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conical coil was approximately three times 
larger than the magnitude of the 
gravitational force. Furthermore, lateral 
vibration was realized by placing two 
conical coils horizontally. The conical coil 
actuator generated a large Faraday force 
6.23 × 10−3 N (0.623 gf), compared to force 
generated by the uniform coil actuator 
2.46 × 10−3 N (0.246 gf). Using the  
 

 

 

 

References  
[1]S. Nishijima, J. Magn.Soc.Jpn.37(2013) 

333-37. 

[2]T. Sakakibara, H. Mitamura, T. Tayama, 

H. Amitsuka,Jpn. J. Appl. Phys.33(1994) 

5067-5072. 

[3]K. Tsubaki, K.Yamaguchi,Physica E, 

40(2008)2220-2221. 

[4]M. Abe, Y.Imamura, A. Kurome, 

M.Terada, Inclined magnetic field coil 

device and magnetic resonance imaging 

device, US Patent (US20100321019 A1), 

application date 29 Jan., 2009. 

 

 

 

 

 

 

 

 

 

magnetic actuators, students can study the 
relationships between magnetic field 
gradients and Faraday forces. By performing 
these experiments and analyses, students 
should learn that the magnetic force is the 
result of a magnetic field gradient. 

 

Appendix 
We have applied a patent in Japan for the 

devices described in this paper(unexamined 
patent application No. 2015-126012). 
 

 

[5]C. D. Burnham,W. M. Dunne Jr., G. 

Greub, S.M. Novak, R. Patel,Clin. 

Chem.59(2013) 1696-1702. 

[6]S. Soda, N. Iwata, K. Sunakoda, H. 

Sodeyama, H. Fujitani,Proc. SPIE’s 8th 

Annual Int. Symposium on Smart Structures 

and Materials (2001)4330-24,1-10. 



Physics Education 1 Jul - Sep 2016

Gibbs paradox: Mixing and non mixing potentials

T. P. Suresh 1∗, Lisha Damodaran 1 and K. M. Udayanandan 2

1 School of Pure and Applied Physics
Kannur University,

Kerala- 673 635, INDIA
*sureshtp2006@gmail.com

2 Nehru Arts and Science College, Kanhangad
Kerala- 671 314, INDIA

(Submitted 12-03-2016, Revised 13-05-2016)

Abstract

Entropy of mixing leading to Gibbs paradox is studied for different physical systems with
and without potentials. The effect of potentials on the mixing and non mixing character of
physical systems is discussed. We hope this article will encourage students to search for
new problems which will help them understand statistical mechanics better.

1 Introduction

Statistical mechanics is the study of macro-
scopic properties of a system from its mi-
croscopic description. In the ensemble for-
malism introduced by Gibbs[1] there are
three ensembles-micro canonical, canonical
and grand canonical ensemble. Since we are
not interested in discussing quantum statis-
tics we will use the canonical ensemble for in-
troducing our ideas. To study the thermody-

namics of any system (which is the main aim
of statistical mechanics) we need to calculate
the canonical partition function, and then ob-
tain macro properties like internal energy, en-
tropy, chemical potential, specific heat, etc.
of the system from the partition function. In
this article we make use of the canonical en-
semble formalism to study the extensive char-
acter of entropy and then to calculate the
entropy of mixing. It is then used to ex-
plain the Gibbs paradox. Most text books
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[2, 3, 4, 5, 6, 7, 8, 9] discuss Gibbs paradox
considering only the case of the classical ideal
gas, but here we analyze different physical
systems with and without potentials. The
study of Gibbs paradox is very fundamental
as pointed out by Erwin Schrdinger- “ It has
always been believed that Gibbs paradox em-
bodied profound thought. That it was inti-
mately linked up with something so impor-
tant and entirely new could hardly have been
foreseen.”

2 Gibbs paradox

When entropy of an ideal gas was calculated
using ensemble theory, it was found to be not
extensive.

S = N k

[
ln

(
V

λ3

)
+

3

2

]
.

The entropy of mixing for two ideal gases is
the difference between the total entropy after
mixing and that of individual systems before
mixing. For the same particle density, the
entropy of mixing is given by

∆S = k

[
N1 ln

N1 +N2

N1

+N2 ln
N1 + N2

N2

]
.

If we find ∆S for two different ideal gases it is
found that there is a finite entropy of mixing,
but a paradoxical situation is there for sim-
ilar ones - instead of getting ∆S = 0 there
is a finite entropy of mixing. Thus the non
extensive character of the entropy equation
causes the Gibbs paradox when there is mix-
ing. This paradox is resolved in an ad hoc
way by Gibbs. He put a correction factor N !

in the denominator of the partition function.
The corrected N particle partition function
is

QN =
QN

1

N !
,

where Q1 is the single particle partition func-
tion.

With this correction the entropy become
extensive which resolves the paradox.

S = N k

[
ln

(
V

N λ3

)
+

5

2

]
.

The entropy of mixing then turns out to be

∆S =k

[
(N1 +N2) ln

V1 + V2
N1 +N2

]
− k

[
N1 ln

V1
N1

+N2 ln
V2
N2

]
.

If the initial particle densities of two similar
mixing systems are equal, this equation gives
∆S = 0. The recipe of Gibbs corrects the
enumeration of micro states as necessitated
by the indistinguishability of identical parti-
cles [3].

3 Thermodynamics in

the canonical ensemble

In the canonical ensemble the bridging equa-
tion to find the thermodynamics is

A = −kT lnQN ,

where A is the Helmholtz free energy, k is
Boltzmann’s constant and T is the absolute
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temperature. To circumvent Gibbs paradox
the above equation is modified as

A = −kT ln
QN

N !
.

Using Stirling’s approximation, lnN ! =
N lnN −N,

A = −kT (lnQN −N lnN +N) .

With the inclusion of Gibbs’ correction factor
A contains new terms which are T and N
dependent. So the entropy (S) given by the
equation

S = −
(
∂A

∂T

)
V,N

needs to be modified. In the coming sections
we will consider different systems with and
with out potentials which can be grouped in
to mixing and non mixing systems as relevent
to the Gibbs paradox. The systems are clas-
sified as

1. Free classical particles

2. Particles in a potential without Gibbs
paradox

3. Particles in a potential with Gibbs para-
dox

In these sections we will connect the effect
of potentials on entropy of mixing by finding
the extensive nature of entropy for different
physical systems.

4 Free classical particles

Free particles can be

1. Non-relativistic free particles

2. Massive particles with a relativistic for-
mulation

3. Ultra relativistic

4.1 Non-relativistic

For a single non-relativistic particle, the en-
ergy is

E =
p2

2m
and the N particle partition function is

QN =

(
V

λ3

)N
,

where V is the volume and λ is the de Broglie
thermal wavelength given by

λ =
h

(2πmkT )
1
2

.

The entropy is

S = N k

[
ln

(
V

λ3

)
+

3

2

]
which is not extensive. Introducing the Gibbs
correction factor 1

N !
in the N particle parti-

tion function we get

QN =
1

N !

(
V

λ3

)N
and entropy becomes

S = N k

[
ln

(
V

N λ3

)
+

5

2

]
(1)

which is extensive.
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4.2 Massive particles with a
relativistic formulation

For relativistic particles the energy is

εp =
√
p2c2 + m2c4

For massive particles mc2 � pc and the par-
tition function is

QN =

[
V

λ3
e−βmc2

]N
,

where β = 1
kT
, and the entropy is

S = Nk ln

[
V

λ3
e−βmc2

]
+

3

2
Nk +

N

T
mc2

which is not extensive. With the Gibbs cor-
rection factor the entropy becomes

S = N k

[
ln

(
V

N λ3

)
+

5

2

]
which is same as in Eq.(1).

4.3 Ultra relativistic

Here pc� mc2 and the partition function is

QN =

[
8πV

h3

(
kT

c

)3
]N

.

The de Broglie thermal wavelength is

λr =
hc

2π
1
3kT

.

So

QN =

[
V

λ3r

]N
.

Using this partition function if we calculate
the entropy we will get it as not extensive but
intensive. Introducing the Gibbs correction
factor the entropy becomes

S = Nk

[
ln

(
V

Nλ3r

)
+ 4

]
.

which is clearly extensive.
The above calculations show that all types of
free particles exhibit the Gibbs paradox if the
Gibbs correction factor is not used.

5 Particles in a potential

In the coming two sections we will check what
will be the effect of potentials in the sys-
tem to the extensive character of entropy and
thereby to the Gibbs paradox.

5.1 Particles in a potential
without Gibbs paradox

1. Particles in a harmonic potential
Consider an array of equally spaced N
harmonic oscillators along a finite length
L with one particle per harmonic oscil-
lator site. The Hamiltonian for a single
particle is

H =
p2

2m
+

1

2
Kx2

where K is the spring constant given
by K = mω2, where m is the mass of
the particles and ω its angular frequency.
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The single particle partition function is

Q1 =
1

h

∫ ∞
−∞

e−β
p2x
2mdpx

∫ L/2

−L/2
e−β

Kx2

2 dx

=
kT

~ω
Erf

(√
βKL2

8

)

In the thermodynamic limit N , L → ∞
and N/L is finite, the Erf(∞) = 1, so
for the infinite length the single particle
partition function reduces to

Q1 =
kT

~ω

and then

QN = (Q1)
N .

So the entropy is

S = N k

[
1 + ln

kT

~ω

]
,

which is extensive even without Gibbs
correction factor. So there is no entropy
of mixing, and in this case the entropy
is simply additive. The harmonic poten-
tial bounds the particles in the system.
When two such systems are in contact
no particle flow happens from system to
the other. Thus the harmonic potential
makes the system non mixing.

2. Quartic oscillator
For a quartic oscillator the Hamiltonian
is

H =
p2

2m
+

1

2
Kq4.

The N particle partition function is

QN =

[
Γ

(
1

4

) √
πm

2hK
1
4

(2 kT )
3
4

]N
.

The entropy is

S = Nk

[
3

4
+ ln Γ

(
1

4

) √
πm

2hK
1
4

(2 kT )
3
4

]
which is extensive.

3. Anharmonic oscillator
For an anharmonic oscillator the Hamil-
tonian is

H =
p2

2m
+ Cq2 − gq3 − fq4

where C, g and f are positive constants
but their values are very small. The N
particle partition function is

QN =

[(
2m

C

) 1
2 πkT

h
(X)

]N
,

where

X =

[
1 +

3kT

4

(
f

C2
+

5g2

4C3

)
+ ..

]
.

The entropy is

S = Nk

[
1 + ln

[(
2m

C

) 1
2 πkT

h

]]
+ Y,

where

Y = Nk

[
3

2
kT

(
f

C2
+

5g2

4C3

)
+ ..

]
.

The entropy is extensive.
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4. Electron in a magnetic field
Consider a system of localized particles
of spin half with magnetic moment µB,
in the presence of an external magnetic
field of strength B. The N particle par-
tition function is given by

QN = [2 cosh (βµBB)]N .

The entropy

S =Nk ln [2 cosh (βµBB)]

−Nk [βµBB tanh (βµBB)]

is extensive.
In all the above calculations we have
taken particles which are localized by
some potentials which makes the system
non mixing so that there is no Gibbs
paradox. There is another way to dif-
ferentiate between mixing and non mix-
ing systems or extensive and non exten-
sive systems. The technique is to draw
the single particle phase space trajecto-
ries. We can see in Figure 1 that the
phase space diagrams of the above lo-
calized systems have closed trajectories.
This then implies that the systems are
non mixing (but the converse is not true
as, for example, in chaotic systems).

5.2 Particles in a potential
with Gibbs paradox

1. Non-relativistic free particles in a
gravitational field
Consider a collection of N particles of
mass m enclosed in a vertical cylinder of

Figure 1: Single particle phase space dia-
grams

height L in a uniform gravitational field.
The total energy of the system is

E =
p2x + p2y + p2z

2m
+ mgz,

where mgz is the gravitational potential
energy with z as the height of the par-
ticle. The N particle partition function
is
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QN =

[
AkT
mgλ3

(
1− e−βmgL

)]N
,

where A is the area of cross section of
the cylinder. In the limit when L → ∞
the partition function becomes

QN =

[
AkT
mgλ3

]N
.

The entropy is

S = N k

[
ln

(
AkT
mgλ3

)
+

5

2

]
which is not extensive. With the Gibbs
correction factor the entropy is changed
to

S = N k

[
ln

(
AkT
Nmgλ3

)
+

7

2

]
which is now extensive. If the poten-
tial energy is very large the particles will
drop to the ground and will become sta-
tionary.

2. Diatomic molecule with inter-
particle potential
Here we consider a system of diatomic
molecules with the 2-particle Hamilto-
nian given by

H =
p21 + p22

2m
+ ε|r12 − r0|

where ε and r0 are positive constants and
r12 = |~r1−~r2| is the distance between the
two particles.

Q1 =

(
2πm

β

)3

V 4πX

where

X =

[
2r20
βε

+
4

(βε)3
− 2e−βεr0

(βε)3

]
.

A = −NkT ln

[(
2πm

β

)3

V 4πX

]
and the entropy

S = Nk

[
3

2
+
Y

X

]
+Nk ln

[(
2πm

β

)3

V 4πX

]
,

where

Y =
2k(r0)

2T

ε
+

12kT 3

ε

− e−βεr0
(

6kT 3

ε
+

2k2T 2r0
ε2

)
.

S is not extensive. With the Gibbs cor-
rection factor the entropy is

S = Nk

[
5

2
+
Y

X

]
+Nk ln

[(
2πm

β

)3
V

N
4πX

]
.

We now get an extensive entropy.

3. Diatomic dipoles in external elec-
tric field
Consider a system of diatomic molecules
with electric dipole moment µ and mo-
ment of inertia I placed in external elec-
tric field of strength E. The energy of a
molecule is given by

E =
p2

2m
+
p2θ
2I

+
p2φ

2I sin2 θ
− µE cos θ.
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The Nparticle partition function is

QN =

[
V

λ3

(
I

β~2
2 sinh(βµE)

βµE

)]N
and the entropy

S =Nk ln

[
8π2k2T 2IV

µEλ3
sinh(βµE)

]
− NµE

T
coth(βµE) +

7

2
Nk

is not extensive. With the Gibbs correc-
tion factor the entropy is

S =Nk ln

[
8π2k2T 2IV

µENλ3
sinh(βµE)

]
− NµE

T
coth(βµE) +

9

2
Nk

which is now extensive.

4. Particles with a potential of the
form 1

2
C |r2 − r1|2

Consider a system with Hamiltonian

H =
p21 + p22

2m
+

1

2
C|r2 − r1|2

This Hamiltonian approximates a non
interacting diatomic molecule. The N
particle partition function is

QN =

[(
2πm

hβ

)3

V

(
2π

βC

) 3
2

]N
.

The entropy

S =Nk ln

[(
2πmk

h

)3

V T
9
2

(
2πk

C

) 3
2

]
+

9

2
Nk

is not extensive. Introducing the Gibbs
correction factor the entropy becomes

S =Nk ln

[(
2πmk

h

)3
V

N
T

9
2

(
2πk

C

) 3
2

]
+

11

2
Nk

which is now extensive.

5. Free electrons in a magnetic field
Free electrons in a uniform magnetic
field ~B follow a helical path with an axis
parallel to the field direction, say, the z
axis. The projection on the x, y plane is
a circle. The energy associated with the
circular motion is quantized in units of
e~B
mc

and the energy associated with the
linear motion along the z axis is taken
as continuous. The total energy of such
particles is

E =
e~B
2mc

(
j +

1

2

)
+

p2z
2m

where j = 0, 1, 2, 3 . . . . The N particle
partition function is

QN =

[
V

λ3
βµeffB

sinh(βµeffB)

]N
where µeff = e~/2mc and the entropy is

S =Nk

[
ln

(
V

λ3

)
βµeffB

sinh(βµeffB)

]
+Nk

[
βµeffB coth(βµeffB) +

1

2

]
.

The entropy is not extensive. By intro-
ducing the Gibbs correction factor for
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the N particle partition function the en-
tropy becomes

S =Nk

[
ln

(
V

Nλ3

)
βµeffB

sinh(βµeffB)

]
+Nk

[
βµeffB coth(βµeffB) +

3

2

]

which is extensive. The above system is
the Landau diamagnetic system in which
electrons circulate in a helical path and
collide with the walls, and bounce to and
fro and behave as free particles.
From the above examples we find that
even though these systems are under cer-
tain potentials they are non localized
and such systems shows the Gibbs para-
dox.

Conclusions

We have attempted to find the dependence
of potentials and their effect on the Gibbs
paradox by studying the extensive nature of
entropy. It is found that there are potentials
which do not allow mixing and for such sys-
tems there is no need of the Gibbs correction
factor in the N particle partition function.
There are some potentials which allow mix-
ing and hence there is a necessity of the Gibbs
correction term for the entropy to be exten-
sive. We found that if the equation for the
partition function is volume and temperature
dependent it can be written as

QN ∝ V φ(T )

for systems which shows the Gibbs paradox,
and for systems which do not show the Gibbs
paradox

QN ∝ V 0φ(T )

indicating the volume independence and only
temperature dependence. In our analysis we
found that in the case of free particles, the
Gibbs correction is essential to overcome the
Gibbs paradox. In the cases of particles con-
fined in a potential like harmonic, quartic,
anharmonic potentials, and static electrons
in a magnetic field we found that confinement
makes the system localized and does not al-
low particles to flow and so there is no Gibbs
paradox. For the systems like free electrons in
a magnetic field, non-relativistic free particles
in gravitational field and diatomic dipoles in
an external electric potential, even if there is
a potential there is no confinement, and the
system is non localized which allows flow of
particles.
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Abstract 
 

Mobile computing devices such as tablet computers provide an opportunity to record motion of 

objects with built-in digital video recorders, and to analyze a movie on the device itself. 

Smartphones can upload a movie to a desktop computer for analysis. This article describes the use 

of an iPad, Video Analysis and Graphical Analysis apps with examples so that students can learn 

to explore motion concepts in real life situations; and later share their findings with peers. 

Examples described here may be used by an instructor in a classroom for purpose of illustration, 

and to engage students to use their own mobile devices. In the first example described, motion of 

two balls falling simultaneously was analyzed to show the same rates of fall; and to study 

kinematics and determine acceleration due to gravity. In the second example, it is shown that 

circular motion of a ball rolling on a surface, with friction, is equivalent to two damped harmonic 

motions in two perpendicular directions. In the last example, motion of a foot of person pushing a 

cart is described. It is suggested that by using mobile digital recorders with traditional experiments, 

students may gain deeper insight into kinematics and acquire discipline based knowledge. 
___________________________________________________________________________________ 

 

1. Introduction 

 

Mobile computing devices such as an iPad, 

tablet computers and smartphones offer a 

new opportunity to collect and analyze 

information to facilitate teaching and 

learning physics concepts in an introductory 

physics course, both inside and outside a 

classroom [1, 2]. Motion of an object can be 

recorded and analyzed on these devices by 

using Vernier applications such as Video 

Analysis and Graphical Analysis [3]. If 

needed, this information may be uploaded to  

 

 

a desktop computer for a deeper analysis 

using Vernier’s Logger Pro software. A 

similar analysis application, SparkVue, is 

available from Pasco [4]. 

 

This article describes the use of an iPad to 

study motion concepts with Video Analysis 

and Graphical Analysis applications. Three 

examples and suggestions are presented for 

use in a classroom to enable students to use 

their own mobile devices to study motion 

concepts in a classroom and continue in real 

life situations. In the first example, motion of 
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two steel balls dropped simultaneously from 

the same height - one falling vertically down, 

and the other one as a projectile – is analyzed 

to show that the two balls fall at the same 

rates, and acceleration due to gravity is 

determined. In the second example, it is 

shown that a (uniform) circular motion can be 

decomposed into two (simple) harmonic 

motions, in two perpendicular directions. In 

the last example, motion of a foot of person 

pushing a cart is described. It is shown that 

by using an iPad along with traditional 

demonstration equipment one can gain more 

insight into the underlying physics concepts.  

 

The work described here may be done with 

the use of a traditional video camera and a 

desktop PC, but that would not adequately 

prepare student to use their own mobile 

devices to study motion in real life situations. 

The work described here was performed by 

the author on an iPad, and is shared hereto 

stimulate further exploration of use of mobile 

technology in a physics classroom. The 

author has not had an opportunity to use it in 

a classroom yet, so no student data is 

included. It is suggested that when an 

instructor performs these activities in a 

classroom, students be asked to participate in 

it by using their own mobile digital recorders, 

and analyze it using the appropriate free (or 

affordable) software like Video Analysis and 

Graphical Analysis. Students may work in 

small groups to study the motion under 

teacher’s supervision, and later use mobile 

devices in real life situations for further 

exploration, and bring back their findings to 

share with the class. 

 

 

2. Free-fall and projectile motion 

 

The demonstration apparatus, shown in 

figure 1, is used in a physics classroom to 

demonstrate that two objects released 

simultaneously from a given height – one 

falling vertically down and the other one 

moving like a projectile – would reach the 

floor at the same time. When the two balls hit 

the floor, students hear two simultaneous 

impacting sounds, thereby proving that times 

of flight for the two balls are equal. No 

additional information is obtained from this 

demonstration when performed in this 

traditional way [5]. 

 

The free fall apparatus consists of a simple 

arrangement of a horizontal rod with an 

elastic spring pushing on it. When the rod is 

pushed against the spring, it is locked in that 

position with a lever. Two steel balls are 

placed at the two ends of the rod. When the 

locking lever is released, the spring forces the 

rod to move to its original central position. As 

a result, one ball is released to fall vertically  

 

downward while the other one is launched as 

a horizontal projectile. 

 

 

 
 

Figure 1.  Free-fall and projectile motion 

demonstration apparatus, shown locked in a 

“loaded” position. 

 

To study motion of two falling balls with an 

iPad, the motion was captured with its built-

in digital video recorder, against a dark 

background to enhance visibility. Only one 

ball can be selected at a time with the help of 
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the circular cross-hair. In figure 2, both balls 

are seen to be at the same vertical level during 

their downward fall, implying that their time 

of fall toward the floor were equal.  In 

addition, two sounds are heard when the balls 

hit the floor. 

 

 
 

Figure 2.  Digital video recording of two balls 

falling downward. Dots on the left side are 

the marked positions of the projected ball in 

several frames of the recording.  

 

 

For further analysis of the motion recording, 

the movie was opened in an application 

named Video Analysis. For the projected 

ball, positions were marked by tapping on the 

ball by manually advancing the movie 

frames. As the ball speeds up, its image 

becomes a blurred circle with a trail. For 

consistency, the ball positions were marked 

at the leading edge of the ball images in all 

frames. Initial height (position) of the ball is 

entered in video analysis. Positive y-axis was 

selected vertically down and x–axis 

horizontal.  Origin was selected at the top - 

the initial position of the balls. Initial height 

entered in frame 1 serves as a distance scale 

in subsequent frames. After the initial height 

of the ball, with respect to the floor is entered 

in Video Analysis, subsequent y-coordinates 

are calculated by the software. So, parallax 

was not a concern. The results obtained from 

data analysis by this application are shown in 

graphs below. These graphs were saved in a 

camera roll. In camera roll, the pictures were 

enhanced by using built-in editing, and were 

uploaded to a desktop computer for writing 

purposes. 

 

 
Figure 3.Graph of variation of y-coordinate 

with x-coordinate. 

 

 

In Figure 3 shows variation of y with x 

coordinate. The data points are shown with a 

connecting line only since regression analysis 

requires opening data in graphical analysis, 

by using the “Open Data in ….” button in 

figure 3, and which yields figure4.  In 

figure4, for the projectile ball, (x, y) graph 

appears to be a parabola and a quadratic 

regression line was fitted through it. The x-

coordinate varies linearly with time while the 

y-coordinate is quadratic. Similarly, x-

component of velocity appears to be constant 

while its y-component increases linearly.  In 

figure 4, regression analysis was performed 

using graphical analysis on the iPad itself and 

results are shown below. 
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Figure 4.  Graphs of x and y components of position and velocity, obtained by opening data in 

graphical analysis.The top graph is variation of y with x with a quadratic regression line. The 

middle graph shows variations of x and y coordinates with time, and shown with a quadratic fits. 

The lower graph shows variation of x and y components of velocity with time, and linear regression 

lines.  
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The regression information in figure 4 can be 

used to understand kinematic equations of 

motion with zero friction. For this purpose, x-

axis is defined in the horizontal plane with y-

axis in the vertical direction. (x,y) are 

position coordinates, and (vx, vy) are 

components of velocity.  (ax, ay) are 

components of acceleration, which for a 

freely falling object are ax = 0 and ay= g = 9.8 

m/s2.  Kinematic equations are given below 

and the subscript o refers to an initial value: 

 

x = xo + vox t +  ½ ax t2 

 

y = yo + voy t +  ½ ay t2 

 

vx = vox +  ax t  

 

vy =  voy +   ay t  

 

A theoretical plot of these equations with g = 

9.8 m/s2 and initial values zeros is shown in 

figure 5, and the graphs resemble the 

corresponding lines in figures 4.

  

 
 

 

Figure 5: Theoretical graphs for an object moving with a constant acceleration of 9.8 m/s2. 

 

From Figure 4, equations and root mean 

square errors (RMSE) for the regression lines 

are found to be 

 

x = – 22.7 + 4.96t  -0.256t2, RMSE = 0.002 

 

y = 305–82.0t +   5.52t2, RMSE =0.002 

 

vx = 2.97 - 0.253t,   RMSE = 0.04 

 

vy = – 72.7 + 9.80t,   RMSE = 0.06 

 

 

Slope of the vy graph is 9.8 m/s2, which is 

close to the accepted value of acceleration 

due to gravity. A small value of acceleration 

(0.25 m/s2 ) in the x-direction may be due the 

fact that the setup was visually aligned 

horizontal – not with a precision liquid level. 

The large values of the intercepts are due to 

the fact that the video recording was started 

at time zero while the ball was released 

around 7 seconds, after the author walked 

over to the free-fall setup. The values from 

x(t) position graph are not used since it was 

fitted to a quadratic line (though it is linear) 
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due to an inability to fit a curve to individual 

data sets in the graphical analysis app. 

 

Motion of the second ball, falling vertically 

downward, was similarly analyzed, and 

figure 6 shows the regression coefficients for 

it. Value of g is found to be 9.54 m/s2 from 

the slope of vy graph. In figure 6, it is seen 

that x-coordinate and x-velocity do not 

change significantly, and have only a slight 

acceleration in the x-direction for the ball 

falling vertically down. This small 

acceleration ax is perhaps due to an 

equipment misalignment with the x-y grid in 

figure 2 which may have prevented it from 

falling exactly vertically down; or may be 

due to vertical axis being not perfectly 

aligned. The data has not been analyzed for 

error propagation as the main focus of the 

article is to prepare students to use their 

mobile devices to engage in further 

exploration in real life situations. However, 

the main source of error lies in marking the 

positions of the moving ball in a movie, due 

to blurriness of image, which can be reduced 

with practice.  

 

 
 

Figure 6. Graphs of motion of a ball falling vertically down. The upper line in both graphs is the y 

component of position or velocity, and the lower line is the corresponding x-component. Velocity 

data was fitted to a linear regression line, while a quadratic fit was used for position. 
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This simple activity shows that by a using a 

digital motion recorder along with a 

traditional equipment one can demonstrate 

that both objects fall toward the ground at the 

same rate (assuming zero or negligible air 

resistance), learn kinematics and determine 

acceleration due to gravity. 

 

 

3. Circular motion 

 

In an introductory physics course, a simple 

rotational motion is taught by using an object, 

moving counter-clockwise, in a circular path 

with a linear (tangential) velocity (v), and a 

rotational velocity (). In figure7, an object 

traverses an angular displacement  = t  in 

time t.  In a classroom, it is shown using 

trigonometry, that values of x and y 

component of object’s position vector r and 

velocity vector v are given by 

 

x = rcos,     y = rsin 

vx = -vsin,   vy = vcos 

 

 
Figure 7. A particle moving in a circular path. 

R is the radius of the circle, v is tangential 

velocity, and  is the angular displacement at 

time t.  

 

Using properties of trigonometric functions, 

students learn that position and velocity 

components are simple harmonic functions, 

and that sine and cosine functions are 900 (/2 

radians) out of phase with each other since 

 

sin =cos(/2 - ) and  

cos = sin(/2 - ). 

 

To illustrate connection between circular and 

harmonic motion, often a demonstration 

apparatus, shown in figure 8, is used.  

 

 
 

Figure 8. A demonstration equipment 

illustrating relation between a circular and 

harmonic motions. 

 

In this equipment, when a handle is manually 

turned, one piece moves in a circle along the 

rim while another connected part is 

constrained to move along a straight line 

passing through the center of disc [6]thereby 

establishing a connection between circular 

and simple harmonic motions. However, an 

iPad may be used to gain more insight into 

the two afore-mentioned motions as follows. 
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In the iPad example described here, circular 

motion was recorded and analyzed to 

illustrate its connection with a harmonic 

motion, and to show the effect of damping. It 

is suggested that when an instructor performs 

this activity in a classroom, students be asked 

to record the motion on their own mobile 

devices and analyzed it. In this example, 

motion of a steel ball rolling around the inner 

rim of a food bowl lid (a common household 

item) was recorded. The plastic lid was 

placed on a horizontal surface and a steel ball 

was manually set in motion to roll along the 

rim of the lid.  In Video Analysis, origin was 

selected at the center of the bowl lid, and x 

and y axes were selected to lie in a horizontal 

plane. Bowl diameter was about 8.4 cm and 

lid was10.5 cm, should one be interested in 

studying centripetal acceleration. In figure 

9,a few marked ball positions are shown, and 

figure 10 displays the variation of x and y 

components of position and velocity, 

obtained from graphical analysis. 

 

 

 

 

 
 

Figure9. Positions of ball rolling in a circle in 

a food lid with Video Analysis. 

 

 

 

 

 

 
 

Figure10. The first graph shows a circle 

which is formed by variation of (x, y) 

coordinates of a rolling ball. The second 

graph is variation of x and y coordinates with 

time and the third graph is variation of 

velocity components with time. The first 

graph shows the actual data points while the 

other two graphs show only the connecting, 

not the regression lines. 

 

It is seen in figure10that a (uniform) circular 

motion can be decomposed into two (simple) 

harmonic motions in two perpendicular 

directions. In the example shown here, the 

motion is damped due to the presence of 

friction. Further, it is seen that position and 

velocity graphs are 900 degrees out-of-phase. 

When position coordinates have maximum 

values at the extreme (turning) points, the 

corresponding velocities are zero 

[7].Trigonometric regression analysis was 

not done on the graphs due to a lack of this 
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choice in the app. It is clear that a simple 

activity like this one can be used to 

demonstrate several aspects of circular 

motion. 

 

To demonstrate the mobility of an iPad, a 

video recording of a person pushing a cart on 

a boardwalk was made, and analyzed with 

Graphical Analysis to study position and 

velocity of a foot during walking. The 

position of heel of the right foot was marked 

in video analysis. Length of person’s step 

was estimated to be about 1.0 m. Figures 11 

and 12 on the following page show the 

motion of the heel. The x and y coordinates 

and the corresponding velocities of the foot 

are shown to vary as the cart is being pushed 

to the right side at a steady speed. (Graphical 

motion of the cart is not shown for the sake 

of brevity). From the slopes of velocity 

graphs, one can see that a leg goes through 

acceleration and deceleration during a leg 

swing. Such observations can be particularly 

useful in studying kinesiology for a physical 

therapy course [8]. 

 

To build upon in-class learning, students may 

be assigned to explore examples of motion in 

real life situations, such as motion of a flying 

airplane, roller coaster, simple pendulum, 

mass on a rubber band or spring (slinky), 

pendulum clock, child on a slide or swing, 

water droplet on the wind shield of a car (as 

a passenger) and a falling leaf. Students could 

even use smartphones to gather relevant 

information and upload it to a desktop 

computer in a physics laboratory for 

graphical analysis, and to share it with 

classmates. 

 

Mobile devices may be used in conjunction 

with the traditional mechanics experiments in 

an introductory physics course; no need to 

jettison the old experiments. Briefly, for 

example, in a laboratory experiment, one 

may record the sliding motion of a wooden 

block or cart rolling down an inclined plane 

to calculate variation of velocity, acceleration 

and force of friction on the track. Further, by 

observing the change in velocity and vertical 

position of the cart on an inclined plane, one 

could illustrate concept of conservation of 

mechanical energy and role of friction. In 

another traditional experiment with a ballistic 

pendulum, students launch a metal ball 

projectile from a spring gun, and calculate its 

launch velocity by measuring its horizontal 

and vertical displacements when it lands on 

the floor. With a digital recording of its 

motion, students could easily observe that the 

horizontal component of velocity of a 

projectile stays nearly constant (due to a 

small air drag) while the vertical component 

of its velocity changes linearly; just like the 

ones discussed in the example I in this article.  

 

Other experiments that could benefit from a 

digital recording are Atwood’s machine (for 

study of Newton’s second law), conservation 

of linear momentum during collisions 

between two carts on a friction-less track and 

centripetal force [9].In conclusion, mobility 

and ubiquity of iPads and tablet computers 

offer an easy way to engage students in 

learning and acquiring discipline-based 

knowledge, both in and outside a classroom, 

and promote lifelong learning. 
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Figure 11. Positions of the right heel of a person pushing a cart. 

 

 
 

Figure 12. x and y positions and velocities of a heel as the foot moves up, down and forward. Red 

curve is x component and blue curve is the y component. 
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Abstract 
This brief note has pedagogical motivation and we want to emphasize that an introduction of  
Loedel representation of space-time, is very useful for high school students to understand the 
special relativity geometrically. We summarize a series of lectures given at the high school 
“Torquato Tasso” of  Salerno by the author of this paper and by his tutor teacher Rachele 
Lanzillotti. The aim of this short note is to stimulate curiosity and it wants to be a starting point 
to explore this topic. 
  
 
 

1. Introduction 
It is well know that Minkowski 

introduced the concept of space-time 

continuum and a  geometrical 

representation of Lorentz trasformations 

is usually studied using his diagrams. In 

this way it is  graphically possible to 

understand relativistic phenomena even 

without using mathematical equations 

[1]. In this approach two inertial 

observers are represented by an 

orthogonal system and by a system with 

oblique axes. Moreover the Minkowski 

diagram uses different scales for the 

orthogonal and the non-orthogonal axes 

and therefore it is necessary to calculate 

a scale factor to convert the units of a 

frame into the units of the other one  

 

 

 

moving with a constant velocity. All this 

is often difficult for students. The main 

attraction of the Loedel Space time 

diagram is, instead, that it treats the 

reference frame and the first moving 

frame symmetrically and hence they 

have identical scales in geometric 

units[2],[3],[4]. Furthermore the students 

can use standard matrix of rotation 

without recourse to imaginary axes and 

angles. This approach became known 

and were studied in more detail by 

several authors [5],[6],[7],[8],[9] but it is 

completely ignored in most textbooks. 

These underused diagrams are 

fundamental to understanding the real 

relativistic physical consequences that 

should not be confused with the change of 

units that is only a product of the choice of 
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the graphical representation. We will use a 

simple way to show the invariance of units 

of length and time for the two Loedel 

observers. 

 

2. Galileian space-time 
geometry 

In classical physics the link between the 

Cartesian coordinates of an object in two 

inertial reference frames in uniform 

rectilinear motion relative to one another 

with velocity � , is given by the Galileian 

transformations 

 

�
�� = � − ��

�� = �
�         (1) 

 

From a geometric point of view, they 

convert coordinates from Cartesian system 

to non-orthogonal axes. Indeed the �′  axis  

coincides with the �  axis but the �′ axis is 

inclined, relative to the �  axis, of � =

������. Indeed the points of this axis are 

those that have null abscissa and therefore 

are those that are located on the straight  line 

� − �� = 0 . Furthermore one can easily 

observe that the point  ��(1,0)  has still 

coordinates  (1,0)  on the ( �, � ) plane. 

Instead ��(0,1)  has coordinates (�, 1)  on 

the (�, � ) plane, that is, in this reference, 

��� = √1 + �� > 1. So the unit of measure 

of �′ axis is larger than that of the � axis.  

3. Relativistic space-time 
geometry 

In special relativity, instead, the link 

between  coordinates is governed by Lorentz 

transformations 

 

�
�� =

����

�����

�� =
����

�����

�         (2) 

 

and its inverse formulas 

 

�
� =

������

�����

� =
������

�����

�          (3) 

 

where � = �� e � = �/�.  

In this case the situation is further 

complicated because, with  Lorentz 

transformations, both axes are inclined by 

the same angle α = arctgβ. Indeed the �′ axis 

( �� = 0) is the straight line � = �� and the  

�′ axis ( �� = 0 ) is  � = �/�. Moreover the 

points ��(1,0)  and ��(0,1)  have, on the 

(�, �)  plane, coordinates respectively 

(
�

�����
,

�

�����
) and (

�

�����
,

�

�����
) . In both 

cases the unit vectors of the primed axes 

become long, in unprimed reference, 

�
����

���� > 1. It is necessary to note that this 

representation may confuse students because 

there seems to be a privileged observer, 

assigning to him a system of orthogonal 

axes. To eliminate this apparent asymmetry, 

it is known that it is enough to introduce an 

imaginary time coordinate ��  transforming 

Lorentz relations in orthogonal 

transformations with a rotation angle 

� = ������� . In this abstract case the 

problem is that it is not possible any graphic 

representation and, therefore, is not useful 

from a didactic point of view. 
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4. Real rotation matrix 

From the second relation of (3) we have 

 

��� = ���1 −
��

��
−

�

�
�′ 

 

and substituting in the first of (3) we get 

� = �
�

�
� �� + �1 −

��

��
�′ 

 

If we pose 

 
�

�
= ���� 

 

we can write 

 

��� = ����� − �′����
� = ����� + �′����

�         (4) 

 

obtaining the standard clockwise rotation of 

a real angle. This was observed for the first 

time by Enrique Loedel Palumbo and it is an 

excellent tool for teaching special relativity. 

The peculiarity of this rotation is the mix 

between the axes of the two systems: indeed 

it is not a rotation of the (��, �) frame with 

respect to the (��’ , �’ )  frame, but the 

rotation of (��’ , �)  with respect to (��, �’). 

The main benefit of this approach is that 

unlike in Minkowski diagrams, the scales of  

both axes of  both frames are identical and 

we do not have apparent preference of one 

of the inertial frames.  

 

 

 

5.Invariance of unit vectors for 
Loedel observers 

If we have, in primed frame, ��(1,0), then  
we obtain 

 

�
0 = ����� − ����
� = ����� + ����

� 

 

getting 

 

�

� = ���

� =
�����

����
+ ���� =

1

����

� 

 

Therefore from Pythagorean Theorem  

 

��� = �
1

�����
− ���� = �

1 − �����

�����
= 1 

 

With similar reasoning, if we have ��(0,1) 
we obtain  

�
1 = �����
� = �����

� 

and 

�� =
1

����
� = ���

� 
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getting, also on the (�, �) plane, ��� = 1. 

 

Fig.1: Loedel observers 

 

6.Conclusions 

Special relativity theory makes several 

predictions, some of which seem counter 

intuitive. The author of this paper  has always 

tried to inspire students so that they could 

themselves infer such phenomena as time 

dilation and lenght contraction and requesting 

the explanation of some “ relativistic 

paradoxes”. For example the Ladder Paradox is 

a famous thought experiment that shows why 

you can fit objects into spaces that are too small 

for them. Students generally have great 

difficulty and I have verified that they are able to 

find the right solution, in much more simple 

manner, through Loedel approach that is often 

neglected in standard textbooks. 
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What is the need for yet another book on Quantum 

Field Theory? Is there another way of exposition that 

clarifies the nuances of the formalism, such that it 

allows one to appreciate the underlying concepts as 

well as do practical computations in a more informed 

way? Padmanabhan, well known as a very effective 

teacher-communicator, makes a strong case in the 

affirmative. Quantum Field Theory is the language in 

which the basic constituents of all matter gets their 

dynamics expressed.  Hence it is important for all 

students of Physics to be reasonably well acquainted 

with it. There are many ways in which this book differs 

from other introductory text books that every 

generation of Theoretical Physics Students get 

exposed to. To get an overview of what is contained in 

this book, see the “Chapter Highlights” in the very 

words of the author that follows this review.  

Traditionally one begins the subject with the classical 

Lagrangian Mechanics and picks up the Hamiltonian 

formalism before one gets to Quantum Mechanics in 

either Schroedinger picture or Heisenberg picture in 

the nonrelativistic domain. One uses either position 

basis or momentum basis and the formalism is similar. 

However, in the relativistic case the position basis 

throws up a problem. As particle is localized the 

uncertainty in its momentum and hence its energy 

content increases and soon the state necessarily 

coexists as a state with additional particle – 

antiparticle pairs that can be created with the 

available energy. This leads to what one used to refer 
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as ‘Second Quantization’. From finite dimensional 

Quantum Mechanics, we end up with Quantum Field 

theory, with infinitely many variables that constitute a 

Field. For the simplest Scalar Field,this turns out to be 

a set of simply infinite dimensional harmonic 

oscillators, one for each mode �(�) = ��� + ��. 

Padmanabhan shows that this emerges naturally 

when one starts from the relativistic Action for a free 

particle and ‘quantize’ ala path integral mode.  

 

The systematic procedure leads to an appropriate relativistic propagator for the free particleexpressed as  

�(��; ��) = −
�

���� ∫
��

��

�

�
��� �− �(�� − ��)� −

�

�

��

�
�; 

in contrast the nonrelativistic analogue happens to 

be�(��; ��) = �(�) �
�

����
�

�
��

��� �
�

�

�|�|�

�
�. While the 

nonrelativistic expression indicates, in view of θ(t) 

factor, a causal propagation of a single particle, the 

relativistic expression admits paths that go both 

forwards and backwards in time, calling for multi-

particle intermediate states. A little analysis shows 

that they are indeed described by a set of harmonic 

oscillators (you should wonder where they come from 

when, we are dealing with a free particle), one for 

each mode �(�). This is a demonstration of thefact 

that the concept of particle indeed directly leads to 

Fields. When we later find that Fields, when 

quantized, reveal particle content in them, particle – 

wave duality is complete.  

One then generally moves on to espousing the real 

and complex scalar field theory and proceed to study 

the effect of static electromagnetic field as an 

example of interaction. Following this one studies 

perturbative effects of ��� interaction and then 

graduate to fermionic spin ½ fields and QED.  

Padmnabhan prefers to lay the concepts of field 

theory first and so deals with an approach that 

uses‘Effective Lagrangians’ to clarify both the vacuum 

state to begin with, illustrating Casimir Effect, 

Schwinger Effect etc. and then the concept of 

Regularization / Renormalization process, vital to 

relate the experimental measurements with our 

theoretical constructs. He makes repeated references 

to drive home the notion that the Renormalization is 

not necessarily to merely deal with the infinities in 

Field Theories and it is much more than just a 

procedure to hide infinities in the unobservable 

parameters of the theory. The way the topic is treated 

in many contemporary text books may give you an 

impression that in a perturbative treatment of a 

renormalizable field theory, infinities can be handled 

order by order and systematically absorbed in a few 

finitely many parameters of the theoryto give sensible 

predictions of experimentally measurable quantities 

such as the spectrum, level widths/lifetimes, cross-

sections etc. in terms renormalized physical 

parameters. In the Wilsonian formulation, adopted in 

this book from the very beginning, one trades the bare 

input parameters such as mass, coupling constants 

etc. for scale dependent parameters. The dependence 

of coupling constant λ [→ �(��)]on the energy scale 

characterized by the mass2 value μ2 of the physical 

measurement depends on the β function that 

characterizes the theory and λ is said to be ‘running’. 

Usually these topics are postponed to an advanced 

course and one deals with the basic algorithmic 

approach to do the computations; but I am very 

pleased that the author takes them up as elements 

that can be understood even before one has gets to 

that stage in Quantum Field Theory.  

External electromagnetic field makes its entry as a 

consequence of generalizing the phase symmetry of a 

complex scalar field �(x). By replacing �� � by 
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��� ≡ (�� + ����)�, the phase symmetry 

� ⇾ �����(�)� is recovered if simultaneously 

�� → �� − ���Λ, together with ��� = ���� − ���� as 

the gauge invariant electromagnetic field. The free 

field Lagrangian that describes the dynamics is then 

derived as ℒ�� = −
�

�
������ =

�

�
(�� − ��). While 

the covariant derivative of the complex scalar field 

yields interaction with an external electromagnetic 

field, the quantization of  ℒ�� yields photons. The 

technique calls for the quantization to proceed in a 

chosen gauge, for example, the radiation gauge 

defined as �� = 0, � ∙ � = 0.  The number of 

propagating fields reduces to 2, in view of the 

presence of constraints and indeed the gauge 

invariance. The free field quantization has a spectrum 

with set of states |{���}>, one each for oscillators 

labelled by wave vector k and polarization index α = 

1,2. The expectation value of the Hamitonian: 

E =∑ ∫
���

(��)����,� ħ��(���+1/2) 

Covariant quantization of the electromagnetic field 

gives the expected causal expression for the photon 

propagator for various gauge choices.  

As an aside at this stage, Padmanabhan introduces a 

section on Spontaneous Symmetry Breaking and the 

notion of degenerate vacuum state in the λ��theory 

with negative �� parameter and employs it to 

describe spontaneous magnetization of a 

ferromagnetic state below Curie temperature. Indeed, 

these play an important role in electroweak gauge 

theory to be learnt elsewhere. However the 

generalization of the U(1) into an SU(N) gauge theory 

is treated in sufficient details in a subsection to get a 

feel for what is in store.  

After three chapters on systematic exposure of real 

and complex scalar fields and electromagnetic field, 

one is ready to take on realistic interactions. 

Padmanabhan follows here a more conventional track, 

develops covariant perturbative treatment extracting 

the celebrated Feynman rules of the theory. The style 

of the treatment, however, lays more emphasis on the 

concepts, relegating algebraic derivations to either 

mathematical supplements or well directed exercises. 

It challenges the student to work through the text so 

that (s)he appreciates the concepts as well as gains 

confidence as a practitioner.  

The fifth and final chapter introducesadditional 

theoretical techniques, one needs to deal with 

fermions. Most textbooks use relevant canonical 

quantizationand drive home that the fermionic fields 

and operators obey anti- commutation rules, signaling 

both antisymmetric expressions in the formulae and 

attendant (Pauli) exclusion principle. For a systematic 

path integral derivation, one needs to introduce 

grassmanians (sort of anti-commuting numbers). 

Padmanabhan introduces them to the extent needed 

to derive all the fermionic analogues of standard 

expressions for the scalar (and vector) fields we have 

encountered in the earlier chapters. Electron 

propagator obtained using fermionic path integrals, 

deals with both electrons and positrons, since paths 

include both forward and backward time progression. 

One is now ready to take up one loop computations in 

QED and derive loop corrections to photon 

propagator, electron propagator as well as the 

electromagnetic interaction vertex (����). The 

celebrated expression for the anomalous magnetic 

dipole moment as� − 2 =
�

�
, as derived by Schwinger 

follows as a definite prediction of the formalism.  

Having completed the exposition of QED with all its 

formal attributes, including an explicit expression of 

the  function, that dictates the way of the coupling 

parameter varies with scale ��(�) =
��

�����, the author 

feels that students can get adequate mastery in the 

field going over a potpourri of solved problems. 

This reviewer recommends warmly the new text book 

to both discerning teachers and serious students in 

learning the basics of Quantum Field Theory. It is 
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certainly not an easy read for a first timer in the field, 

but packs enough serious content for a serious 

student of Physics, even if (s)he is one. 

******************************* 

 
Excerpts from the Book …. 
 

Chapter Highlights: 

 
1. From Particles to Fields. The purpose of this 

chapter is to compute the path integral 
amplitude for the propagation of a free 
relativistic particle from the event xi 1 to the 
event xi 2 and demonstrate how the concept of 
a field emerges from this description. After 
introducing (i) the path integral amplitude and 
(ii) the standard Hamiltonian evolution in the 
case of a non-relativistic particle, we proceed 
to evaluate the propagator for a relativistic 
particle. An investigation of the structure of 
this propagator will lead to the concept of a 
field in a rather natural fashion. You will see 
how the standard unitary evolution, 
propagating forward in time, requires an 
infinite number of degrees of freedom for the 
proper description of (what you thought is) a 
single relativistic particle. In the process, you 
will also learn a host of useful techniques 
related to propagators, path integrals, analytic 
extension to imaginary time, etc. I will also 
clarify how the approach leads to the notion of 
the antiparticle, and why causality requires us 
to deal with the particle and antiparticle 
together. 
 

2. Disturbing the Vacuum. The purpose of this — 
relatively short — chapter is to introduce you 
to the key aspect of QFT, viz., that particles can 
be created and destroyed. Using an external, 
classical scalar source J(x), we obtain the 
propagator for a relativistic particle from 
general arguments related to the nature of 
creation and destruction events. The discussion 
then introduces functional techniques and 
shows how the notion of the field again arises, 
quite naturally, from the notion of particles 

which can be created or destroyed by external 
sources. By the end of the first two chapters, 
you would have firmly grasped how and why 
combining the principles of relativity and 
quantum theory demands a concept like the 
field (with an infinite number of degrees of 
freedom), and would have also mastered 
several mathematical techniques needed in 
QFT. These include path integrals, functional 
calculus, evaluation of operator determinants, 
analytic properties of propagators and the use 
of complex time methods. 

 
3. From Fields to Particles.Having shown in the 

first two chapters how the quantum theory of a 
relativistic particle naturally leads to the 
concept of fields, we next address the 
complementary issue of how fields lead to 
particles. After rapidly reviewing the action 
principle in classical mechanics, we make a 
seamless transition from mechanics to field 
theory. This is followed by a description of the 
(i) real and (ii) complex scalar fields and (iii) the 
electromagnetic field. Two key concepts in 
modern physics — spontaneous symmetry 
breaking and the notion of gauge fields — are 
introduced early on and in fact, the 
electromagnetic field will come in as a classical 
U(1) gauge field. I then describe the 
quantization of real and complex scalar fields 
— which is fairly straightforward — and 
connect up with the ideas introduced in 
chapters 1 and 2. The discussion will compare 
the transition from particles to fields vis-a-vis 
from fields to particles, thereby strengthening 
conceptual understanding of both perspectives. 
The idea of particles arising as excitations of 
the fields naturally brings in the notion of 
Bogoliubov transformations. Using this, it is 
easy to understand the Unruh-Davies effect, 
viz., that the vacuum state in an inertial frame 
appears as a thermal state in a uniformly 
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accelerated frame. We next take up the 
detailed description of the quantization of the 
electromagnetic field. I do this first in the 
radiation gauge in order to get the physical 
results quickly and to explain the interaction of 
matter and radiation. This is followed by the 
covariant quantization of the gauge field which 
provides an opportunity to introduce the 
Fadeev-Popov technique in the simplest 
possible context, and to familiarize you with 
the issues that arise while quantizing a gauge 
field. Finally, I provide a detailed description of 
the Casimir effect which is used to introduce — 
among other things — the notion of 
dimensional regularization. 
 

4. Real Life I: Interactions. Having described the 
free quantum fields, we now turn to the 
description of interacting fields. The standard 
procedure in textbooks is to introduce 
perturbation theory, obtain the Feynman rules, 
calculate physical processes, and then 
introduce renormalization as a procedure to 
tackle the divergences in the perturbation 
theory, etc. For the reasons I described in the 
Preface, I think it is better to start from a non-
perturbative approach, through the concept of 
effective action. I will do this both for λφ4 
theory and for electromagnetic field coupled to 
a complex scalar field. In both the cases, one is 
led to the concept of renormalization group 
and that of running coupling constants. These, 
in turn, allow us to introduce the Wilsonian 
approach to QFT, which is probably the best 
language available to us today to understand 
QFT. The notion of effective action also leads to 
the Schwinger effect, viz., the production of 
chargedparticles by a strong electric field. This 
effect is non-analytic in the electromagnetic 
coupling constant, and hence cannot be 
obtained by perturbation theory. After having 
discussed the non-perturbative effects, I turn to 
the standard perturbation theory for the λφ4 
case and obtain the usual Feynman diagrams 
(using functional integral techniques) and 
describe how various processes are calculated. 
This allows us to connect up themes like the 
effective Lagrangian and the running coupling 

constant from both perturbative and non-
perturbative perspectives. 
 

5. Real Life II: Fermions and QED. Upto this point, 
I have avoided fermions in order to describe 
the issues of QFT in a simplified setting. This 
last chapter is devoted to the description of 
fermions and, in particular, QED. The Dirac 
equation is introduced in a slightly novel way 

through the relativistic square root��� =
����, after discussing the corresponding non-

relativistic square root��� = � ∙ �and the 
Pauli equation. Having obtained the Dirac 
equation, I describe the standard lore related 
to Dirac matrices and obtain the magnetic 
moment of the electron. I then proceed to 
discuss the quantization of the Dirac field, 
paying careful attention to the role of causality 
in fermionic field quantization. The path 
integral approach to fermionic fields is 
introduced through Grassmannians (which is 
developed to the extent required) and once 
again, we will begin with non-perturbative 
features like the Schwinger effect for electrons, 
before discussing perturbation theory and the 
Feynman rules in QED. Finally, I provide a 
detailed discussion of the one loop QED and 
renormalization. This will allow, as an example, 
the computation of the anomalous magnetic 
moment of the electron, which many consider 
to be the greatest triumph of QED. The 
discussion of one loop diagrams in QED also 
allows the study of renormalization in the 
perturbative context and connect up the 
“running” of the electromagnetic coupling 
constant computed by the perturbative and 
non-perturbativetechniques. 
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