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EDITORIAL 

 

  

As this issue of Physics Education reaches you, 
the new year 2017 would have already begun. 
Nevertheless, I wish all our contributors and 
readers a happy and prosperous new year. 
 
When Physics Education went online in 2012, it 
was presumed that the entire editorial processing 
would be done online. It is indeed true that the 
entire processing, right from submission, 
refereeing until publication, is completely online. 
This also requires that our authors help us by 
submitting manuscripts in the prescribed format as 
well as take responsibility to provide clear figures 
and other related materials before publication. As 
we enter the new year, I hope that authors will 
extend their fullest cooperation in this process. 
This would not only speed up processing but also 

helps us concentrate on other matters related to 
this journal. 
 
Talking of time, the year 2017 was heralded in 
India with a one second delay to synchronise the 
solar time and the atomic time. India's National 
Physical Laboratory at New Delhi did this 
exercise in their capacity as the standard time 
keepers for the nation. Once again, it underlines 
the crucial, though often silent, role played by 
physics in many areas of national interest. 
 

 
M. S. Santhanam 

Chief Editor 
Physics Education    

           
 

_______________________________________________________________________________________________   
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Abstract

With growing interest in renewable energy, a large work force would be required to
engineer, install and maintain devices for energy harvesting. The current trend points to
the non-polluting use of solar energy. Recognising this, it becomes necessary to have a
large audience understand the basic working of solar cells. This article focuses on the
conceptual understanding of a p-n semiconductor junction and how by material
engineering the junction can be used to harvest solar energy. The manuscript provides an
insight into the simple semiconductor physics and its implementation at the device level.

1 Introduction

To meet the growing demands of energy and
with limited reserve of fossil fuels, there is
a great need for low cost, enviornmental
friendly renewable energy resources. Among
other natural energy resources like wind, hy-
drothermal, biomass etc solar energy stands
out to be most promising candidate with the
Sun being the never-ending source of light

energy with wavelength range spanning the
electromagnetic spectrum from UV to In-
frared [1, 2]. When a material is incident with
light having energy greater than or equal to
the band-gap of the material, the electrons
absorb this energy and is excited from the
valance band to the conduction band, becom-
ing free for conduction process. This phe-
nomenon of producing voltage or electric cur-
rent is known as photovoltaic effect and the
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device working on this principle is known as
the solar cell. It was first discovered by a
french scientist, Edmund Becquerel in 1839
who also give this phenomenon its name [3].
However, the world got its first practical so-
lar cell much later in 1954 when Chapin et
al at Bell laboratories, UK developed a sim-
ple p-n junction Silicon-solar cell with 6 %
conversion efficiency of solar energy into ele-
crticity [4]. Till date Si-solar cells with ef-
ficiency ≈ 25 % dominate the photovoltaic
industry. However, due to high processing
cost and expensive Si-technology, focus has
been shift towards a large number of other
organic and inorganic materials eg. P3HT,
CdS, SnS, CIGS etc. as solar cell absorb-
ing layer [5, 6, 7, 8, 9, 10], leading to a rise
of thin film solar cell technology. Thin film
solar cells although have cut down the manu-
facturing cost by great margins but they still
have to go a long way as far as conversion
efficiency is concerned.
In this manuscript, we will discuss how a

simple p-n junction solar cell works and what
important parameters one has to consider
while designing a thin film solar cell. But
before going into the details of photovoltaics,
lets begin with an over-view os a simple p-n
junction.

2 p-n junction

A p-n junction is formed when a p-type semi-
conductor (having holes as majority carriers)
is grown over a n-type semiconductor (elec-
trons as majority carriers) or vice-versa, us-
ing one of the fabrication methods such as

thermal evaporation, lithography, wet chem-
ical methods etc.. Because of the difference
in electron’s and hole’s concentration in the
two layers, a concentration gradient is set
leading to diffusion of charge carriers. Elec-
trons move from n-type region (where they
are the majority charge carriers) to p-type
region (where they are in minority) and simi-
larly holes move from p-type to n-type region.
Since this type of carrier movement results in
an increase in number of minority carriers on
both p and n-side of the junction, this process
is called minority-carrier injection and the re-
sulting current is known as diffusion current.

These diffused minority charge-carriers re-
combine with the majority carriers present in
the layers and eventually deplete all the free
charge carriers in the vicinity of junction (on
both sides) leaving behind immobile charge
ions, donors ions (Nd, positive) on n-side and
acceptor ions (Na, negative) on p-side of junc-
tion. This region, depleted of mobile charge-
carriers is known as depletion region/space
charge region and extends upto xp and xn in
the two layers as shown in fig 1. The loss
of charge neutrality in depletion region give
rise to an electric field with direction from n-
side (positive donor ions) to p-side (negative
acceptor ions).

This electric field prevents the further dif-
fusion of charge carriers and itself exerts a
force on the carriers causing a drift of elec-
trons from p-side to n-side and that of holes
from n-side to p-side i.e. in the direction op-
posite to the diffusion current. Therefore,
the electric field builds upto a point where
equilibrium is reached and both diffusion and
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drift currents balance each other i.e.

Idiffusion = Idrift = Io (1)

At equilibrium, the electrochemical poten-
tial1 represented by fermi-levels, on either
side of the junction are equal. This allign-
ment of fermi levels results in bending of
bands in the depletion region and hence to
an electric potential known as built-in voltage
‘Vo’ or ‘Vbi’.

2 Since the electric field is maxi-
mum at the junction while zero in the neitral
region, it implies that there exists a potential
gradient in the depletion region. The distri-
bution of space-charge and the potential in
this region is given by Poisson’s equation [11]
For depletion region 0 < x < xn

d2V

dx2
=

−q

εs
(Nd) (2)

And for depletion region −xp < x < 0

d2V

dx2
=

q

εs
(Na) (3)

Where, ‘εs’ is the dielectric constant of the
semiconductor material and x = 0 at the
junction and increases as we move away from
the junction into the depletion region. The

1It describes the average energy of carriers, gen-
erally given in terms of electron energy.

2In order for the charge carriers to diffuse fur-
ther, they have to overcome the potential barriers
‘Vbi’ which is also known as knee voltage i.e. Vbi

is the minimum voltage that must be applied across
the junction in order for the current to start flowing
through the diode. It is necessary for maintaining
equilibrium at the junction and is not an external
potential and therefore can’t be measured using a
voltmeter.

p−type
CB1

EF1

−

−

−

+

+

+

regionregion
quasi−neutral quasi−neutral

Vbi

p−side

depletion region

E

Idiffusion
Idrift

VB1

−qV
x

p

Vn

EF

n−side

n−type

(A)

(B)

(C)

(D)

VB1

CB1

−xp x
n

CB2

EF

VB2

VB2

CB2

EF2

V

Figure 1: Figure showing (A) energy-band
diagrams of isolated p-type and n-type semi-
conductor (B) energy-band diagrams of a p-n
junction (C) different regions of a diode with
direction of currents flowing through it (D)
distribution of electrostatic potential across
the diode.

potential is ‘Vp’ and ‘Vn’ at ‘−xp’ and ‘xn’
respectively. Vbi is given as

Vo = Vn − Vp (4)

i.e. the potential difference between the con-
stant potentials in the neutral regions.
Therefore, any p-n junction device (as

shown in the fig 1) consists of three regions:

(i) Depletion or the space-charge region
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(ii) Quasi-neutral region on both sides of de-
pletion region, where charge carrier con-
centration equals the carrier concentra-
tion of neutral p or n-region.

(iii) Contact electrodes to collect the charge-
carriers generated in the p-n junction de-
vice and connect it to external circuit.

3 p-n junction under

applied bias

Forward bias and Reversed bias

When an external bias (V) is connected
across the junction such that the p-side is
connected to positive terminal of the battery
and n-side to negative terminal, the junction
is said to be forward bias. Forward bias low-
ers the junction potential to (Vbi − V) and
thereby increases the probability of carrier
diffusion across the junction, by a factor of

e
qV
KT (known as Boltzman factor). Therefore,

diffusion current under FB is given as its
equilibrium value multiplied by the Boltzman
factor. Under reverse bias condition, p-side
is connected to lower potential than n-side,
the barrier height at the junction is increased
to (Vbi +V) thereby decreasing the diffusion
current.
In both the cases, drift current (Io) being

independent of the voltage remains the same.
It mainly depends on the number of charge
carriers crossing the junction, which depends
on the elctron-hole pairs being produced in
the depletion region. Therefore, it is also
known as the generation current or reverse

saturation current as it is the only current
flowing through the diode when it is reversed
biased.

Therefore under an applied bias, total cur-
rent flowing through the junction is given as

I = Io(e
qV
KT − 1) (5)

Where, V = +V for forward bias and
V = −V for reverse bias. The above equation
is known as Schokley equation. It is the fun-
damental equation for micro-electronic de-
vices.

CB2
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Vbi−V

EF
qV

VB2
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CB2

(B) Reverse Bias(A) Forward Bias

CB1

EF

VB1
qV

Vbi+V

V V

Figure 2: Figure depicting energy-band dia-
gram of a diode under (A) Forward bias (B)
Reverse bias

In both the biasing, the drop (V) in the
built-in voltage causes an equivalent shift
(qV) in fermi level positions from its equilib-
rium position in absence of biasing on both
sides of junction with respect to each other
as shown in fig 2.
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Figure 3: Figure showing energy-band dia-
gram of a p-n junction under illumination.

4 p-n junction under

illumination

When a p-n junction is exposed to light hav-
ing energy greater than the band-gap of the
semiconductor in use, electron-hole pairs are
produced both at the junction (i.e. in deple-
tion region) as well as in the quasi-neutral
region. However, due to presence of large
concentration of majority (mobile) carriers
in neutral region, rapid recombinations take
place. Thus, the total number of photo-
generated charge carriers are effectively those
generated in depletion region only. In the
space-charge region on p-side of the junction,
holes (from generated electron-hole pairs) get

recaptured by the acceptor ions present there
and the elctrons are swept towards the n-side.
Similarly the electrons generated on the n-
side depletion region, get recaptured by the
donor ions there and holes cross the junction
to reach p-side. This decreases the number of
donor and acceptor ions in the space-charge
region and hence decreases the total potential
across the junction to (Vbi − Vl), just like in
FB case.

I = Io(e
qVl
KT − 1)− Iph (6)

‘Vl’ in above equation is the drop in the built-
in volatage across the junction on exposure to
light, the maximum value it can take is called
open-circuit voltage or Voc beyond which the
diffusion current will start dominating. The
maximum drop in the built-in potential under
illumination or the value of Voc is decided by
the difference in the position of Fermi-levels
of the two materials before junction forma-
tion [12] i.e. Efn − Efp (see fig 3), This is
the limiting value of open-circuit voltage as
fermi-levels can not be shifted beyond these
positions in absence of ant external voltage
bias. Iph being a negative current i.e. in
opposite direction to the convential forward-
bias current (Idiff), it will shift down the I-V
curve to IVth quadrant, as shown in fig 4.
Voc can also be seen as the maximum voltage
that can be generated across the solar cell
terminals i.e. when it is not connected to ex-
ternal load (open-circuit condition). In this
case, the charge carriers crossing the junc-
tion will reach the respective electrodes and
get accumulated there resulting in a poten-
tial drop (positive on p-side and negative on
n-side). Hence, it is called the open-circuit
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Figure 4: I-V characteristics of a solar cell.

voltage (Voc). It can be derived from eqn (5)
as

Voc =
KT

q
ln

(
Iph
Io

+ 1

)
(7)

Similarly, the maximum light-current that
can be produced on illumination is called
short-circuit current or Isc. As the name sug-
gests, it is the maximum current which will
flow through the external circuit when p- and
n-sides of the junction are short-circuited3.
Since this current depends on the area of solar
cell, J-V curve is generally reported instead
of I-V curve, where J is known as the current
density and is given as (J = I/area). Such a
device which converts solar energy into elec-
trical energy is known as phtovoltaic device
or more simply a solar cell.
A p-n junction works as a solar cell in

the forth quadrant, where power is negative
(P = V × (−I)) i.e. instead of dissipating
power, the device is generating the power.

3In this case, the potential barrier remains un-
changed as the total work done is zero i.e. qV = 0

But, does that mean all the p-n junctions
will work as solar cells under illumination?
The answer is ‘NO’. For better understand-
ing, we have to look into the details of so-
lar cell physics from a material enggineering
point of view. The ability of a p-n diode to
work as a solar cell depends on a large num-
ber of factors such as

(i) Material’s ability to generate carriers
upon excitation.

(ii) Length of p- and n-layers and other pa-
rameters influencing the charge-carrier
transport.

(iii) Selection of electrodes for collection of
generated charge carriers.

Before discussing the above points into de-
tails, please note that uptil now, we have con-
sidered both p and n-layers to be absorbers
as in case of crystalline-Silicon solar cells (c-
Si). We will now shift our discussion from
c-Si type solar cells to thin film solar cells for
simplicity. These solar cells have only one ab-
sorber layer (p-type or n-type) and the other
is just a complimentory layer (transparent to
sunlight) forming the junction with the ab-
sorber layer.4 Lets discuss the itemized as-
pects of device physics one by one.

4In this article, we are basically dealing with inor-
ganic solar cells which rely on the junction property
for charge carrier generation and separation. There
are a large number of other solar cells also like ora-
ganic solar cells, dye-sensitized solar cells etc. having
different working principle than the inorganic ones.
However, the basic material engineering and selection
criteria remains the same.
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5 Material selection for

juction formation

For a p-n junction to operate as solar cell, the
two layers forming the junction must fulfil the
following criteria.

5.0.1 Optimum band-gap

When a material is exposed to sun, it will ab-
sorb light having energy (E) greater than or
equal to its band-gap (Eg) while being trans-
parent to other wavelengths. Energy equal
to the band-gap is used by the charge car-
riers to move from valance band to conduc-
tion band and rest of the energy (E-Eg) is
lost/dissipated as heat. Therefore, for ap-
plications in solar cells, the material should
have an optimum band-gap to absorb max-
imum portion of solar spectrum with mini-
mum heat dissipation. As we all know that
the amount of sunlight reaching the earth’s
surface depends on the latitude and longi-
tude of the place, for testing purposes the
solar spectrum is standardized as AM 1.5,5

major portion of the spectrum comprises of
VIS-IR region. Theoretically, the band-gap
for maximum solar cell output is estimated
to be ≈ 1.5 eV for AM 1.5 spectrum [11].

5‘AM’ stands for air mass and is given as the se-
cant of angle that the sun makes with the zenith, for
AM 1.5 spectrum, this angle is 45◦.

5.1 Minimum lattice-mismatch
between layers

The layers forming the junctons should have
minimum lattice mismatch in their crystal
structure so as to avoid the formation of any
defect at the interface. These defects hinder
the movement of charge-carriers and might
result in trapping or recombination and hence
degrade the solar cell performance.

5.2 Band discontinuity
between lattice-matched p
and n-layers

Under the section ‘p-n junctions’, we have
already discussed the band-bending consid-
ering both the p- and n-layers are of the
same material eg.(p-Si/n-Si) and therefore
have their conducton band and valance band
at same level in energy-diagram and the only
difference is in the position of fermi-levels due
to different doping type in the two layers.
Such p-n junctions are called homo-junctions
(as shown in fig 1). However, when a juncton
is formed using p- and n-layers of different
materials eg.(p-SnS/n-ZnO), having different
band-gap and electron effinities,6 a discon-
tinuity is generated in their band-structure
as Fermi levels line up at equilibrium [13].
The discontinuity in conduction band of the
two layers is known as the conduction band
offset (Ec) and is given as the difference in
the electron effinities of the two layers. Sim-

6electron effinity of a semiconductor is defined as
the energy difference between it’s conduction band
edge and the vacuum level

Volume 32, Number 4 Article Number : 1 www.physedu.in



Physics Education 8 (Oct-Dec 2016)

ilarly, the discontinuity in valance band is
known as valance band offset (Ev) (see fig 5).
These junctions are called heterojunctions. If
the absorber layer is of p-type, then the Ec

(with respect to n-type junction layer) plays
a major role [14] while for a solar cell hav-
ing n-type absorber layer, Ev (with respect
to p-type junction layer) decides the junc-
tion quality [15]. If (Ec) or (Ev) is large
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Figure 5: Figure showing the spike and cliff
formation in a heterojunction.

(greater than 0.3 V), it will effect the band-
bending and would lead to the formation of
spike or cliff structures at the junction as
shown in fig 5. The shape of the energy
bands can be easily found out by solving Pois-
son’s equation with boundary conditions of
continuous electric flux density at the junc-
tion (i.e. εpEp = εnEn), where ‘εp’ and ‘εn’
are the dielectric constants of the p- and n-
layers. Formation of spike or cliff at the junc-
tion degrade the junction quality by trapping
the carriers instead of promoting the charge-
separation.

6 Length of different

regions of p-n junction

After separation at the junction, the gener-
ated charge carriers have to travel different
regions (depletion region and quasi-neutral
regions) to reach the external circuit. The
length of each region effects the carrier trans-
port and in turn effects the overall solar cell
efficiency. Some of the factors effecting the
thickness of these leyers are

6.1 Absorption coefficient

The absorption of light by a material does
not only depend on the band-gap and energy
of incident photon but also depends on the
ability of a material to absorb and is given
by the absorption coefficient (α).
Absorption coefficient (unit cm−1) deter-

mines the length traversed by the light (of
a perticular wavelength, λ) in a material be-
fore getting absorbed. It can be easily derived
from Beer Lambert’s law [16]

Iz = Ioe
−αz (8)

where, ‘I′z is the light intensity after travelling
distance ‘z’ in the material. ‘I′o is the incident
light intensity. Penetration depth is given as
( 1
α
cm).
Absorption coefficient of the material

should be large enough to absorb maximum
sunlight incident on it so that the minimum
amount of material is required (it will min-
imize the material’s cost). Therefore, the
length of absorber layer should be optimized
according to its absorption coefficient such
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that considerable amount of light reach the
junction before getting completely absorbed
by the material since effective number of
charge carriers are generated in depletion re-
gion (near the junction) only as discussed in
sections above.

6.2 Diffusion length of carriers

Another major factor deciding the lengths of
quasi-neutral and space-charge regions in so-
lar cell is the diffusion-length of the charge
carriers. Diffusion length by principle, is the
distance travelled by a charge carrier between
subsequent collisions or before getting recom-
bine. It is propotional to the product of mo-
bility µ and life-time τ of charge-carriers i.e.√
µτ [11].
The electron-hole pair produced inside

space-charge region should cross the junc-
tion before getting recombine i.e. electrons
have to reach n-side and holes p-side without
recombination. Since these carriers are mi-
nority carriers in the region where they are
produced, the depletion layer width should
be less than the diffusion length of the mi-
nority carriers produced on that side of the
junction. This implies that the optimum de-
pletion layer width on p-side of the junction
would be decided by the diffusion length of
the electrons in p-type material and similarly
the optimum width of depletion region on n-
side would depend on the diffusion length of
holes in n-type material.
Upon crossing the junction, holes and elec-

trons have to travel p-region and n-region
respectively (where they are majority carri-
ers) to reach the electrodes. However, during

their journey across the quasi-neutral region,
these charge carriers can encounter a large
number of collisions and recombinations7 [11]
with mobile carriers already present there im-
plying that even in these regions, they have
a finite lifetime associated with them. Thus,
conductivity of the material becomes another
decisive factor as it will effect the mobility of
the respective charge-carrier and hence the
majority carrier’s diffusion length. To sum
up, the optimum length of the depletion re-
gion is decided by the minority carrier’s dif-
fusion length while that of quasi-neutral re-
gions by majority carrier’s diffusion length,
making conductivity (or doping)8 a major de-
cisive factor.

7 Contact electrodes

To collect the photo-generated carriers and to
feed them to external circuit, metal contacts
are made on both sides of semiconductor lay-
ers. Contact on the side from where light
enters into the cell is known as front contact
and the contact on the opposite side is known
as the back contact.

Depending on the work function of the
metal and the semiconductor, two types of
junctions/contacts are formed between them

(i) Ohmic contact

7There are mailny four different types of recom-
binations in a semiconductor namely band to band
recombination, R-G cenetrs recombination, excitonic
recombination and Augur recombination.

8conductivity (σ) of a material is related to carrier
concentration (N) by relation σ = qNµ
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(ii) Rectifying contact

Ohmic contacts follow the linear V = IR
relation and are best for collection of charge
carriers. While in case of rectifying con-
tacts, a junction is formed at the metal-
semiconductor interface (i.e. ohm’s law does
not apply anymore) leading to loss of carri-
ers in overcoming the junction barrier. For
a p-type absorber layer, metal work func-
tion should be more as compared to the p-
type semiconductor material used to obtain
an ohmic contact while it should be less for
making an ohmic contact with n-type semi-
conductor as shown in fig 6. Conventionlly,

q
q

q q

EF

CB2

EF2

VB2

CB

VB

metal p−type metal n−type

m

m

p

n

(B)(A)

VACUUM LEVEL

Figure 6: A representative of energy-band al-
lignment suitable for ohmic-junction forma-
tion between (A) metal and p-type semicon-
ductor (B) metal and n-type semiconductor.

metals like Al, In, Cu, Ag and Au are used
for making contacts. Front contact is gener-
ally made in form of very thin metal strips to
allow maximum light to enter the cell while
thin metal sheets are grown as back contacts
to prevent light from escaping the cell. Now-
a-days special type of wide-band semiconduc-
tors having low sheet resistance (< 10 Ω/�)
and high transmittance are gaining populaity.
These semiconductors are known as Trans-
parent conducting oxides or TCO’s. Some
of the widely used TCO’s are ZnO, Al:ZnO,

FTO, ITO etc. While for back contacts, met-
als remain the best choice for their good re-
flectivity.

8 Ideal solar cell

Concluding from above discussion, an ideal
solar cell should only have depletion region
with no (or zero length) neutral region and
electrodes placed at the junction boundary at
xn and xp as shown in fig 7. If diffusion length
of holes and electrons in n- and p-region be
Lp and Ln respectively. Then

xn ≤ Lp

xp ≤ Ln

or

(xn + xp) ≤ (Lp + Ln) (9)

Now, if penetration length is
(
1
α

)
, then fol-

lowing condition has to be satisfied for all the
depletion region to be illuminated(

1

α

)
≥ (Lp + Ln) ≥ (xn + xp) (10)

However, to have a zero neutral region is not
possible but ts length can be minimized by
careful material engineering.

9 Characteristics of a

solar cell

Once a p-n junction is made, it is tested to
check whether it will function as a solar cell
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Figure 7: An ideal solar cell.

on exposure of light or not? for this purpose,
I-V or (J-V) characteristics of the junction
are recorded for a moving bias of (-V to +V)
under AM 1.5 spectra.

Negative bias (-V to 0) is applied to en-
sure the quality of the junction i.e. it should
not break down under the reverse bias con-
ditions. Also under reverse bias conditions,
charge carriers are “sucked out” of the device
resulting in a current, flowing opposite to the
direction of conventional diode current (Idiff
during forward bias). Therefore, reverse bias
ensures that the current flowing through the
cell is purely due to generation of charge car-
riers in the device.

A p-n junction will continue to function as
a solar cell (i.e. I-V in IVth quadrant) until
the applied bias reaches Voc, beyond which
the diode gets forward bias or in other words
the barrier at junction get so reduced that
the forward current starts dominating.

To check the quality of the fabricated solar
cells, following quantities are defined

Fill Factor (FF)

To draw maximum power from a device, the
area of the rectangle enclosed9 by the J-V
curve should be maximised or in other words
the squareness of the I-V curve should be in-
creased. The point at which the rectangle
touches the I-V curve (fig 8)is known as the
maximum power-point and the correspond-
ing output voltage and current are labelled
as Vm and Im. The parameters used to de-
fine/quantize the squareness of a solar-cell I-
V curve is called Fill factor (FF) and is given
as

FF =
areaoflargestrectangle

totalareaunderI − V curve
=

VmIm
VocIsc

(11)
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Characteristics of
a practical solar cell

Figure 8: I-V characteristics of a practical
and an ideal solar cell.

Power Efficiency (η)

The power efficiency of a solar cell is sim-
ply the ratio of maximum power that can be

9The power generated/dissipated by any device is
the area of rectangle completely enclosed by the I-V
curve.
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extracted from it to the total optical power
incident.

η(%) =
VmIm
Pin

=
FF × VocIsc

Pin

× 100(%) (12)

A p-n junction with good Fill factor will
ensure a higher efficiency and hence would
be a good solar cell.
Power efficiency (η) as discussed above is

basically concerned with the total output
power from a solar cell which along with ma-
terial’s ability to convert photons to electron-
hole pairs include a lot of other factors such
as design of solar cells such as shape and size
of different solar cell layers, biasing of solar
cell etc.
To characterize the intrinsic nature of solar

cells (i.e. number of electrons produced per
incident photon) and to separate it from rest
of the factors, another term has been defined
by the researchers known as the Quantum ef-
ficiency. Two types of efficiencies have been
defined

Internal Quantum efficiency (IQE)

It tells about the junction quality, separating
it from the material’s ability of absorbing the
photon. It is defined as the ratio of number
of electrons collected to the totatl number of
photons absorbed.

External Quantum efficiency (EQE)

It takes into account the solar cell design
along with the property of the material. It is
given as the ratio of the number of electrons
collected to the total number of photons in-
cident.

10 Modeling of a solar

cell

To model an ideal solar cell, a current source
is used connected in parallel with a diode [11]
as shown in fig 9. The current source is used
as the photogenerated current remains con-
stant for a given illumination level irrespec-
tive of the load connected across the solar cell
while the diode element indicates the direc-
tional property of the current (i.e. from p to
n-side). This is the main difference between a

II ph D

Figure 9: Equivalent model of an ideal solar
cell.

solar cell and a battery (apart from battery’s
limited lifetime) that the battery provides a
constant emf across its terminals while vary-
ing the current depending on the circuital el-
ements. In solar cells, the current depends on
the number of photogenerated charge carriers
while the voltage is determined mainly by the
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Physics Education 13 (Oct-Dec 2016)

load connected10. However, during their jour-
ney from junction to electrodes, these charge
carriers have to travel various regions hav-
ing different resistances and can face recom-
bination at grain boundaries, bulk and at in-
terfaces between layers etc. All thses losses
are modelled as series and shunt resistances
connected across the solar cell and indicate a
decrease in its efficiency by dissipating power
[11]. Series resistance represents the difficulty
of hole and electron motion due to bulk re-
sistances of semiconductors and metals used
and the contact resistances between the two.
Shunt resistance arises from current leakage
through the device (around the edges and be-
tween the contacts), it also includes the effect
of foreign impurities and crystal defects in-
duced while fabrication. The resultant equiv-

I ph
I D

I

I sh

shR

s

sR

V

Figure 10: One-diode equivalent model of a
solar cell.
alent circuital model of solar cell is shown in
fig 10. This is a standard one-diode model.
Two or more diodes are also used in some
cases to account for increased recombinations
due to grain boundaries etc. However, in this
article we will limit our discussion to one-
diode model only. In the figure ‘I′ph is the

10Assuming that all the generated carriers are col-
lected at the electrodes.

photo-current, ‘V′
D and ‘I′D are the diode volt-

age and current given, ‘V′ and ‘I′ are total
voltage and current through the circuit.
Applying KCL gives,

Iph − ID − Ish − I = 0 (13)

Using eqn (5)

I = Iph − Io(e
qVD
KT − 1)− Ish (14)

Also VD = V+ IRs and

Ish =
V + IRs

Rsh
(15)

substituting in eqn (14) gives

I = Iph − Io(e
q(V +IRs)

KT − 1)− V + IRs

Rsh
(16)

As seen in previous sections, the photogener-
ated charge carriers undergo recombination
in the depletion region as well as the neutral
regions. To include this effect, the eqn 5 is
modified as

I = Io(e
qV

nKT − 1) (17)

Where, ‘n’ is the ideality factor, it determines
the departure of a p-n junction characteristcs
from the ideal diode characteristics. Gener-
ally, n varies from 1 to 2 for a practical solar
cell with n = 1 for an ihere deal junction so-
lar cell. However, there have been reports of
p-n junction, with n = 2/3 (due to Auger re-
combination taking place) and n > 2 (due to
recombinations at the grain boundaries and
tunneling effects). Therefore, eqn 18 becomes

I = Iph − Io(e
q(V +IRs)

nKT − 1)− V + IRs

Rsh
(18)

This is the characteristic equation of a prac-
tical solar cell.
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10.1 Effect of Rs and Rsh on
I-V characteristics of a
solar cell

Rs being a series connection between the ex-
etrnal circuit and the cell, controls the value
of maximum current flowing through the de-
vice (under the assumption Rsh �Rs). For
a very small value of Rs, I ≈ Isc. While
controlling Isc, it does not affect the open-
circuit voltage of the cell as at this point,
the photo-generated current and hence the
current through Rs is zero. As seen from

Iph
ID

s

Is

V

Increasing
Rs

Voc

V

I

R

Figure 11: Effect of Rs on solar cell charac-
teristics.

the equivalent circuit in fig 10, Rsh provides
an alternate path for current and thus af-
fects the voltage across the solar cell termi-
nals. This voltage will be equal to Voc for
Rsh ≈ ∞. Generally, Rsh �Rs therefore, it
does not affect the total current (I) as already
discussed.The values of Rsh and Rs can be es-

timated using the I-V curve as

Rs =

(
dV

dI

)
V=Voc

(19)

Rsh =

(
dV

dI

)
V=Isc

(20)

Values of both the resistances greatly affects

Iph
ID Ish

shR

V

I

V
I

Decreasing
I

R

sc

sh

Figure 12: Effect of Rsh on solar cell charac-
teristics.

the sharpness of I-V curve. Rs alters the
short-circuit current, which will decrease as
the value of Rs increases, keeping open-circuit
voltage constant fig 11. On the other hand,
as the value of shunt resistance decreases, the
voltage across the diode will decrease and
hence the Voc will decrease as shown in fig 12.
The I-V curve will take the shape of a straight
line intersecting the two axis at Voc and Isc
if the values of the two resistances diverge
greatly from their ideal values.
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Abstract

This article is a continuation of our efforts to demonstrate how to plot the E field from a
time varying source, using Gnuplot. In the present case the source has been taken to be a
charged particle in accelerated motion, moving with relativistic speeds. Three specific
examples of acceleration have been taken, namely, (a) rectilinear acceleration, (b)
rectilinear deceleration, (b) centripetal acceleration. The formulas used for the plots have
been taken from a 1972 paper by Roger Y. Tsien. However, these formulas have been
re-derived in details to make the article reader friendly and pedagogical. We have
highlighted the lessons that the reader can derive from these plots: (1) Clarification of
concepts related to retarded time, and propagation of the E field from the source at the
retarded time tr to the observer at the present time t. (2) Confirmation of the “Purcell
condition” tanφβ = γ tanφ0 in which φβ and φ0 are the angles that a given field line makes
with the direction of motion, after and before a period of acceleration. (3) Insight into the
phenomenon of synchrotron radiation, which is also an important component of the pulsed
radiations from pulsars and the Crab nebula. The commands used for writing the relevant
equations, and plotting them, have been copied from the Console into an Appendix, so
that an interested reader can replicate all the plots on his personal computer.
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1 Introduction

This article is a follow-up of our earlier arti-
cle published in this journal[1], in which we
had shown application of Gnuplot for plot-
ting Electromagnetic Fields originating from
an oscillating Electric Dipole. In this arti-
cle we shall concentrate on another impor-
tant source of Electromagnetic fields, namely,
a charged particle in accelerated motion. We
shall take only three examples of this acceler-
ation: (a) Rectilinear acceleration, (b) Rec-
tilinear deceleration (c) Centripetal acceler-
ation. In our examples, the particle under
our consideration is moving with relativistic
velocity cβ, where c is the speed of light.

Formulas of the Electric Field E and the
magnetic field B, originating from moving
charges are familiar[2, 3]. However, plots of
these fields are not so common. Purcell[4], in
presenting a beginner’s course in Electricity
and Magnetism, has drawn E field lines from
a charged particle, originally at rest, and then
picking up a relativistic velocity under an ex-
tremely large acceleration existing for a very
short time. Roger Y. Tsien[5], in his 1972
paper has shown actual plots of field lines
for a several interesting cases. These plots
were drawn using “an IBM 360/65 computer
programmed in Fortran IV and a ... drum
plotter”. Such heavy tools are things of the
past. Now any interested student can make
all these plots on his desk using his PC and
free software, like Gnuplot, and get wonder-
ful, almost unbelievable results, in all colours.

Our objective in this article is two-fold.
First, we want to demonstrate the power of

Gnuplot in plotting such difficult fields with
so much ease. The plot commands, copied
from the Console to Appendix B, can encour-
age the reader to get more practice which
he can use profitably in his study of Clas-
sical Electrodynamics. Secondly, we would
like to illuminate some difficult concepts sur-
rounding solution Maxwell’s equation, par-
ticularly retarded time tr, propagation of the
field from the source at the retarded time tr to
the field point at the present time t, covering
the charge-to-field distance R, abbreviated as
CtF distance, with the speed of light c, and
illustrate how, with the plotting of the exam-
ples cited by us, he clarifies, and sharpens his
understanding of these concepts.
Gnuplot can plot mathematical functions,

even the most difficult ones, with ease, if we
write the function clearly in the command
line. There are two excellent guide books[6, 7]
which the interested reader should keep as his
constant companion for quick reference.
In our case the function is a parametric

function of the form x = f(t), y = g(t) repre-
senting the E field line on the XY plane. The
parameter t in our case is the CtF distance R
having range [0 : Rmax]. In the final example
we have switched to retarded time t′ as the
parameter which is related to R as t′ = −R/c,
and having the inverse range [−Rmax/c : 0].
We have written a sample of commands

from the actual command line, in Appendix
B, so that the reader can replicate all the
plots presented in this article.
The mathematics of plotting is somewhat

difficult. It requires not only a crisp under-
standing of the (E,B) fields, their relation
to the retarded time, but also a clear un-
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derstanding of transformation of coordinates
leading to the formulation of the differential
equation for the field line, and its solution. To
facilitate the reading of this article without
too much abstraction, we have shifted most
of this mathematics to Appendix A.
Sec.2 begins with determination of the

(E,B) field from a point charge q in arbi-
trary acceleration. Our task in this article
is to plot only the E field, disregarding the
B field completely. The reason: (1) Whereas
the motion of the charged particle q and the
E field are confined to the same plane, taken
as the XY plane, the B field is perpendicu-
lar to this plane. Hence we cannot show the
geometry of the motion and the field arising
from it on the same diagram. (2) The E field
and the B field are intimately connected by
the equation cB = n × E, where n is a unit
vector in the direction of the CtF vector, ly-
ing on the XY plane. Hence E carries all the
information about B.
The next two sections, i.e., Secs. 3, 4

have been devoted to obtaining the differen-
tial equation of the field line and the bound-
ary condition. These equations have been
given by Tsien. However, we have spent extra
efforts to re-derive these results in detailed
steps which may be easier to follow.
Sec. 5 presents the case of the charge q

moving under a constant force F, acting in
the positive x-direction. We have considered
four examples:
(1) Accelerated motion on the positive x-axis,
q moving away from the origin towards +∞:
Ex.1(a) F continues for ever;
Ex.1(b) F starts and stops

(2) Decelerated motion on the positive x-axis,

q moving towards the origin from +∞:
Ex.2(a) F continues for ever;
Ex.2(b) F starts and stops
By measuring the angles made by the field

lines in Ex.1(b) the reader can confirm the
Purcell condition.
Each set of plottings teaches some lessons

about how the field travels from the charge
to the observer covering the CtF distance.
These have been summarized by us.
Finally we arrive at the conclusions: (a)

the field lines for the deceleration case are
very similar to those for the acceleration case;
(b) they curve down from straight lines, as if
acted on by induced gravity, opposite to the
direction of acceleration.
Sec. 6 presents the field from a charged

particle moving in a circle with relativis-
tic and ultra-relativistic speeds, and offers
some useful insight into Synchrotron Radia-

tion, which is an important component of the
pulsed radiations coming from from pulsars
and the Crab nebula.

2 Motion with Arbitrary

Acceleration

2.1 General Formula

We shall write the (E,B) field of a charged
particle in arbitrary motion as a first step to-
wards making their plots. In Fig. 1(a) we
have explained the configuration, with refer-
ence to the coordinate system XY Z of which
O is the origin.
Γ is the trajectory of the particle, given by

the parametric representation r̃ = r̃(t′), im-
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plying that each point B on Γ has a radius
vector r̃ = ξ(t′)i + ζ(t′)j + χ(t′)k in which
ξ, ζ, χ are known functions of time t′. We
shall soon identify t′ with retarded time. A
is the location of the particle at the present

time t (observer’s time), and P is the loca-
tion of the observer (where the (E,B) field is
measured).
The E (r, t) field originates from the re-

tarded location B of the particle at the re-
tarded time t′, reaches P at the present time
t, travelling with the speed c, covering a dis-
tance R(t′) which is the length of the radius
vector R(t′) from B to P. We shall call the
vector R “charge to field vector”, in brief
“CtF” vector. Therefore,

R(t′) = c(t− t′);

⇒ t′ = t− R(t′)

c
= t− |r− r̃(t′)|

c
. (1)

When the particle is at B, it has veloc-
ity v(t′) = cβ(t′) and acceleration a(t′) =
cβ̇(t′) = cdβ

dt′
. Even though β is a dimension-

less vector, β̇ is not. It has the dimension
T−1.
Let n(t′) the unit vector in the direction of

the CtF vector R(t′). Hence the relations.

R(t′) = r− r̃(t′) = R(t′)n(t′); (a)

v(t′) = dr̃(t′)
dt′

= cβ(t′); (b)

a(t′) = dv(t′)
dt′

= cβ̇(t′). (c)
(2)

The (E,B) field of the particle at the ob-
server P at the time t is now given by the
following formulas[3, 2].

E(r, t) =
q

4πε0

[(

(1− β2)(n− β)

κ3R2

)

+

(

n× {(n− β)× β̇}
cκ3R

)]

t′=tr

.

cB (r, t) = n(tr)×E (r, t).

κ(t′) = 1− β(t′) · n(t′).
(3)

2.2 Special Case: Motion
confined to a plane

We shall specialize the (E,B) field for the
special case in which the path Γ, as well as
the observer P, exist on a plane, which we
shall take as the XY plane. The equation of
the path is

r̃ = r̃(t′) ⇒ x̃ = ξ(t′), ỹ = ζ(t′). (4)

The field point P has Cartesian coordi-
nates (x, y) with respect to the fixed origin
O. However, for the purpose of drawing the
field lines, we shall find it convenient to pro-
pose a set of alternative, curvilinear coordi-
nates (R,Φ) with respect to the moving ori-
gin B(t′). Here R is the length of the CtF
vector R and Φ is the angle this radius vec-
tor makes with the X axis.
Let (eR, eΦ) be the unit vectors associated

with the new coordinates (R,Φ). As per con-
vention, eR and eΦ are the directions in which
the respective coordinates are increasing. In
particular, eR is identical with the unit vector
n introduced earlier and eΦ is perpendicular
to eR.

Volume 32, Number 4, Article Number : 2 www.physedu.in



Physics Education 6 Oct-Dec 2016

r( ,t)E

(t )

(a)

n

t

R

β

Γ

P(x,y,z)

(t)A

Y

X

Z

r

r

B

eγ
eβ

B(t )

eΦ

r( ,t)E

r

(t )

t

x, y (      )

A(t)

ER
Ea

r( ,t)E

eR

θ

t

Rr

O

β

α

Γ

Y

Φ

P(x,y)

X

Φ

(b)

Figure 1: path of charge q in arbitrary motion

We have thus employed three sets of radius
vectors, coordinates, unit vectors:
(1) r = xi+yj, Cartesian coordinates, for the
observer P with respect to the fixed origin O;
(2) r̃(t′) = x̃(t′)i + ỹ(t′)j, Cartesian coordi-
nates, for the moving charge q with with re-
spect to the fixed origin O;
(3) R(t′) = (R(t′),Θ(t′)), polar coordi-
nates, and the corresponding unit vectors
(eR(t

′), eΦ(t
′)) of the observer P with respect

to the moving point charge q.

We shall rewrite the E vector, after break-
ing it up into two components, the “velocity
field” Ev (depending entirely on the veloc-
ity) and the “acceleration field” Ea (involv-
ing both velocity and acceleration of the par-

ticle).

E = Ev + Ea, where,

Ev =
q

4πε0

[

(1− β2)(eR − β)

κ3R2

]

t′=tr

.

Ea =
q

4πε0

[

eR × {(eR − β)× β̇}
cκ3R

]

t′=tr

.

(5)
It is seen that the acceleration field Eais
purely transverse, i.e., it has only eΦ com-
ponent, perpendicular to the line BP.

2.3 Velocity and Acceleration
of q with reference to the

new unit vectors

We shall have to write the E field with refer-
ence to the new unit vectors (eR, eΦ). Let the
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velocity vector cβ make angle θ from the X-
axis, and the CtF vector R(t′) make angle α
from β, as illustrated in Fig 1(b), both angles
taken positive if measured anticlockwise from
the respective reference lines. Let us, tem-
porarily, introduce two orthogonal unit vec-
tors (eβ, eγ), along and perpendicular to the
direction of the velocity β, and write all the
new unit vectors with reference to the Carte-
sian unit vectors (i, j,k). Note that Φ = α+θ.

eR = cosΦ i+ sin Φ j.
eΦ = − sinΦ i + cosΦ j.
eβ = cos θ i+ sin θ j.
eγ = k× e2 = − sin θ i+ cos θ j.

(6)

Either using (6), or straight from the draw-
ings in Fig.1(b), one obtains (eβ, eγ, ėβ) in
terms of (eR, eΦ).

eβ = cosα eR − sinα eΦ.
eγ = sinα eR + cosα eΦ.

ėβ = (− sin θ i+ cos θ j) θ̇ = θ̇ eγ.
(7)

Hence,

β = βeβ = β (cosα eR − sinα eΦ)

β̇ = β̇ eβ + β ėβ = β̇ eβ + β θ̇ eγ

= (β̇ cosα + β θ̇ sinα) eR

+(−β̇ sinα+ β θ̇ cosα) eΦ.

(8)

2.4 The E field with reference
to (eR, eΦ)

Let us now go back to Eq. (5), and write Ω =
eR × {(eR − β)× β̇} = Ω1 +Ω2, where

Ω1 = eR × (eR × β̇) = eR(eR · β̇)− β̇

= −eΦ(eΦ · β̇) = (β̇ sinα− β θ̇ cosα) eΦ.

Ω2 = −eR × (β × β̇) = −eR × β2θ̇ k = β2θ̇ eΦ

Ω = [β̇ sinα + β θ̇(β − cosα)] eΦ.

We thus get the following expression for the
“acceleration field”:

Ea =
q

4πε0

[

β̇ sinα + β θ̇(β − cosα)

cκ3R
eΦ

]

t′=tr

.

(9)
Back to Eq. (5), note that the expression

in the numerator is (1−β2)[(1−β cosα) eR+
β sinα eΦ], so that the “velocity field” is:

Ev =
q

4πε0

[

(1− β cosα) eR + β sinα eΦ

κ3γ2R2

]

t′=tr

,

(10)
where 1/γ2 = 1− β2.
Adding the two fields given in Eqs.(9) and

(10), we get the complete field:
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E (r, t) =
q

4πε0

[

β̇ sinα + β θ̇(β − cosα)

cκ3R
eΦ +

(1− β cosα) eR + β sinα eΦ

κ3γ2R2

]

t′=tr

= ER eR + EΦ eΦ, where

ER =
q

4πε0

[

(1− β2)(1− β cosα)

κ3R2

]

t′=tr

(a)

EΦ =
q

4πε0

[

R
c
{β̇ sinα + β θ̇(β − cosα)}+ (1− β2)β sinα

κ3R2

]

t′=tr

(b)

κ(t′) = 1− β(t′) · eR(t
′)|t′=tr

= 1− β cosα(t′). (c)
(11)

It can be observed from the above equa-
tions that “close” to the charge, the field
is predominantly “velocity”, and “far” from
it, predominantly “acceleration”. How close
or how far? We shall set up a criterion in
Sec. 5.2

3 The differential

equation for the Field

Lines

Let us go back to Eq. (1), relating the time of
observation t to the retarded time t′. Given
any pair of values of (r, t), determining the
field E (r, t) at the location r at time t, this
equation can be solved to yield a unique value
of t′, and hence a unique retarded location
r̃(t′) of q.

Let us consider a typical field line Ω pass-
ing through the observation point P(r, t) at
any arbitrary time t, as shown in Fig. 2(a). If

we take the observation time t as fixed, then
there will exist a 1 ↔ 1 correspondence be-
tween r on Ω and the retarded point r̃(t′).

Different points on the field line Ω:
t, 1, 2, 3, 4, will correspond to different points
on the path Γ at the corresponding re-
tarded times: t′ < t′1 < t′2 <
t′3 < t′4, and different CtF vectors:
R(t′),R(t′1),R(t′2),R(t′3),R(t′4), their mag-
nitudes steadily increasing along the path:
R(t′) > R(t′1) > R(t′2) > R(t′3) > R(t′4), as
shown in the figure. At A, t′ = t′A = t and
R(t′A) = 0.

Here it should be noted that the E field
caused by the moving charge q, and now ex-
isting over all space, can be pictured as field
lines, all of which converge at A (present lo-
cation of q). Infinite number of field lines,
pointing in all directions, emanate from A.
Only one of them, marked Ω, passes through
the observer at P, and is tangential to the
electric field E (r, t). Our immediate task is
to obtain the differential equation, and the

Volume 32, Number 4, Article Number : 2 www.physedu.in
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Figure 2: Understanding the field lines. (a) Explaining the CtF vector R; (b) the components of
the displacement dr from P to Q, and components of E at P for explaining the construction of the
field equation.

boundary condition for the field lines. Ap-
plying the boundary condition we should be
able to identify Ω.
In Fig. 1b, and again in Fig.2b, we have

shown the following vector and angles at the
retarded location r̃(t′): the velocity cβ(t′) of
the particle; the angle θ(t′) between β(t′) and
the X axis; and the angle α(t′) between β(t′)
and R(t′). It follows that

cβx(t
′) = ˙̃x; cβy(t

′) = ˙̃y;

β(t′) =
√

βx
2 + βy

2;

tan θ(t′) = βy(t′)
βx(t′)

.

(12)

Here ( ˙̃x, ˙̃y) are derivatives of the functions
ξ(t′), ζ(t′) written in Eq. (4), with respect to
t′. The 1 ↔ 1 relation between t and t′, and

between r(x, y) and r̃(x̃, ỹ), will permit us to
mark a point r(x, y) on the field line Ω (at
the present time t) in terms of its Curvilinear
coordinates (R, α) (replacing (R,Φ)). Noting

that r =
−→
OP,R =

−→
BP, it is seen, either from

Fig. 1(b), or from Fig.2(b), that

r = r̃(t′) +R(t′).
R(t′) = R(t′)[cosΦ(t′)i+ sin Φ(t′)j]

= R(t′)[cos(θ(t′) + α(t′))i
+ sin(θ(t′) + α(t′))j].

(13)

The above equations, written in terms of
Cartesian components, takes the form:

x = x̃(t′) +R cos[θ(t′) + α], (a)
y = ỹ(t′) +R sin[θ(t′) + α], (b)

where t′ = t− R
c
, t is fixed, (c)

(14)

Volume 32, Number 4, Article Number : 2 www.physedu.in
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and the variable θ(t′) is given by Eq. (12).
The task now boils down to finding the dif-
ferential equation and the boundary condi-
tions from which the functional relationship
between R and α is to be obtained.
At this point some explanatory notes can

be useful. Consider how we determine the
trajectory of a particle under inverse square
law force[8]. First we set up polar coordi-
nates (r, θ) and obtain a differential equa-
tion involving the second derivative of r with
respect to θ, solve that equation to obtain
r = f(θ) and then use this solution to get
the trajectory in the parametric form: x =
r cos θ = f(θ) cos θ; y = r sin θ = f(θ) sin θ,
taking θ as the parameter.
In the present case we take R as the pa-

rameter, obtain a differential equation that
will involve derivative of α with respect to
R, solve the differential equation to obtain
α = f(R), and then the parametric equation
of the field line in the form (14), in which R
is the parameter.
Referring to Fig. 2(b), consider two neigh-

bouring points P and Q on the field line, at
radius vectors r and r+dr respectively. Sup-
pose we write the line element dr as

dr = dσ eR + dε eΦ,
where dσ = dr · eR; dε = dr · eΦ.

(15)

If the components of E (r, t) in the directions
of eR and eΦ are ER and EΦ respectively, then

dσ

dε
=

ER

EΦ

. (16)

The above equation would become the de-
sired differential equation for the field lines

after expressing the differentials dσ, dε in
terms of the new coordinates (R, α) and their
differentials. The steps are long and diffi-
cult. One reason is that the displacement

dr =
−→
PQ = dr̃ + dR, and a look at Fig

2(b) will indicate that determination of the
two vector differentials can be complicated.
We have shifted this work to Sec. A.2 in Ap-
pendix A. What matters right now is the final
differential equation for the field lines which
we write as[5]:

dα

dR
=

1

c
γ2[θ̇ − β̇ · eΦ]. (17)

4 The Boundary

Condition

As with all differential equations, the equa-
tion (17) alone will not lead to the particular
solution desired by us, unless we know how to
evaluate the arbitrary constant(s) that come
from integration of the differential equation.
To get the particular solution of a differential
equation one has to specify the initial con-
dition(s), or the boundary condition(s) and
evaluate the constant(s).
In this case there are infinite number of

field lines that will satisfy Eq. (17). We shall
have to identify one of them as the line. For
this purpose we have to go to the the point A,
the present location of the charge q, the foun-
tain head from where all field lines spring out,
and identify the one of our choice by specify-
ing the boundary condition.
It can be seen from Eq. (5) that close to

the location of the particle, R → 0, and the
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Figure 3: Fountain lines at the current location of q, for understanding the boundary condition

field becomes a velocity field, with field lines
issuing out as straight lines, in all directions
[4]. We have reproduced the same field lines
in Fig. 3, after rotating them in such a way
that the 0-th line aligns with the direction of
the particle velocity cβ at the time t. We
shall call them fountain lines.

Let us imagine N fountain lines, all of them
confined to the XY plane, issuing out from
A, and tag them as 1,2,...,N. (This number
is 36 in the figure.) When β → 0 the an-
gular intervals between successive fountain
lines becomes the same and equal of 2π/N ,
so that the fountain line #n will make angle
θn = 2πn/N with the β vector. According
to the Purcell condition[4], the angle φn that
the same fountain line will make with the di-

rection of β, when it is relativistic, is

tanφn = γ tan θn = γ tan

(

2πn

N

)

. (18)

We have illustrated this in Fig. 3.
We would like to plot N field lines, each of

them issuing out of the point A (the present
location of the particle) as fountain lines,
such that the n-th field line (n = 1, 2, ..., N)
is tangential to the fountain line #n, making
the angle φn with β at the source point A, as
required by Eq. (18). This is our boundary

condition.
An example is shown in Fig. 3, in which

the field line Ω issues out from the source
point as the fountain line # 15. This figure
sheds further light on the difference between
the path Γ of the particle, shown as a dotted
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line, and the field line Ω, shown as a solid
line. The path Γ does not exist as one piece
at any given instant of time. Different points
on this curve exist as dots at different times
t′1, t

′
2, t

′
3, .... Also it is confined to the region

in which the particle exists, either at rest or
in motion. The field line Γ exists as one piece
at any given instant of time, issues out from
the point A, and stretches out all the way to
infinity, mainly due to Coulomb’s law.
It is obvious that R = 0 at A, and the

tangent to the field line is

dy

dx

∣

∣

∣

∣

R=0

=
Ey

Ex

∣

∣

∣

∣

R=0

= tan(φn + θ)|R=0. (19)

It is seen from Eq. (5) that E → Ev as
R→ 0. Therefore,

Ey

Ex

∣

∣

∣

R=0
= Evy

Evx

∣

∣

∣

R=0
= (eR−β)·j

(eR−β)·i

∣

∣

∣

R=0

= sin(θ+α)−β sin θ
cos(θ+α)−β cos θ

∣

∣

∣

R=0
.

(20)

Let us write α = αn for the n-th line at
R = 0. Then from (19) and (20),

tan(φn + θ)|R=0 =
sin(θ + αn)− β sin θ

cos(θ + αn)− β cos θ
,

(21)

from which it follows that (Sec.A.3, Appendix
A)

tanφn =
sinαn

cosαn − β
. (22)

The boundary condition (18) now reduces
to the form

γ tan

(

2πn

N

)

=
sinαn

cosαn − β
(23)

Some trigonometrical manipulations
(Sec.A.3, Appendix A) will convert the
above equation to the following form[5]

tan
αn

2
=

√

1− β

1 + β
tan

πn

N
; n = 1, 2, · · ·N,

(24)
in which we shall apply the Boundary Con-
dition..
We summarize as follows. A general field

line Ω, at a given instant t, will be ex-
pressed in the parametric form α = f(R).
We shall obtain N field lines {Ωn : αn =
fn(R); n = 1, 2, 3, · · · , N}, springing out
from the present location A of the point
charge q, at the angles φn as given by Eq.(18).
These N lines {Ωn} are to be obtained (and
subsequently plotted) by the following proce-
dure.

Solve the differential equation
dα

dR
=

1

c
γ2[θ̇ − β̇ · eΦ], (a)

subject to the boundary condition tan
α

2
=

√

1− β

1 + β
tan

πn

N
, (b)

to obtain αn = fn(R); n = 1, 2, 3, · · · , N (c)

Insert this in Eq.(14): x = x̃(t′) +R cos[θ(t′) + αn], (d)

y = ỹ(t′) +R sin[θ(t′) + αn], (e)

where t′ = t− R

c
, (see Eq. 1) (f)

(25)

SANDIP
Typewriter

SANDIP
Typewriter
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to get the parametric equations for
the N field lines, remembering that
Eqs.(a),(b),(d),(e) involve β which is a
function of t′, and hence through Eq.(f), a
function of R.

5 Specific Example 1:

Particle Accelerating

along a Straight Line

5.1 General Formula

Fig. 4 shows the particle moving along the X
axis, with acceleration a. We shall specialize
Eqs. (25), for this special case, by setting θ =
0; θ̇ = 0. Note from Eq. (8b) that β̇ · eΦ =
−β̇ sinα. The differential equation for the
field lines, Eq. (25a), now reduces to:

dα
dR

= 1
c
γ2β̇ sinα

Or, cscα dα = 1
c
γ2β̇ dR

= 1
c
γ2dβ dR

dt′
= − dβ

1−β2 .

(26)

For the last equality in the last line we used
Eq. (1), to get dR/dt′ = −c.
We now integrate the last line of Eq. (26),

and get

ln tan α
2

= ln
√

1−β
1+β

+ const

Or, tan α
2

= K
√

1−β
1+β

(27)

where K is a constant. Going back to the
boundary condition given in Eq. (25b) we

evaluate this constant as K = tan πn
N
, leading

to the solution given as

tan
αn

2
=

√

1− β

1 + β
tan

πn

N
; n = 1, 2, · · ·N.

(28)
The above equation represents the desired re-
lation between α and R for the field line that
starts from the source point as the fountain
line #n, making angle θn = 2πn/N with the
X-axis. We shall illustrate this for the spe-
cial case of a particle moving under a constant
force along the X axis.

5.2 Special Case: Particle

moving under a constant
accelerating force

Before going far, we shall write the expression
for the E field from rectilinear motion of the
charge q specializing Eq. (11) to this case, by
setting θ̇ = 0.

ERv =
q

4πε0

[

(1− β cosα)

κ3R2

]

t′=tr

(a)

EΦv =
q

4πε0

[

β sinα

γ2κ3R2

]

t′=tr

(b)

EΦa =
q

4πε0

[

β̇ sinα

γ2κ3cR

]

t′=tr

(b)

(29)
We have broken up the field into its “ve-
locity” components ERv, EΦv, and “acceler-
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Figure 4: Particle in linear acceleration

ation” component EΦa. As emphasized fol-
lowing Eq. (11), the field is predominantly
“acceleration” far from the charge (where our
interest lies). Taking β ∼ 1 the transverse
components of the two field components are
nearly equal at R = c2/a. Hence the criterion
is that

E ≈ Ea, for R≫ c2/a. (30)

Page and Adams[9] have shown plots of the
acceleration component Ea. which are cir-
cles passing through the present location of
q, with centres on the the plane x = −c2/a.
In our case we shall plot the entire E field.
For some of the examples we are going to

consider soon, (i) a = 0.17 × 1018m/s2, and
c2/a = 0.529 m, same as the unit of distance
τc we shall adopt, (ii) a = 0.17 × 1020m/s2,
and c2/a = 0.005 m, far less than the unit of
distance we shall adopt.
Now, let us consider the rectilinear motion

of particle of charge q and rest mass m0, un-

der the influence of a uniform electric field
E = Ei. This electric field induces a constant
acceleration a = qE/m0 = F/m0 in the X di-
rection, as measured in its instantaneous rest
frame. The particle will ultimately achieve
relativistic velocity.
The displacement x̃(t′) and the velocity

cβ(t′), both as functions of the retarded time
t′, are given by the following formulas[10, 11,
12]:

x̃(t′) = cτ

[

√

1 +
(

t′

τ

)2 − 1

]

β(t′) =
[

1 +
(

τ
t′

)2
]− 1

2
; t′ > 0.

(31)

In the above equations we have defined a
characteristic time τ , such that the particle
would reach the velocity c in this time, if
non-relativistic mechanics had been applica-
ble. That is,

aτ = c. Or, τ = c/a (32)
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Replacing t′ by t − R/c in Eqs. (31) (see
Eq. 1), we get expressions for x̃ and β in terms
of the parameter R, at the present time t.
The equation of the field line is now ob-

tained by going back to Eqs. (25d,e), then
setting ỹ = 0, θ(t′) = 0:

x = x̃(R) +R cosαn. (a)
y = R sinαn. (b)

(33)

Let us consider a charged particle, e.g., an
electron, which is accelerated in a 30m long
linear accelerator (e.g., pelletron) to 30 MeV.
The electric field through which the particle
is accelerated is assumed to be uniform, and
equal to E = 106 V/m. Because of our prefer-
ence for positive quantities, we shall assume
the particle to be positively charged, but hav-
ing the the same magnitude of charge as that
of an electron or proton, viz. e = 1.6× 10−19

C, and mass that of an electron or positron.
viz., m0 = 9.11××10−31 kg. The acceleration
is then

a = eE
m0

= 1.6×10−19×106

9.11××10−31

= 0.17× 1018m/s2

τ = (3× 108)/(0.17× 1018)
= 17.6× 10−10 s.

τc = 17.6× 10−10 × 3× 108

= 0.528m.

(34)

The particle is at the point A at the current
time t. At this point t′ = t. Also note from
Eq. (25f) that (i) R = ct at t′ = 0, when the
particle is at O, and (ii) R = 0 at t′ = t, when
the particle is at A.
We shall consider two variations of this ex-

ercise. For each case we shall assume that

the particle is originally sitting at rest at the
origin O, untill the E field is turned on at the
time t = 0.
Case 1. The E field continues for ever. It is
at the origin at t′ = 0 and reaches a point A
on the X axis at t′ = τ , which we set equal
to the present time t (in the Ex.I to follow).
That is, t = τ .
Case 2. The E field is switched off at t =
τ , when it is at A1, then continues to move
with constant velocity and reaches the point
A2 when t′ = 2τ , which we set equal to the
present time t. That is, t = 2τ .

5.2.1 Plotting the E field for Case 1

To avoid any confusion we shall remind the
reader that we have been, and shall be, us-
ing two symbols for time, viz., t′, to mean
time measured along the track of the particle,
and t, to mean present time, i.e., the time
when the entire E field, and the field lines
are viewed. Both times are measured in the
“Lab frame” (No relativity is involved.)
We shall take three successively increas-

ing values of the present time t, resulting in
successively increasing values of β at t, and
get the required values at A and O, using
Eqs. (31).
Ex. I: t = τ = 17.6× 10−10 s.

β(A) = 1/
√
2 = 0.707.

x̃(A) = cτ [
√
2− 1] = 0.218 m.

R(O) = τc = 0.528m.

(35)

Ex. II: t = 2τ = 35.2× 10−10 s.

β(A) = 2/
√
5 = 0.894.

x̃(A) = cτ [
√
5− 1] = 0.653 m.

R(O) = 2τc = 1.056m.

(36)
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Figure 5: E field line at the t = τ due to charge q moving with constant acceleration
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Figure 6: E field line from a particle moving with constant acceleration at two different instants
of time: (a) t = 2τ , (b) t = 3τ .
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Ex. III: t = 3τ = 52.8× 10−10 s.

β(A) = 3/
√
10 = 0.949.

x̃(A) = cτ [
√
10− 1] = 1.14 m.

R(O) = 3τc = 1.584m.

(37)

We shall plot the field at the present time,
by the following steps.

• Insert the values of a and τ as obtained
in Eqs.(34) in Eqs. (31) to get x̃(t′), β(t′)
as functions of t′ only;

• Obtain α(t′) as a function of t′, from
Eq.(28);

• Use the expressions of x̃(t′), α(t′) in
Eqs. (33), in which x, y now look like
functions of t′;

• Change the variable from t′ to R us-
ing the relationship (25f), i.e., by setting
t′ = t − R/c, treating t as a constant.
We now get the equations of the field
lines in the form of the parametric equa-
tions: x = x(R); y = y(R), where R is
the parameter;

• R = (0, ct), at (A,O). We shall therefore
take the range of R as [0 : ct].

We have plotted three sets of field lines,
taking N = 16 in all cases, and corresponding

to t = τ in Fig.5, and corresponding to t =
2τ, 3τ in Fig.6.

5.2.2 Plotting the E field for Case 2

We consider the following situation. The
same particle, as described in Case 1, orig-
inally sitting at the origin O, undergoes the
same acceleration a from t′ = 0 to t′ = τ , to
reach the point A1, then moves with constant
velocity. We would like to plot the E field em-
anating from the particle at the present time
t = t′ = 2τ when it is instantaneously located
at the point A2, as shown in Fig. 7.
Here it should be noted that during the

time t′ < 0, when the particle was sitting at
O, it was giving out the Coulomb field con-
tinuously from t′ = −∞ to t′ = 0, spreading
over all space, all the way to infinity. Our
plots will also take a glimpse of a part of this
Coulomb field. For this purpose we shall take
the retarded time in the range −τ < t′ ≤ 2τ ,
corresponding to the CtF vector 3τ > R ≥ 0.
We shall therefore divide the time zone into 3
parts and write down expressions for velocity
cβ and displacement x̃ and for these 3 parts.
For this purpose we shall represent the the
functions β(t′), x̃(t′) written in Eqs.(31) by
new symbols β̄(t′), x̄(t′).

Time range → −τ ≤ t′ ≤ 0 0 < t′ ≤ τ τ < t′ ≤ 2τ

β(t′) = 0 β̄(t′) β̄(τ)

x̃(t′) = 0 x̄(t′) x̄(τ) + cβ̄(τ)(t′ − τ)

(38)
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Figure 7: Path of q along O - A1 - A2 - ∞.

Taking N = 16, we have plotted 16 field
lines emanating from q at the time t′ = t =
2τ , when it is located at A2, following the
same steps as given for Case 1. The plots of
the field lines are displayed in Fig.8(a).

5.3 Lessons from the field lines

of accelerating charge

The plots for the Case 2 can give some valu-
able insight into the propagation of the elec-
tromagnetic field, if we examine the field lines
with some interest and care. For this purpose
we have reproduced the plots of Fig.8(a) in
Fig.8(b), and divided the space into 3 zones:
(i) Coulomb zone, (ii) acceleration zone, (iii)
velocity zone.
The zone (i) is all space, all the way to

infinity, but lying beyond a sphere of radius
R0 = cτ = 1.056 m, centred at O, and la-
belled S0. The field lines in this zone are
straight lines, spreading out isotropically in
all directions. If these lines are extended
backward, they will all meet at the point O,

the original rest house of the charge Q. These
lines are the typical Coulomb field lines.

The sphere S0 arises at t = 0 when the
particle starts moving, and keeps expand-
ing with the speed of light. In the short
time t = 2τ = 35.2 × 10−10 s, this sphere
has expanded from zero radius to the radius
R0 = 2cτ = 1.056 m, and keeps expanding
forever. Observers outside this sphere, thou-
sands of kilometers away, even light years
away from the origin O, see the particle un-
moved, see only its “static” Coulomb field,
with the radial field lines passing by him.

The zone (iii) lies within another sphere
labelled S1 with centre at the fixed point A1.
Its radius of has expanded from zero radius
at t = τ to radius R1 = cτ = 0.528 m at
t = 2τ .

Observers within this sphere see the E field
of the charge q moving with constant velocity
0.707c, and the field lines issuing out radially
from the moving point A2, the instantaneous
location of the charge q. These lines are simi-
lar to the lines shown in Fig. 3, bunched more
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Figure 8: E field lines from a particle accelerating from t = 0 to t = τ , then moving with constant
velocity.

densely transverse to the direction of the ve-
locity vector cβ, than in the longitudinal di-
rection.
The zone (ii) lies between the two spheres

S0 and S1. Observers in this zone see the par-
ticle moving in the X direction with constant
acceleration a.
Fig. 9 in which we have focussed on the

time evolution of only one field line, corre-
sponding to n = 3, may shed further light
on the concept of field propagation. Fig (a)
shows how this field line has evolved from
t = τ to 2τ to 3τ . The Coulomb field that
had been emanating from O from t′ = −∞
to t′ = 0, and propagating along the the
radial line Oc, is plotted as the segment

b1 − b2 − b3 − c. The acceleration field,
the source of which moved from O to A1,
is plotted at the present times t = τ, 2τ, 3τ ,
as the shifting arcs Ω1,Ω2,Ω3 respectively,
with the points O mapped onto b1, b2, b3,
and A1 onto a1, a2, a3, at the same respective
present times. The velocity field that ensued
from the moving point A1 → A2 → A3 as
t′ = τ → 2τ → 3τ , is shown as straight lines
changing from A2-a2 to A3-a3 as the present
time changed from t = 2τ to t = 3τ .
Since the Coulomb lines for three lines are

merged in Fig (a), we have separated them
into three individual lines in Figs. (b), (c),
(d) for a clearer look at them.
The boundary condition (18) is valid for all
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Figure 9: Field lines corresponding to n = 3: at t = τ, 2τ, 3τ in (a), at t = τ in (b), at t = 2τ in
(c), at t = 3τ in (d).

Volume 32, Number 4, Article Number : 2 www.physedu.in



Physics Education 21 Oct-Dec 2016

the three field lines. The reader should verify
this by setting n = 3, γ =

√
2, so that θ3 =

6π
16

= 67.50, φ3 = 73.650. Now if he makes a
printout of this page and measures the angles
(θ3, φ3), with a protractor, he will verify these
angles. This lends further confirmation of our
faith in the amazing power of Gnuplot.

5.4 Special Case: Particle

moving under a constant
decelerating force

5.4.1 Plot of the Field Lines

We shall now consider the deceleration case.
The same constant electric field E, resulting
in the same acceleration vector a, pointing
in the x-direction will apply in this case as
well. However, the particle will be moving in
the negative x direction, approaching the ori-
gin from +∞, during particle time t′ = −∞
to t′ = 0, (instead of moving away from the
origin, from t′ = 0 to t′ = +∞ examined in
the case of accelerating particle, considered in
the previous section). The E field is acting
like a break (as in bremsstrahlung radiation)
bringing q to complete stop at O. We shall
modify the velocity and displacement func-
tions of Eq. (31) to its new forms:

x̃(t′) = cτ

[

√

1 +
(

t′

τ

)2 − 1

]

; t′ ≤ 0 (a)

β(t′) = −
[

1 +
(

τ
t′

)2
]− 1

2
; t′ < 0. (b)

= 0 ; t′ = 0 (c)
(39)

Note that the velocity function has under-
gone a change in sign, whereas the displace-

ment function remains the same. We have
presented a picture of the configuration in
Fig.10.

Fig.10(a) shows the path of the parti-
cle, coming from +∞ with velocity cβ∞ =
β(−τ) = − c√

2
, undergoes deceleration from

the point B1 to O, and stops at O. Fig.10(b)
shows the configuration on the t′ scale.

Before plotting the E field lines for the de-
celerating charge, let us take stock of what we
should expect, in comparison with the plots
of the accelerating charge viewed at length
in Sec. 5.2. For this purpose we go back to
Eqs. (29).

The acceleration vector (in the guise of de-
celeration) continues to be in the positive x
direction. Just as β becomes negative, the
angle α changes to angle α+π, so that β sinα
does not change. Of the three components,
EΦv and EΦa do not change at all. Only the
component ERv changes sign, but has neg-
ligible effect in regions perpendicular to the
path. The net result is that the field lines
for the deceleration case should not be dras-
tically different from the acceleration case.

However, there is one important difference.
The decelerating charge has stopped (mo-
mentarily) at the present time t = 0, whereas
the accelerating charge is moving with speed
β = 0.707 at the present time t = τ , and the
field lines are issuing out from q at the present
times, in all the examples. Therefore the field
lines from the accelerating charge will make
steeper angles with the x-axis at its source
point, compared to the decelerating one, in
accordance with the Purcell’s condition.

Let us now turn to plotting. We shall con-
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Figure 10: path of charge q moving from infinity towards the origin O under deceleration. Fig (a)
shows the direction of motion and the location of q on the x-axis; Fig (b) shows the retarded time
t′ axis, divided into three segments.
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Figure 11: Plots of E for case I of deceleration
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sider the following three cases.

Case I. Deceleration a = ao = 0.17 ×
1018m/s2 is forever, never stops. Present
time is t = t′ = 0 at the event “the par-
ticle reaches O”. Plots of the field lines are
relatively simple, and are shown in Fig.11.

Case II. The particle passes B2 at t′ = −2τ ,

reaches B1 at t′ = −τ , when deceleration
a = ao starts, reaches O at t′ = 0, when de-
celeration stops. The particle stays at O from
t′ = 0 to t′ = +∞. Present time is t = t′ = τ .
The velocity and displacement as functions

of t′ are given in the table below, which is
analogous to the equation table (40).

Time range → −2τ ≤ t′ ≤ −τ −τ < t′ < 0 0 ≤ t′ ≤ τ

β(t′) = β̄(−τ) β̄(t′) 0

x̃(t′) = x̄(−τ) + cβ̄(−τ)(t′ + τ) x̄(t′) 0

(40)

We have plotted the β(t′) and x̃(t′) func-
tions in Fig. 12. Plots for the field lines are
shown in Fig.13.

Case III. The situation is the same as in
Case 2, with the the following changes:

1. The velocity is now increased from β∞ =
−0.707 to β∞ = −0.949, as in the last
example in Sec.5.2.1. This value has
been decided by setting (t′/τ) = 3 in
Eq.(39b). Hence, the previous time unit
τ , is now replaced by the new unit 3τ .

2. The acceleration is increased to 100
times of the previous value. That is
aold = ao = 0.17 × 1018m/s2 → anew =
100ao = 0.17× 1020m/s2.

3. The particle passes B2 at t′ = −6τ ,
reaches B1 at t′ = −3τ , when deceler-
ation starts, reaches O at t′ = 0, when

deceleration stops. The particle stays at
O from t′ = 0 to t′ = +∞. Present time
is t = t′ = 3τ .

Plots for the field lines are shown in Fig.14.

5.5 Lessons from the field lines
of decelerating charge

We shall point out some important features
of the field lines for the decelerating charge,
with reference to Fig.15. Fig. (a) shows the
bare field lines for the Case 2. Fig.(b) has two
circles S1, S2 superimposed on the bare field
lines, similar to what we had done in Sec. 5.3.

The circles represent two spherical surfaces
S1 and S2, dividing the space into 3 zones:
(i) Coulomb zone, i.e., the region inside the
sphere S1; (ii) the Deceleration zone, i.e., the
region between the spheres S1 and S2; (iii)
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Figure 12: Plots of β(t′) and x̃(t′) corresponding to case II of deceleration

the Velocity zone, i.e., the region outside the
sphere S2.

1. The particle was moving with the con-
stant velocity cβ∞ = −1/

√
2 c during its

displacement B1 ← B2. The field lines
are radial straight lines, making“steeper
angles” φn with the X axis, as given by
the Purcell condition. This uniform mo-
tion came to end at B1, at the time t′ =
−τ , but the current time is t′ = τ . Hence
there is a time gap of 2τ between the end
of uniform motion and now. Observers
beyond the radius 2τc about B1 see the
particle still in uniform motion with the
constant velocity cβ∞ = −1/

√
2 c. The

sphere S2 of radius R2 = 2τc with cen-
tre at B1, marks the boundary beyond
which the field is still the velocity field.

However, the velocity field lines would

emanate from the “present” location of
the particle, had the particle been in con-
stant uniform motion. Where is that
“present” position? It is the point V,
the virtual location of the particle, if the
particle had been moving with the veloc-
ity −cβ∞ unchanged.

What will be the x-coordinate of V?

The coordinate of the point B1 is
x(B1) = (

√
2 − 1)τc. Let ∆x = dis-

tance the particle will move in the nega-
tive x direction in time 2τ , which equals
cβ(−τ) × 2τ = −1/

√
2 × 2τc = −

√
2τ .

Hence, x(V ) = x(B1) + ∆x = −τc.
Therefore, the velocity field lines seem
to be emanating from V, at x = −τc, as
shown in Fig 15.

2. The particle is sitting at O from t′ = 0
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Figure 13: Plots of E for case II of deceleration.

to the present time t = τ . The Coulomb
field has, in this time, propagated up to
a radius of R1 = τc. The sphere S1
marks that sphere. The field inside this
is purely Coulomb.

5.6 Comparison between
Acceleration field lines and

Deceleration field lines

In Fig. 16 we have compared the plots of the
Case I of deceleration with those of Case I of
acceleration considered in Sec. 5.2.1, by su-
perimposing the two sets of plots one upon
another with a common origin O. The lines

with arrowheads represent the decelerating
case, and the ones without the accelerating
case. They appear to match the predictions
made in Sec.5.4.1.

However, there is one difference. The field
lines for the deceleration case appear to be
longer in the +x direction, and those for ac-
celeration in the -x direction. This may lead
to an erroneous conclusion that the field is
stronger in the +x direction in the decelera-
tion case and its opposite in the acceleration
case.

To dispel this notion let us stress that the
length of a field line has no relation to the
field strength. Secondly, the furthest point
on the field line receives its contribution from
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Figure 14: Plots of E for case III of deceleration

the corresponding retarded point, same as the
furthest point B on the track of the particle
for the given range of R considered (see Fig.2
.)
The track of the particle in the present

case the X-axis. In the acceleration case the
present location is at x = cτ and the furthest
point is x = 0. In the deceleration case the
present location is x = 0 and the furthest
point is x = cτ . Let us mark the furthest
point on the field line as C. Going back to
Eq. (13), we can now write the radius vector
for the point C as

rc = −τci +Rc. acceleration
rc = +τci +Rc. deceleration

(41)

The additive vectors ∓τci can be consid-
ered as “bias vectors”. We have replotted the
deceleration field lines by removing this bias,
i.e., by plotting the bare CtF vector R(t′),
as shown in Fig.17. In this modified plot the
feld lines on the x-axis have the same length
on either side of the origin.

5.7 Gravity Effect?

According to Einstein’s Principle of Equiva-
lence an accelerating frame of reference repli-
cates gravity[11]. A particle in a frame of
reference which is accelerating in the positive
x direction feels the effect of gravity in the
negative x direction. Gravity pulls down ev-
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Figure 15: Features of the Field lines from decelerating charge

erything, including light, forcing it to deviate
from its straight line path. A cursory look at
the plots of the E field may give the impres-
sion that the field lines are bending down, i.e.,
in the direction of the induced gravity, when-
ever the particle is in an accelerated state of
motion[13] (for both acceleration and decel-
eration). In the absence of acceleration, the
field lines betray their normal character, i.e.,
straight lines originating from the instanta-
neous location of the charge, whether at rest
or in relativistic motion.

Whether the formulas for the EM fields
from an accelerating charge, as obtained from
Maxwell’s equations, can be traced to the
Principle of Equivalence is a question on

which experts in General Relativity can en-
lighten us.

6 Specific Example 2: E

field from Circular

Motion

6.1 Expression for the E field

Referring to Fig. 18, we shall describe the
configuration as follows. A charged particle
carrying charge q is moving in a circle of ra-
dius a on the XY plane with angular velocity
ω in the clockwise direction. The observer P

Volume 32, Number 4, Article Number : 2 www.physedu.in
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Figure 16: Acceleration field lines (lines without arrows) superimposed on deceleration field field
lines (lines with arrows) for comparison
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Figure 17: Deceleration field lines without bias
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is sitting on this XY plane, at a distance r
from the origin.
It should be noted that we have taken the

rotational angular velocity negative, so that
the angle θ that the velocity β makes with the
X axis, at the retarded point B is a positive
acute angle. The same with the angle α. We
have chosen the coordinate axes in such a way
that the observer A and the location of the
particle at the present time t (set equal to 0)
lie on the Y axis. With these choices of posi-
tive acute angles in the drawings derivations
of trigonometrical relations becomes easier.

Our objective is to plot the E field as at
the present time t = 0.
Following Eq. (4) the radius vectors r̃ =

x̃i + ỹj from the origin to the location Q of
the particle at any arbitrary time t is given
by the equations

x̃ = a sinωt; ỹ = a cosωt. (42)

We need to evaluate the required quanti-
ties. Let t′ stand for the retarded time t′, B
the location of the particle at t′, and R(t′)
the radius vector from B to P at the time t.
Then

R(t, t′) = r j− r̃ = −a sinωt′i+ (r − a cosωt′)j. (a)

R2(t, t′) = (a sinωt′)2 + (r − a cosωt′)2 = a2 + r2 − 2ra cosωt′. (b)

where t = t′ + R(t,t′)
c

= t′ + 1
c

√
a2 + r2 − 2ra cosωt′, (c)

cβ = ˙̃x i+ ˙̃y j = ωa(cosωt′ i− sinωt′ j) (d)

cβ = ωa; β̇ = 0; θ = −ωt′; θ̇ = −ω, (e)

R · cβ = −rωa sinωt′, (f)

cosα =
R · cβ
Rcβ

= − r sinωt′√
a2 + r2 − 2ra cosωt′

=
r sin θ√

a2 + r2 − 2ra cos θ
, (g)

(43)
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Figure 18: Charge q in circular motion

We now go back to Eqs.(11) and insert the
values just determined: β̇ = 0; (R/c)βθ̇ =
−(R/a)β2. Set q

4πε0
= 1, a = 1.

ER = (1−β2)(1−β cosα)
κ3R2

EΦ =
R
c
{β̇ sinα+β θ̇(β−cosα)}+(1−β2)β sinα

κ3R2

= −Rβ2(β−cosα)+(1−β2)β sinα
κ3R2 .

(44)

6.2 Equations for the Field
Lines

We shall specialize the set of equations (25)
for this special case. In this case β̇ = 0.

Hence, from Eq. (8b):

β̇ · eΦ = βθ̇ cosα
dα
dR

= 1
c
γ2θ̇(1− β cosα). [from (25 a)]

(1− β cosα)−1 dα = 1
c
γ2θ̇dR

= 1
c
γ2 dθ (dR/dt′)

= −γ2 dθ. [using Eq. (1)],
(45)

Let us be reminded that the independent
variables are (R, α). However, we have θ on
the right side. It is a function of R through
the relation θ = θ(t′) and t′ = t − R/c =

Volume 32, Number 4, Article Number : 2 www.physedu.in
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−R/c. From integral table

∫

dα

1− β cosα
=

2
√

1− β2

× tan−1

(
√

1 + β

1− β
tan

α

2

)

. (46)

Therefore, integrating both sides of the last
line of Eq. (45)
√

1 + β

1− β
tan

α

2
= tan

[

−γθ
2

+
k

2γ

]

. (47)

where k is a constant. Therefore,

tan α
2

=
√

1−β
1+β

tan
[

−γθ(t′)
2

+ k
2γ

]

=
√

1−β
1+β

tan
[

−γθ(t−R/c)
2

+ k
2γ

]

.

(48)
At the present location of the particle R = 0.
Setting this in (48), and going back to the
boundary condition given in Eq. (25b), we
get for the n-th field line,

−γθ(t)
2

+ k
2γ

= πn
N
.

Or, k
2γ

= πn
N

+ γθ(t)
2

.
(49)

Depositing this value in (48) we get the com-
plete relation between R and α.

tan
α

2
=

√

1− β

1 + β

× tan

[

−γθ(t− R/c)

2
+

πn

N
+

γθ(t)

2

]

. (50)

As seen from Fig. 18, θ(t−R/c) = −ω(t−
R/c) = −cβ/a× (t−R/c). Substituting this
in (50) we get

tan
α

2
=

√

1− β

1 + β
tan

[

−γβR
2a

+
πn

N

]

. (51)

Fig. 19 shows an arbitrary field line Ω com-
ing from a Synchrotron accelerator[14] which
accelerates charged particles, like electrons,
protons, in circular motion. We shall obtain
the parametric equation for the field line.

x̃(t′) = a sinωt′; ỹ(t′) = a cosωt′. (a)
cβx(t

′) = ωa cosωt′; cβy(t
′) = −ωa sinωt′. (b)

ω = βc/a; ωt′ = (βc/a)(−R/c) = −βR/a. (c)
tan θ(t′) = βy(t

′)/βx(t
′) = − tanωt′ = tan(βR/a). (d)

θ(t′) = βR/a = −ωt′. (e)

(52)

The required parametric equations are
given in Eqs. (25d,e), which we adopt for the
present case.

x = −a sin(βR/a) +R cos[(βR/a) + α],
y = a cos(βR/a) +R sin[(βR/a) + α],

(53)
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Figure 19: Field line from a synchrotron accelerator

with α determined from Eq. (50), and R ≥ 0.

6.3 Plot of the Field Lines

We shall plot several examples of field lines
from a particle moving in a circle of radius
a = 1 meter, with relativistic velocity cβ. For
each example we shall plot N field lines origi-
nating as spring lines from the instantaneous
present location of the particle, marked A,
at the present time which has been taken as
t = 0. The values of β,N , and the range of

the parameter R, for the 7 exercises we have
undertaken, are specified in columns 2,3,4 of
the table below. The plot label includes the
values of β (b5 for β=0.5, b95 for β=0.95,
etc), N, the number of “samples” (400, 1000,
3000), and the date when the plot was made.

If we denote the angular coordinate of the
particle at the retarded time t′ as φ = ωt′,
measured from the Y axis in the direction
of its motion, i.e., clockwise, then it is seen
from (52e) that R = −φ/β. Hence π can
be a convenient unit of the linear distance
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R. In all plots we have use π (in meters), as
an alternative the unit of displacement, and
set the tic marks along the X and Y axes in
integral multiples of π. These plots are shown

in Figs.20 - 26.
In the final plot, shown in Fig.27, β → 1,

and R = −φ, so that positive range of R will
correspond with the same numerical range of
φ, but with negative values.

1 2 3 4 5 6

Ex. β N Range Plot label Figure label

1 0.1 16 [0:60π] Qcir-b1-16-800-160720A.fig Fig. 20
2 0.5 16 [0:13π] Qcir-b5-16-400-160706.fig Fig. 21
3 0.5 8 [0:6π] Qcir-b5-16-400-160717.fig Fig. 22
4 0.8 8 [0:6π] Qcir-b8-8-1000-160706.fig Fig. 23
5 0.9 8 [0:5π] Qcir-b9-8-3000-160707.fig Fig. 24
6 0.9 4 [0:5π] Qcir-b9-4-3000-160707.fig Fig. 25
7 0.95 8 [0:5π] Qcir-b95-8-3000-160707.fig Fig. 26

(54)

6.4 Notable features and

Lessons from the Field
Lines; Synchrotron

Radiation

As we progress from Fig. 20 to 26, we wit-
ness changes in the field pattern as the veloc-
ity moves up from “slow” non-relativistic to
“very fast” ultra-relativistic.

When a charged particle moves in a circle
with non-relativistic velocity, it emits electro-
magnetic field, and hence radiation, which is
nearly isotropic, but oscillates with the fre-
quency of rotation. At ultra-relativistic ve-
locity, it emits what is often referred to as
Synchrotron radiation. Such radiation can
be “seen” in a proton synchrotron in famous

Nuclear Research Laboratories[14]. However,
synchrotron radiation is also an Astronomi-
cal phenomenon, and has been observed in
the light coming from pulsars and the Crab
nebula[15].

Coming back to the plots of the E field,
which is our current interest, we go to Fig. 20
to see the “slow example”, the charged parti-
cle moving in a circle of radius a, with veloc-
ity c/10. We have shown 16 field lines issuing
out from the present location A of the parti-
cle, at equal angular intervals of 2π/16. The
charge at the source being positive, E vector
is pointing away from the source, as indicated
with arrowheads. (We shall avoid arrows in
subsequent plots.) As the field propagates,
it oscillates with the same angular frequency
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Figure 20: Field line: β=0.1, N=16, Rǫ [0 : 60π]

ω as that of rotation and hence carries wave-
length λ = 2πc/ω. Now, ω = βc/r = βc,
since the radius of the circle is a = 1 m.
Hence, λ = 2π/β. For β = 1/10, λ = 20π,
also manifested in the figure. In one cycle the
“crests” at P1,P2 are displaced to P2,P3, re-
spectively, each displacement being equal to
one wavelength 20π.

Figs.21 and 22 correspond to the same val-
ues of β,N , equal to 0.5, 16 respectively.
However, the range of R used in the latter
is 1/3 of the former and presents a magni-
fied picture of the field lines close to the syn-
chrotron.

In the same way, even though Figs.24 and
25 correspond to the same value of β, equal
to 0.9, the former uses 8 field lines, whereas
the latter only 4. As a consequence the latter
presents a clearer picture of the formation of

the sharp zig zag kinks. As we have shown
on the field line n = 2, it encounters sharp
reversals in its direction (kinks) at the points
G and H, in quick succession, and then pro-
ceeds onward. If we watch the kink regions of
n = 1, · · · , N , in Figs.24 and 25, they appear
to merge or smear into a spiral band.

Fig. 26 presents an ultra-relativistic pic-
ture: β = 0.95. The particle moves in the
same circle with velocity 0.95c. Here the the
formation of the spiral band is conspicuous.

We have plotted the spiral band in
Fig. 27(a), by first obtaining its parametric
equation. First note that at the kink points
EΦ = 0. Assuming that the observer is far
away, the field varies as 1/R. Hence from
Eq. (44), β − cosα = 0. For the ultra-
relativistic case β → 1⇒ α = 0.

Now we go back to Eq. (53), set a = 1, α =
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Figure 21: Field line: β=0.5, N=16, Rǫ [0 : 13π]
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Figure 22: Field line:β=0.5, N=16, R ǫ [0 : 6π]
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Figure 23: Field line: β=0.8, N=8, Rǫ [0 : 6π]
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Figure 24: Field line: β=0.9, N=8, Rǫ [0 : 5π]
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Figure 25: Field line: β=0.9, N=4, Rǫ [0 : 5π]

0, β = 1. Adopt a new variable φ = ωt′.
From Eq. (52c) R = −φ. Change the variable
from R to φ to get the locus of the kink points
as

x = sinφ−φ cosφ; y = cosφ+φ sinφ. φ ≤ 0.
(55)

This is the equation of the involute of a
unit circle, which can be visualized as the
path of the free end P of a rope which is un-
wound from a circular cylinder of unit radius
to which it had been tightly wound[16], as il-
lustrated in Fig. 27b. The locus of P can be
easily obtained from the diagram as

x = sin θ−θ cos θ; y = cos θ+θ sin θ. θ ≥ 0.
(56)

which is the same as (55), except that the

two angles φ and θ, both measured from the
Y axis, are clockwise and anti-clockwise re-
spectively. The spiral shown in Fig. 27(a) is
a plot of (55), but drawn with a thick line
(line width = 4).

Fig. 27(a) can provide a valuable insight
into the nature of synchrotron radiation. Let
the particle be located at some point Q on the
circle at some retarded time −t′, correspond-
ing to the present time t = 0. Let there be
observers P1,P2,K, all of them located on the
plane of the synchrotron. Draw the directed
straight line QP1P2 tangential to the circle,
in the direction of the instantaneous veloc-
ity βc at −t′, such that the points P1,P2 lie
on the two nearest arms of the spiral. These
two points receive sharp pulses at the present
time, but coming from the location Q at re-
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Figure 26: Field line:β=0.95, N=8, R ǫ [0 : 5π]
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Figure 27: Concentration of E field along a spiral, indicating synchrotron radiation

tarded times −t′ and −t′ − T respectively,
where T is the period of circular motion.

Consider an arbitrary observer K sitting

somewhere on this plane. Like the ob-
servers at P1,P2, he receives periodic radi-
ation pulses at those moments when the spi-

Volume 32, Number 4, Article Number : 2 www.physedu.in



Physics Education 40 Oct-Dec 2016

ral, turning with the same angular velocity
ω, intercepts the point K.
Jackson has shown the same spiral band

with the following observation[17], “The form
of the angular distribution of radiation ...
corresponds to a narrow cone or search light
beam of radiation directed along the in-
stantaneous velocity vector of the charge.”
He has presented a picture of this search
light beam[18]. This picture of the search-
light beam can also be found in many other
references[15].
We shall summarise some of the lessons we

derive from our exercise for the special case
β → 1.

1. An observer located on the plane of the
synchrotron at a point K will receive a
burst of radiation pulse every time the
spiral band intercepts the point K.

2. These radiation pulses will reach him
at the regular time interval T , coming
from the retarded locations of the par-
ticle corresponding to its velocity vector
cβ pointing towards him. A very im-
portant example of this is the radiation
coming from astronomical objects, like
pulsars, and the Crab Nebula.

3. The radius vector R from the retarded
location Q to its corresponding field
point P at the present time, has the fol-
lowing properties: (a) it is tangent to the
synchrotron circle, (b) it is perpendicu-
lar to the spiral arc at the point P.

4. Hence, the Pointing’s vector, which rep-
resents the electromagnetic energy flux

density, is perpendicular to every seg-
ment of the spiral arm at each of its
points.

5. Hence, the arm of the spiral, at any point
P, is expanding outward along the radius
vector R with the velocity c, even as it
rotates with the angular velocity ω.

The reader should prove the statements
made in items 3,4,5. He can prove the prop-
erty 3, using the equation of the involute as
given in (56). For proving properties 3 and 4,
he can use theorems and formulas of classical
electrodynamics.

A Appendix A

A.1 New Differentials in terms

of Old Ones

We shall go back to the definition of the new
coordinates (R, α), as given in Eqs.(14), and
construct the required differentials:

dx = ∂x
∂R

dR + ∂x
∂α
dα

dy = ∂y
∂R

dR + ∂y
∂α
dα

(A. 1)

Using Crammer’s formula:

dR =
1

J

∣

∣

∣

∣

dx ∂x
∂α

dy ∂y
∂α

∣

∣

∣

∣

; dα =
1

J

∣

∣

∣

∣

∣

∂x
∂R

dx

∂y
∂R

dy

∣

∣

∣

∣

∣

(A. 2)
where J is the Jacobian of the transforma-
tion. To find the derivatives and J , we pro-
ceed as follows, going back to Eqs. (14).
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∂x
∂R

= ∂x̃
∂t′

∂t′

∂R
+ cos(θ + α)−R sin(θ + α) θ̇ dt′

dR

= cβx(−1/c) + cos(θ + α)− R sin(θ + α) θ̇ (−1/c)
= −βx + cos(θ + α) + (Rθ̇/c) sin(θ + α).

∂x
∂α

= −R sin(θ + α).

Similarly, ∂y
∂R

= −βy + sin(θ + α)− (Rθ̇/c) cos(θ + α).
∂y
∂α

= R cos(θ + α).

(A. 3)

J =

∣

∣

∣

∣

∣

∂x
∂R

∂x
∂α

∂y
∂R

∂y
∂α

∣

∣

∣

∣

∣

J1 =

∣

∣

∣

∣

−βx −R sin(θ + α)
−βy R cos(θ + α)

∣

∣

∣

∣

= −βxR(cos(θ + α)− βy sin(θ + α))

= −βxR(cosΦ + βy sinΦ) = −Rβ · eR = β eβ · eR = −Rβ cosα. See Eq. 7(a).

J2 =

∣

∣

∣

∣

cos(θ + α) −R sin(θ + α)
sin(θ + α) R cos(θ + α)

∣

∣

∣

∣

= R

J3 =

∣

∣

∣

∣

(Rθ̇/c) sin(θ + α) −R sin(θ + α)

−(Rθ̇/c) cos(θ + α) R cos(θ + α)

∣

∣

∣

∣

= 0

J = (1− β cosα)R.

(A. 4)

dR =
1

J

(

∂y

∂α
dx− ∂x

∂α
dy

)

=
R cos(θ + α) dx+R sin(θ + α)dy

(1− β cosα)R
=

dr · eR

1− β cosα
. (A. 5)

dα =
1

J

(

∂x

∂R
dy − ∂y

∂R
dx

)

=
{−βx + cos(θ + α) + (Rθ̇/c) sin(θ + α)}dy − {−βy + sin(θ + α)− (Rθ̇/c) cos(θ + α)}dx

(1− β cosα)R
.

(A. 6)

We shall simplify Eq. (A. 6), using (6). A part of the numerator simplifies as follows.

{−βx dy+βy dx}+{cos(θ+α) dy− sin(θ+α)dx} = (1−β cosα) (dr ·eΦ)− (β sinα) (dr ·eR).
(A. 7)
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Proof: The RHS of (A. 7)

= dr · eΦ − β[cosα (dr · eΦ) + sinα (dr · eR)]
= dr · eΦ − β[cosα {− sin(θ + α)dx+ cos(θ + α)dy} [from (6b) ]

+ sinα {cos(θ + α)dx+ sin(θ + α)dy}] [from (6a) ]

= dr · eΦ − β[{− cosα sin(θ + α) + sinα cos(θ + α)}dx
+{cosα cos(θ + α) + sinα sin(θ + α)}dy]

= dr · eΦ + β[sin θ dx− cos θ dy]
= dr · eΦ + βydx− βxdy
= − sin(θ + α)dx+ cos(θ + α)dy + βydx− βxdy

Q.E.D.

The remaining part of the numerator in
Eq. (A. 6) is

(Rθ̇/c){sin(θ + α)dy + cos(θ + α)dx}
= (Rθ̇/c) (dr · eR).

(A. 8)
Hence, from (A. 6),

dα = 1
R
[(dr · eΦ) + (1− β cosα)−1

×{(Rθ̇/c)− β sinα}(dr · eR)
]

.
(A. 9)

A.2 Differential Equation for
the Field Line

As shown in Fig. 2(b), dr is the displacement
vector from P to Q, and ds is the correspond-
ing infinitesimal arc length. The differential
equations we propose to write are based on
the following equations.

dr · eR = E·eR
E

ds = ER

E
ds;

dr · eΦ = E·eΦ
E

ds = EΦ

E
ds.

(A. 10)

Inserting these in (A. 5) and (A. 9) we get

dR = dr·eR
1−β cosα

= ER

E(1−β cosα)
ds. (a)

dα = 1
R
[(dr · eΦ) + (1− β cosα)−1

×{(Rθ̇/c)− β sinα}(dr · eR)
]

= 1
RE

[EΦ + (1− β cosα)−1

×{(Rθ̇/c)− β sinα}(ER)
]

ds. (b)

(A. 11)
We go back to the expression for ER ad EΦ

in Eq. (11), rewrite them in a reduced from,

κ3R2

q̃
ER = (1− β2)(1− β cosα) (a)

κ3R2

q̃
EΦ =

R

c
{β̇ sinα + β θ̇(β − cosα)}

+(1− β2)β sinα (b)
(A. 12)

We go back to (A. 11a), and using (A. 12a)
get

κ3R2E
q̃

dR
ds

= (1−β2)(1−β cosα)
(1−β cosα)

= 1− β2.

(A. 13)
Similarly, going back to (A. 11b), and using
(A. 12a,b) we get
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κ3R2E

q̃

dα

ds
=

1

R

[

R

c
{β̇ sinα + β θ̇(β − cosα)}+ (1− β2)β sinα

+(1− β cosα)−1{(Rθ̇/c)− β sinα}(1− β2)(1− β cosα)
]

=
1

c

[

β̇ sinα + β θ̇(β − cosα) + θ̇(1− β2)
]

=
1

c

[

β̇ sinα− β θ̇ cosα + θ̇
]

(A. 14)

Finally, dividing the Eq. (A. 14) with (A.
13) we get the required differential equation:

dα

dR
=

1

c
γ2[β̇ sinα− β θ̇ cosα + θ̇], (A. 15)

where γ2 = 1/(1− β2). See the line following
Eq. (10).
It is seen from (8) that

β̇ · eΦ = −β̇ sinα + β θ̇ cosα. (A. 16)

Hence, the differential equation for the field
lines takes the following form, written by

Tsien:

dα

dR
=

1

c
γ2[θ̇ − β̇ · eΦ]. (A. 17)

A.3 Boundary Condition

From Eq. (21) we shall prove the identity:

If, tan(φn + θ) = sin(θ+αn)−β sin θ
cos(θ+αn)−β cos θ

, (a)

then, tanφn = sinαn

cosαn−β
. (b)

(A. 18)
Proof : Let us write

µ = φn + θ. Then from (21)

tanµ = sin(θ+αn)−β sin θ
cos(θ+αn)−β cos θ

tanφn = tan(µ− θ) = tan µ−tan θ
1+tan µ tan θ

=
sin(θ+αn)−β sin θ

cos(θ+αn)−β cos θ
−tan θ

1+
sin(θ+αn)−β sin θ

cos(θ+αn)−β cos θ
×tan θ

= num
den

num× [cos(θ + αn)− β cos θ] = sin(θ + αn)− β sin θ − tan θ[cos(θ + αn) + β cos θ]
= sin θ cosαn + cos θ sinαn − tan θ[cos θ cosαn − sin θ sinαn]

= cos θ sinαn +
sin2 θ
cos θ

sinαn = sinαn

cos θ

den× [cos(θ + αn)− β cos θ] = cos(θ + αn)− β cos θ + [sin(θ + αn)− β sin θ] tan θ
= cos θ cosαn − sin θ sinαn − β cos θ + [sin θ cosαn + cos θ sinαn − β sin θ] tan θ

= cos2 θ cosαn−cos θ sin θ sinαn−β cos2 θ+sin2 θ cosαn+sin θ cos θ sinαn−β sin2 θ
cos θ

= cosαn−β
cos θ

.
Hence, tanφn = num

den = sinαn

cosαn−β
.



Physics Education 44 Oct-Dec 2016

Q.E.D.

Combining Eqs. (18), (A. 18) we get the
boundary condition as

γ tan

(

2πn

N

)

=
sinαn

cosαn − β
(A. 19)

Let us now prove a useful inversion for-
mula:

If, tan θ =
√

1−β
1+β

tanφ, (a)

Then, tan 2φ = 1
γ

sin 2θ
cos 2θ−β

, (b)

where, γ = 1√
1−β2

. (c)

(A. 20)
Proof: From (A. 20a),

tanφ =
√

1+β
1−β

tan θ.

tan 2φ = 2 tan φ
1−tan2 φ

=
2
√

1+β
1−β

tan θ

1− 1+β
1−β

tan2 θ

=
2
√

1+β
1−β

tan θ

(1−β)−(1+β) tan2 θ
× (1− β)

=
2
√

1−β2 tan θ

(1−tan2 θ)−β(1+tan2 θ)

= 1
γ

2 tan θ
cos2 θ−sin2 θ

cos2 θ
−β cos2 θ+sin2 θ

cos2 θ

= 1
γ

2 tan θ
cos 2θ−β

cos2 θ

= 1
γ
2 sin θ cos θ
cos 2θ−β

= 1
γ

sin 2θ
cos 2θ−β

.

Q.E.D.

Setting θ ≡ αn

2
; φ ≡ πn

N
in Eq. (A. 20), we

get

If, tan αn

2
=
√

1−β
1+β

tan πn
N
,

Then, γ tan 2πn
N

= sinαn

cosαn−β
,

and vice versa,

(A. 21)

Due to Eq. (A. 19) and identity between
the equations (A. 21a) and (A. 21b), the for-
mer will now serve as the reduced boundary
condition.

B Appendix B

B.1 Plot Commands for
Gnuplot

In our previous article we had written the
commands used in Gnuplot in full, to encour-
age the reader to replicate all the plots in that
article. In this article we shall be economical,
avoid the Preamble parts and go straight into
the main commands, copying only six exam-
ples from the Console. Using them as a guide,
the reader should be able to replot all the field
lines.

Note that all plot functions are paramet-
ric functions of the form: x=f(t), y= g(t), in
which t is the parameter. In the first five ex-
amples this parameter t represents the CtF
distance R. In the final example, t represents
the retarded time.

B.1.1 Example 1. E field line from a
particle moving under constant
acceleration. See Fig.5

ac = 0.17*10**18
c=3*10**8
tau= c/ac
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print tau

1.76470588235294e-09
set term fig color portrait size 16 20 met-
ric pointsmax 1000 solid font ”Times-Roman,
12” depth 50
set size square
set grid
set parametric
t0=tau
tr(t) = t0-t/c
RO = tau*c
RO = tau*c
b(t)=1/sqrt( 1+( tau/tr(t) )**2 )
print b(0.001*RO), b(0)

0.706752962498301 0.707106781186547
print b(0.999*RO), b(0)
0.000999999500000358 0.707106781186547
xt(t)=c*tau*( sqrt(1+( tr(t)/tau)**2 ) -1 )
print xt(RO), xt(0)

0.0 0.21928953302105
a(n,t) =2*atan( sqrt( (1-b(t) )/(1+b(t) )
)*tan( pi*n/16) )
x(n,t) = xt(t) + t* cos(a(n,t) )
y(n,t) = t* sin(a(n,t) )
set xrange [-RO:RO]; set yrange [-RO:RO]
set trange [0:RO]
set samples 200
set xtics RO/2; set mxtics 5
set ytics RO/2; set mytics 5
set title ”Erect-161028A.fig”
set out ”Erect-161028A.fig”
do for [n=1:16] plot x(n,t), y(n,t) lt n-1

B.1.2 Example 2. E field lines from
a particle accelerating from
t = 0 to t = τ , then moving with
constant velocity. See Fig.8(a)

This exercise invokes piecewise functions
β(t′), x̃(t′), each defined for 3 different ranges
in Eq. (38). Page 29 of Gnuplot Manual[6]
tells us how to do it. Notice how we have de-
fined the functions b(c,t) and xt(c,t) to rep-
resent β(t′), x̃(t′).

ac = 0.17*10**18
c=3*10**8
tau = c/ac
t0=2*tau
set parametric
tr(c,t)=t0-t/c
RA2=0
RA1= c*tau
RO= 2*RA1
RB= 3*RA1
bet(c,t)=1/sqrt( 1+ ( tau/tr(c,t) )**2 )
b(c,t) = RA2 <= t && t < RA1 ?
bet(c,RA1) : RA1<= t && t< RO ? bet(c,t)
: RO <= t && t <= RB ? 0 : 1/0
print b(c,RA2), b(c,RA1), b(c,RO), b(c,RB)

0.707106781186547 0.707106781186547 0 0
xta(c,t)=c*tau*( sqrt( 1+( tr(c,t)/tau )**2
) -1 )
xtb(c,t)= xta(c,RA1) + c*
b(c,RA1)*(tr(c,t)-tau)
xt(c,t) = RA2 <= t && t < RA1 ? xtb(c,t)
: RA1 <= t && t < RO ? xta(c,t) : RO <=
t && t <= RB ? 0: 1/0
print xt(c,RA2), xt(c,RA1), xt(c,RO),
xt(c,RB)

0.593640181884517 0.21928953302105 0 0

Volume 32, Number 4, Article Number : 2 www.physedu.in



Physics Education 46 Oct-Dec 2016

a(n,c,t) =2*atan( sqrt( (1-b(c,t) )/(1+b(c,t)
) )*tan( pi*n/16) )
x(n,c,t) = xt(c,t) + t* cos(a(n,c,t) )
y(n,c,t) = t* sin(a(n,c,t) )
set term fig color portrait size 16 20 met-
ric pointsmax 1000 solid font ”Times-Roman,
12” depth 50
set size square
set xrange [-1.5:1.5]; set yrange [-1.5:1.5]
set trange [0:RB]
set samples 300
set xtics 0.5; set mxtics 5
set ytics 0.5; set mytics 5
set grid
set title “Erect-160522A.fig”
set out “Erect-160522A.fig”
do for [n=1:16] plot x(n,c,t), y(n,c,t) lt n-1

B.1.3 Example 3. E field line from q
moving under constant
deceleration. See Fig.11

ac = 0.17*10**18
c=3*10**8
tau(ac,c) = c/ac
set parametric dummy variable is t for
curves, u/v for surfaces
t0(ac,c)=0
tr(ac,c,t)=t0(ac,c)-t/c
b(ac,c,t)=1/sqrt( 1+( tau(ac,c)/tr(ac,c,t)
)**2 )
xt(ac,c,t)=c*tau(ac,c)*( sqrt(1+(
tr(ac,c,t)/tau(ac,c))**2 ) -1 )
print xt(ac,c,0), xt(ac,c,0.528) 0.0
0.218291931024583
a(n,ac,c,t) =2*atan( sqrt( (1-b(ac,c,t)
)/(1+b(ac,c,t) ) )*tan( pi*n/16) )
x(n,ac,c,t) = xt(ac,c,t) + t* cos(a(n,ac,c,t) )

y(n,ac,c,t) = t* sin(a(n,ac,c,t) )
set term fig color portrait size 16 20 metric
pointsmax 1000 solid font ”Times-Roman,
12” depth 50 Terminal type set to ’fig’
Options are ’color small pointsmax 1000
portrait metric solid textnormal font ”Times
Roman,12” linewidth 1 depth 50 version 3.2
size 16 20’
set size square
set xrange [-0.8:0.8]; set yrange [-0.8:0.8]
set trange [0:0.528]
set samples 200
set xtics 0.4; set mxtics 4
set ytics 0.4; set mytics 4
set grid
set title ”Edcel-161003A.fig”
set out ”Edcel-161003A.fig”
do for [n=1:16] plot x(n,ac,c,t), y(n,ac,c,t) lt
n-1

B.1.4 Example 4. E field lines from
q decelerating from β∞ = −0.707
during t = −τ to t = 0, then
sitting still. See Fig.13

ac = 0.17*10**18
c=3*10**8
tau= c/ac
print tau
1.76470588235294e-09

set parametric
tr(t) =tau - t/c
R2=3*c*tau; R1=2*c*tau; RO=c*tau
print R2, R1, RO
1.58823529411765 1.05882352941176

0.529411764705882
bet(t) = -1/sqrt( 1+( tau/tr(t) )**2 )
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b(t) = 0 <= t & & t <= RO ? 0 : RO < t
& & t < R1 ? bet(t) : R1<= t & & t <=
R2 ? bet(R1) : 1/0
print b(0), b(RO), b(R1), b(R2) 0 0 -
0.707106781186547 -0.707106781186547
xta(t)=c*tau*( sqrt( 1+( tr(t)/tau )**2 ) -1
)
xtb(t)= xta(R1) + c* bet(R1)*(tr(t)+tau)
xt(t) = 0 <= t & & t <= RO ? 0 : RO < t
& & t < R1 ? xta(t) : R1 <= t & & t <=
R2 ? xtb(t) : 1/0
print xt(0), xt(RO), xt(R1), xt(R2)

0 0 0.21928953302105 0.593640181884517
a(n,t) =2*atan( sqrt( (1-b(t) )/(1+b(t) )
)*tan( pi*n/16) )
x(n,t) = xt(t) + t* cos(a(n,t) )
y(n,t) = t* sin(a(n,t) )
set term fig color portrait size 16 20 metric
pointsmax 1000 solid font ”Times-Roman,
12” depth 50
set size square
set grid
set xrange [-R2:R2]; set yrange [-R2:R2]
set trange [0:R2]
set samples 1000
set xtics RO; set mxtics 5
set ytics RO; set mytics 5
set title ”Edcel-161016B.fig”
set out ”Edcel-161016B.fig”
do for [n=1:16] plot x(n,t), y(n,t) lt n-1
set xrange [-2*RO:5*RO]; set yrange [-
3.5*RO:3.5*RO]
set title ”Edcel-161016C.fig”
set out ”Edcel-161016C.fig”
do for [n=1:16] plot x(n,t), y(n,t) lt n-1

B.1.5 Example 5. Field line from
particle in circular motion with
β = 0.5, N = 16, R ǫ [0 : 13π]. See
Fig. 21

g(b) = 1/sqrt(1-b*b) # defines γ
a(N,n,b,r,t)=2* atan( sqrt((1-b)/(1+b)) *
tan( -(g(b)*b*t)/(2*r) + pi *n/N) ) # de-
fines α
x(N,n,b,r,t) = -r* sin(b*t/r) + t*cos((b*t/r)
+a(N,n,b,r,t) ) # x coordinate of field line
y(N,n,b,r,t) = r* cos(b*t/r) + t*sin((b*t/r)
+a(N,n,b,r,t) ) # y coordinate of field line
set term fig color portrait size 16 20 met-
ric pointsmax 1000 solid font ”Times-Roman,
12” depth 50
set size square
set grid
set parametric
set trange [0:6*pi]
set xrange [-6*pi:6*pi]; set yrange [-6*pi:6*pi]
set samples 400
set xtics 4*pi; set mxtics 4
set ytics 4*pi; set mytics 4
N=16; b=0.5; r=1
set title “Qcir-b5-16-400-160717.fig”
set out “Qcir-b5-16-400-160717.fig”
do for [n=1:N] plot x(N,n,b,r,t) , y(N,n,b,r,t)
lt n-1

B.1.6 Example 6. Concentration of
E field along a spiral. See
Fig. 27

set parametric
set term fig color portrait size 16 20 met-
ric pointsmax 1000 solid font “Times-Roman,
12“ depth 50
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x(t) = sin (t) - t* cos(t); y(t) = cos(t) + t *
sin(t)
set size square
set grid
set samples 200
set trange [-4*pi:0]
set xrange [-4*pi:4*pi]; set yrange [-4*pi:4*pi]
set xtics 2*pi; set mxtics 2
set ytics 2*pi; set mytics 2
set title “Espiral-160716A.fig”
set out “Espiral-160716A.fig”
plot x(t) , y(t)
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 Abstract: 

A six-step derivation is given for the Lorentz transformation which, without any reference to light and 

without resorting to advanced group-theory arguments, should avoid any misunderstanding about the 

connection of light with relativity theory. 

 

 

When presenting the special theory of 

relativity, very appropriately one usually 

starts with two postulates: (1) Galilean 

relativity, according to which fundamental 

physics laws must be invariant upon going 

from one inertial frame to another, and (2) 

the universality of the speed of light, 

according to which the speed of light is 

independent of the motion of its source, i.e., 

any inertial frame, upon measuring the speed 

of the same photon, reports the same value 

of c = 3´108  m/s . Following these two 

postulates, the space-time coordinate 

transformations from one inertial frame to 

another – Lorentz transformations (LT) – are 

derived. 

 However, light per se does not have 

much to do with relativity, besides the fact 

that it just happens to travel at the limiting 

speed – c , for celeritas – prescribed by the 

theory. The second postulate is then a 

convenient way of positing the existence of 

such a limiting speed – convenient because 

we have at our disposal something that 

experimentally certifies that this is the way 

the world is constituted: the reference to 

light is then due to the historical role that 

electromagnetism has played in the 

discovery of special relativity.1 

 Here is shown a six-step derivation 

of the LT which, without any reference to 

light and without resorting to advanced 

group-theory arguments,2 should avoid any 

misunderstanding about the connection of 

light with relativity theory. This holds not 

because the speed of light is invariant, but 

because space-time is so specially 

constituted: the experimentally verified 

invariance of the speed of light is just one of 

many experiments confirming that LT are 

the correct space-time coordinate 
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transformations between two equivalent 

frames. 

Two options 

 The framework on which physics is 

built is that of a time which is uniform and a 

space which is homogeneous and isotropic, 

i.e., the fundamental laws of physics are 

invariant under translation in time, and 

translation and rotation in space. We also 

require invariance upon going from one 

frame, say F , to another, say ¢F , moving 

with constant velocity, V , with respect to 

F . This is the usual first postulate of 

relativity, Galileo’s postulate. In particular, 

the space–time coordinate transformations 

from F  to ¢F  must have the same 

functional form of those from ¢F  to F , a 

circumstance which we shall refer to as 

reciprocity. For the time being, we do not 

require the speed of light to be constant. We 

now proceed to seeking the transformations 

between the space-time coordinates from F  

to ¢F  and vice versa. This is done in six 

steps. In what follows, we shall put a prime 

to any quantity evaluated in the frame ¢F . 

 

 First step. From reciprocity, it is 

sufficient that the sought transformations be 

linear, which implies that the inverse 

transformations have the same functional 

form. The transformations are then of the 

type 

 

x
¢m
= L

¢m n
x

n
n

å + k
¢m
 ,                (1) 

 

where x
m

 and x
¢m

 are the space-time 

coordinates in F  and ¢F , and L
¢m n

 and k
¢m
 

are quantities independent of those 

coordinates. Later on, we shall specify on 

what they may depend. The indices vary 

from 1 to 4, with x
1

= x , x
2

= y , x
3

= z , 

x
4

= t . 

 Second step. The symmetry 

properties of space and time allow us to 

choose the space and time origin and the 

orientations of the coordinate axes at will. 

Designating a given set of the four space-

time coordinates as an ‘event,’ we make the 

choice that the event labeled as 

x = y = z = t = 0  in F  is labeled as 

¢x = ¢y = ¢z = ¢t = 0 in ¢F . Likewise, we may as 

well choose ¢y = y  and ¢ z = z at t = 0  and the 

positive direction of both the x-and ¢x -axes 

along the positive direction of V . From 

x
¢m
= 0 = x

m
 for all m  it follows that k

¢m
= 0  

for all m . 

  Third step. We determine the 

transformation for the longitudinal space-

coordinate component, i.e., with the choice 

made, the x- coordinate. Since ¢x = 0 = ¢t  

when x = 0 = t , then L
¢1 2

= L
¢1 3

= 0 , as can be 

seen from Eq. (1). The x- coordinate 

transformation equation must then be of the 

form ¢x = gx +dt = g (x + d
g
t) . At all times, the 

first spatial coordinate of the origin ¢O  are 

¢x = 0  and x =Vt , i.e. d g = -V . The 

transformation equation for the x-coordinate 

is therefore 

¢x = g (x -Vt)  .        (2a) 

 

At this point we can say that g > 0, from the 

choice we have made of the coordinate axes, 

according to which sgn( ¢x ) = sgn(x)  at t = 0 . 

Also, g  may depend on V  and, if so, the 
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isotropy of space requires that g (-V ) = g (V ) , 

reciprocity requires that ¢V = V , and the 

chosen direction of the x- and ¢x - axes 

requires that ¢V = -V . Hence, the inverse 

transformation is obtained by the 

replacements ¢x « x  and -V «V : 

  

x = g ( ¢x +V ¢t ) .          (2b)  

 

 Fourth step. We now find the 

transformations for the time coordinate. 

From Eq. (2b), isolating ¢t  and inserting Eq. 

(2a), we get 

¢t = g t -
e

V
x

æ

è
ç

ö

ø
÷ ,                     (3) 

where we have set   

e º1-
1

g 2
 ,         (4a) 

by which we must have e <1. From Eq. (4a), 

g 2 º
1

1-e
 .                        (4b)  

 

 Fifth step. We determine the 

transformations for the transverse space-

coordinate components, i.e., the y- and 

z- coordinates. Having chosen ¢y = y  and 

¢ z = z  at t = 0 , we have 

L
¢2 1

= L
¢2 3

= 0 = L
¢3 1

= L
¢3 2

 and L
¢2 2

=1= L
¢3 3

. 

However, from Eq. (3) we see that the time-

coordinate transformation does not involve 

the transverse spatial components, so that 

L
¢2 4

= 0 = L
¢3 4

. The transformations for the 

transverse spatial components are then 

¢y = y           and          ¢z = z  .          (5) 

 

 Sixth step. We determine the 

dimensionless quantities g  and e . The 

crucial point is that there are two options 

here. Either they are constant, or they 

depend on V . The matter has to be resolved 

experimentally, unless some extra 

assumption comes into play. 

 In the former case, g  may be taken 

equal to 1: any other value would simply 

imply, as can be seen from Eq. (2), a change 

in scale of the units chosen. With g =1, we 

have e = 0, and 

¢x = x -Vt  and  ¢t = t  .         (6) 

 

Equations (5) and (6) are the first-option 

transformations,i.e., Galileo transformations. 

Notice that the Galilean velocity-

composition rules readily follow from Eqs. 

(5) and (6):   

u
¢x
º

d ¢x

d ¢t
=

d ¢x

dt
= u

x
-V          (7a) 

u
¢y
º

d ¢y

d ¢t
=

dy

dt
= u

y
     and      

u
¢z
º

d ¢z

d ¢t
=

dz

dt
= u

z
 .        (7b)  

 If the second option holds, being 

dimensionless quantities, g  and e  must 

rather depend on V c , where c  is some 

V - independent quantity (i.e., some universal 

constant) with the dimensions of velocity, 

whose value must be determined from 

experiments. Let us then determine g  and e . 

The velocity-composition rules that follow 

from Eqs. (2) and (3) are 

u
¢x
º

d ¢x

d ¢t
=

dx -Vdt

dt -
e

V
dx

=
u

x
-V

1-
e

V
u

x

       (8a) 
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u
¢y
º

d ¢y

d ¢t
=

dy

g dt -
e

V
dx

æ

è
ç

ö

ø
÷

=
u

y

g 1-
e

V
u

x

æ

è
ç

ö

ø
÷

       (8b) 

And 

u
¢z
º

d ¢z

d ¢t
=

u
z

g 1-
e

V
u

x

æ

è
ç

ö

ø
÷

 .                  (8c) 

 

Squaring and adding these velocity 

components, and making use of Eq. (4b), 

one obtains 

¢u( )
2

=
ux -V( )

2
+ u2 - ux

2( ) 1-e( )

1-
e

V
ux

æ

è
ç

ö

ø
÷

2
 .       (9) 

With c  as an invariant velocity, setting 

u2 = c2 = ¢u( )
2

, Eq. (9) becomes, after 

rearrangement,

c2 =
c2 1- 2 V

c2
u

x
+ e

c2
u

x

2( ) +V 2 -ec2

1-
e

V
u

x

æ

è
ç

ö

ø
÷

2
 .      (10) 

With e <1 , the only physically meaningful 

solution to this equation is  

e =
V 2

c2
º b 2  .        (11) 

The other solution, e = V u
x( ) 2 -V u

x( ) , has 

to be discarded on physical grounds, for e  

would otherwise depend on the orientation 

of frames in space. 

 We then see that 0 £ e <1, whereby 

V < c  (no frame can travel at V ³ c ), 

andg =
1

1- b 2
>1 .         (12) 

Equation (3) then becomes 

¢t = g t -
V

c2
x

æ

è
ç

ö

ø
÷ ,      (13a) 

and its inverse is 

t = g ¢t +
V

c2
¢x

æ

è
ç

ö

ø
÷  .     (13b) 

Equations (2), (5), (12) and (13) are the 

sought second-option transformations, i.e., 

Lorentz transformations.  

 Notice, from Eq. (9), that 

u < c Þ ¢u < c  and u = c Þ ¢u = c , where u  

and ¢u  are the speeds of a particle in F  and 

¢F : not only is c  an invariant, but it is also a 

limiting speed. 

 

Deciding between the options: The 

tragedy of a muon 

 Which one is the option to pick is an 

experimental matter (unless other 

assumptions are added). Of course, the fact 

that photons do travel at an invariant speed 

tells us that the world is constituted 

according to the second option, and the 

speed of light has to be identified with the 

constant c . This is the path historically 

taken. However, if light did not travel with 

an invariant speed – or, for that matter, if 

nothing traveled at an invariant speed – the 

second option could not be discarded, and 

should have been (and it has been) answered 

by appropriate experimental results, as it 

should be recalled at this point. 

 There are, among others, two 

remarkable consequences of LT: length 

contraction and time dilation. According to 

any frame, length-of-a-stick means the 

distance between the stick end-points when 

their spatial coordinates are evaluated at the 

same time. A stick at rest in frame F , along 

the x- axis, and with end-point spatial 

coordinates x
A

 and x
B

, would have length 
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l º Dx = x
B

- x
A

 in frame F . From Eq. (2b), 

the end-points have coordinates 

x
A

= g ( ¢x
A

+V ¢t
A
)  and x

B
= g ( ¢x

B
+V ¢t

B
) . In order 

for ¢x
B

- ¢x
A

 to be the length D ¢x  of the stick 

in frame ¢F , in the above equations ¢t
A

= ¢t
B
 

should hold, whereby 

l = x
B

- x
A

= g ¢x
B

- x
A

= gD ¢x . Therefore, 

D ¢x =
l

g
 ,                   (14) 

i.e., a stick in ¢F  is shorter than in F (where 

it is at rest and with length l ) by a factor g , 

a circumstance called length contraction. 

 Similarly, if two events happen in F 

at the same place x
A

= x
B( ) and with a lag in 

time given by t = t
B

- t
A

, the lag in time 

¢t
B

- ¢t
A

º D ¢t  between them, according to ¢F , 

is obtained from Eq. (13a): ¢t
A

= g t
A

-
V

c2
x

A

æ

è
ç

ö

ø
÷ 

and ¢t
B

= g t
B

-
V

c2
x

B

æ

è
ç

ö

ø
÷ . With x

A
= x

B
, one 

obtains 

D ¢t = gt  ,         (15) 

i.e., in ¢F  the time interval between two 

events is longer by a factor g  than in F  

(where the two events happen at the same 

place), a circumstance called time dilation. 

 Now, we recall – in a simplified 

version, i.e., not realistic but adapted to our 

purposes – a remarkable experiment.3 In a 

laboratory on Earth, it is possible to detect a 

muon, born at, say, 15 km  up in the 

troposphere, striving to reach us at the speed 

V = 2.997´108  m/s , but dying just before 

touching the Earth’s surface, after a life 

50.05 ms  long. From the reference frame of 

the muon, once born, she sees the planet 

Earth heading against her at the speed 

V = 2.997´108  m/s ; however, she dies after 

only 2.2 ms , just before experiencing the 

crush. The two events – birth and death of 

the muon – have a different time lag in the 

two frames: undoubtedly, the world must be 

constituted according to the second option. 

The value of the limiting invariant speed can 

now be evaluated. From Eq. (15), with 

t = 2.2 ms  and D ¢t = 50.05 ms , g  turns out to 

be g = 22.75 , and from Eqs. (11) and (12), 

b ºV c = 0.999 , whereby c = 3´108  m/s . 

(Once again we stress the simplified version 

given of the actual experiment.) 

 Of course, if the muon had lived long 

enough to survive the crush, she could have 

evaluated how far was our planet at the time 

she was born: Vt = 659 m , a result in 

agreement with what would be obtained 

from Eq. (14), with l =15 km and g = 22.75 . 

 

Conclusions 

 We would like to stress once again 

that c , usually called the speed of light in 

vacuum, is rather the invariant (and limiting) 

speed built in the geometry obeyed by our 

space-time. This is a notion that could (and 

should) be conveyed right at the beginning 

when LT are derived. Due to reciprocity, 

they have to be of the form of Eq. (1), with 

the coefficients that, without any further 

assumption, either depend or do not depend 

on V : tertium non datur. In the former case, 

the invariant speed must also be a limiting 

speed, regardless of whether or not there 

exist particles travelling at that speed. 
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 The development of the theory 

provides for a free particle with mass m  and 

linear momentum p , an energy E  given by 

E2 = m2c4 + p2c2 : unlike classical mechanics, 

relativity allows zero-mass particles, in 

which case E = pc . However, according to 

the theory, E = mc2g
u

, where 

g
u

º 1- u2 c2( )
-1 2

: the last two relations for 

the energy of a zero-mass particle are 

compatible only if u = c , i.e., massless 

particles must travel at speed c . 

 The fact that ubiquitous light travels 

at speed c  has been indeed a lucky 

occurrence, without which, everything else 

being equal, the realization of the space-time 

real structure might have waited some 

longer time. 
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Abstract

Standard introductory modern physics textbooks do not exactly dwell on superfluidity in
4He. Typically, Bose-Einstein condensation (BEC) is mentioned in the context of an ideal
Bose gas, followed by the statement that BEC happens in 4He and that the ground state of
4He exhibits many interesting properties such as having zero viscosity. Not only does this
approach not explain in any way why 4He becomes a superfluid, it deprives students of the
opportunity to learn about how the symmetry requirements on the wavefunction for
bosonic systems lead to the emergence of energy gaps, which in turn lead to superfluidity
and superconductivity. We revisit superfluid 4He by starting with Feynman’s explanation
of superfluidity, and we present exercises for the students that will allow them to arrive at
a very accurate estimate of the superfluid transition temperature. This paper represents a
self-contained account of superfluidity, which can be covered in one or two lessons in an
introduction to modern physics class.
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1 Introduction

Kamerlingh Onnes liquefied helium in 1908
for the first time. He used it as a coolant in
order to be able to study the low tempera-
ture properties of mercury and was awarded
the Nobel Prize in physics in 1913 for his
discovery of superconductivity. However, his
coolant turned out to be a surprise in itself
when Kapitza discovered in 1938 [1] that,
when helium is cooled down below 2.17 K,
it can flow through small openings without
any friction. When the liquid reaches this
superfluid state, it stops boiling in the sense
that, in contrast to normal fluid helium,
there are no bubbles visible. In addition,
it becomes a conductor of heat orders of
magnitude better than copper. We show this
transition of liquid helium from a normal
fluid phase into a superfluid phase in figure 1.

Shortly after the discovery of superfluidity,
London [3] suggested that the phenomenon
is directly associated with the formation
of a Bose-Einstein condensate, that is,
a state of matter where a large fraction
of the atoms condense in a state of zero
momentum. In 1947, Bogoliubov showed
[4] that a system of weakly interacting
Bose atoms would indeed, upon forming a
Bose-Einstein condensate, exhibit the prop-
erty of superfluidity. However, it was also
realized that this need not necessarily apply
to superfluid helium since this is a system
of strongly interacting bosons. Based on the
temperature dependence of the specific heat
of the superfluid phase, Landau deduced [5]

Figure 1: When liquid helium is cooled down,
the specific heat (measured at saturated va-
por pressure) displays a sharp increase peak-
ing at 2.17 K. In general, such increases are
associated with transitions from disordered to
more ordered states; yet, in the case of liq-
uid helium, the liquid remains a liquid. The
shape of the specific heat curve has given this
transition the name of λ-transition, the tran-
sition between a phase where helium behaves
as an ordinary liquid, and a phase below 2.17
K where it can flow without friction, the so-
called superfluid phase. The upturn at 5 K is
caused by the approach to the critical point
(5.2 K, 2.23 bar); the boiling point under at-
mospheric pressure is at 4.2 K. The data have
been taken from reference [2].

what the elementary excitation spectrum of
the superfluid would look like: he predicted
how much energy it would cost to excite a
density disturbance of a specific wavelength
in the liquid. When the spectrum of these
elementary excitations were measured in

Volume 32, Number 4, Article Number: 4 www.physedu.in
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1957 [6] by means of neutron scattering, it
turned out that Landau’s predictions were
remarkably accurate. Note that Landau’s
predictions neither proved nor disproved
Bogoliubov’s work as the presence of a
condensate did not need to be invoked to
calculate how much energy it would cost to
excite the system out of the groundstate.

Feynman showed [7] in arguments we
will revisit later on in this paper that,
by invoking the Bose statistical nature
of helium-4 atoms, even short-wavelength
excitations corresponding to the rearrang-
ment of just a few atoms could not be
created at a negligible energy cost. Thus, he
explained in a qualitative sense one of the
essential features of the excitation spectrum
of superfluid helium-4, namely the feature
that is associated with the critical velocity
above which helium no longer behaves as a
superfluid, as we shall see in the remainder
of this paper. Feynman also was fairly
successful in coming up with qualitative
predictions for the excitation spectrum, but
those calculations are beyond the scope
of this paper [8, 9]. However, in here we
present an alternative approach that builds
upon the findings of Landau and Feynman,
where rather than attempting to reproduce
the entire excitation curve from scratch, we
connect microscopic manifestations of Bose
particles to macroscopic quantities, such as
the superfluid transition temperature. In
order to do so, we must first clarify exactly
the difference between superfluidity and
Bose-Einstein condensation.

Superfluidity is the property of a liquid to
flow without friction through thin capillaries
[1]. This property is manifest in 4He below
Tλ= 2.17 K, the so-called superfluid or
lambda-transition (named after the shape
of the specific heat curve). Below 1 K,
100% of the liquid exhibits this property.
Bose-Einstein condensation (BEC) on the
other hand, is the property that a large
fraction of the particles that make up a
system condense into the same state. For
instance, in an ideal Bose gas (a gas made
up of bosons that do not interact with each
other), 100% of the particles will condense
into the state with the lowest available
energy and form a Bose-Einstein condensate.
However, an ideal Bose gas does not become
superfluid. And conversely, in liquid 4He
only about 7% [10] of the atoms actually
form a condensate, even though essentially
100% of the atoms can flow without friction
below 1 K.

In fact, there is no reason why a system
could not become a superfluid even if only
a very small fraction of the atoms were to
form a condensate. All this nicely illustrates
the fact that superfluidity and BEC are
two different phenomena. However, the
way these two phenomena are presented
in introductory textbooks tends to give
students the impression that the two are one
and the same phenomenon.

The main difference between BEC and
superfluidity is that BEC is a property
of the ground state, while superfluidity is
a property of the excited states. This is
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entirely analogous to standard supercon-
ductivity, where the electrons condense into
Cooper pairs (ground state), and where
the interaction between the Cooper pairs
introduces a finite energy gap between the
ground state and excited states. In turn,
this energy gap is responsible for the system
becoming a superconductor. Thus, in both
systems, it is the interaction between the
particles that is responsible for the exotic
behaviors, not how they arrange themselves
in the ground state.

In this paper we focus on the property of
superfluidity rather than on BEC. We re-
peat Feynman’s arguments that show that
any Bose liquid that stays liquid down to low
enough temperatures must become a super-
fluid because of the presence of an energy
gap. We also derive a very accurate esti-
mate of the superfluid transition tempera-
ture using basic conservation laws and some
straightforward approximations. Altogether,
this should give students a much better un-
derstanding of what superfluidity entails and
why it necessarily must occur in 4He. In ad-
dition, our simple calculations should bestow
upon them the idea that they have already
learned enough physics to be able to come
up with a very accurate estimate of some-
thing as complex as the superfluid transition
temperature in 4He.

2 Superfluidity:

qualitative

understanding

2.1 Elementary excitations

First, the fact that helium does not solidify
at any temperature is a pure quantum effect.
The weak van der Waals forces between the
atoms are not strong enough to overcome
the zero point motion associated with trying
to confine a helium atom to a lattice site.
The second aspect that makes helium stand
out from other liquids is that it takes a finite
amount of energy to create a disturbance
in the liquid. This is shown in Fig. 2. The
actual amount of energy required depends on
the wavelength λ (or momentum p = h/λ) of
this disturbance. The measured values [11]
for the energy cost are shown in Fig. 2. At
low momentum transfers (long wavelengths)
the energy disturbance is just a run-of-the-
mill sound wave (which also goes by the
name of a phonon), and its energy is given
by Eex(p) = cp, the standard hydrodynamics
result for any liquid, not just superfluids
[12]. Here c stands for the speed of sound,
and the reader might be more familiar with
this result when it is written in the familiar
form λf = c, with Eex = hf and h being
Planck’s constant.

When we go to shorter wavelengths, such
as the density disturbance pictured in Fig.
3, we can see from Fig. 2 that the energy
cost starts to deviate from Eex(p) = cp. For
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Figure 2: The measured excitation energies
E(p) [11], that is, the cost of creating an ex-
citation out of the groundstate of 4He, as a
function of momentum transfer p∗ = p/~ =
2π/λ. The slope of the curve at small p∗

(dashed line) is given by the velocity of sound
c= 237.4 m/s [13], the overall minimum slope
(corresponding to a speed of 58 m/s) is given
by the solid line which is tangent to the ex-
citation curve near the so-called roton mini-
mum [p∗ = 1.94 Å−1, E(p)= 0.743 meV].

wavelengths comparable to the interatomic
spacing d, the energy cost goes through
a minimum, after which it goes up again.
This minimum of the energy gap between
the ground state and the excited state is
commonly referred to in the literature on
superfluid helium as the roton minimum [14],
or simply ’the roton’, while the entire curve
is referred to as the phonon-roton dispersion
curve. The maximum of the dispersion in
between the phonon and roton region is
commonly referred to as ’the maxon’.

The roton turns out to be the determining
feature of superfluids. As pointed out in the
preceding, the presence of this roton gap is
analogous to the presence of a similar gap in
superconducting systems. The presence of
a gap also firmly sets superfluid 4He apart
from normal fluids where nothing resembling
an energy gap exists. This is shown in Fig.
4 where we compare helium in the superfluid
phase to helium in the normal fluid phase.

The curve in figure 2 that displays the en-
ergy cost of an elementary excitation as a
function of wavelength can also be measured
in solids. These curves are referred to as dis-
persion curves. The excitations represented
by such curves are collective excitations that
propagate from one place to another, with
a distinct energy and momentum. It is for
this reason that these excitations are often
referred to as quasi-particles. When the sys-
tem is not at absolute zero, a number of such
quasi-particles will be present in the system.
From the dispersion curve, the specific heat
as a function of temperature can be deter-
mined, something which is routinely done for
solids, but which works equally well for he-
lium. Landau achieved the opposite by infer-
ring the dispersion curve from specific heat
data shown in figure 1.

2.2 Criterion for superfluidity

One can easily verify from Fig. 2 that the
presence of a non-zero energy gap is syn-
onymous with the property of superfluidity.
The slope of a line that goes through the
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Figure 3: A real space visualization of a den-
sity disturbance (in this figure that would
correspond to a departure from the average
density of about 3 atoms in between the
dashed lines) that resembles a sound wave
with a wavelength λ of about 3 times the av-
erage atomic separation. The roton minimum
corresponds to a disturbance with a wave-
length comparable to the interatomic sepa-
ration [14].

origin and a point on the excitation curve
gives the (group) velocity of the excitation.
For instance, this slope at small momentum
transfers is given by the speed of sound
(see Fig. 2). Overall, the smallest slope is
encountered near the roton minimum. The
value of the slope at this point corresponds
to the velocity below which the liquid can
flow without friction (at least through small
capillaries as we will discuss in the follow-
ing): if the liquid is flowing at a lower speed,
then the liquid cannot slow down because
of restrictions due to the energy and mo-
mentum conservation laws, as detailed below.

Following standard arguments [15], we fo-
cus on a liquid mass M that is flowing at
speed v. For it to slow down to speed v′ by
creating an excitation with energy Eex and
momentum pex we must have

1
2
Mv2 = 1

2
Mv′2 + Eex

M−→v = M−→v ′ +−→p ex.
(1)

Eliminating v′ we obtain

−→v .−→p ex − p2ex/2M = Eex. (2)

Even in the best case scenario where −→v
and −→p ex are parallel and in which M is very
large, we find that the minimum requirement
on the flow velocity v for the liquid to be able
to slow down is given by:

vmin ≥ Eex/pex (3)

In a normal liquid without an energy gap,
liquid flow will always be viscous because the
minimum slope would be zero. For instance,
the spectra shown in Fig. 4 shows that a
neutron can transfer any amount of energy
to the fluid, no matter how small. Similarly,
a mass M of moving liquid can transfer any
amount of energy to the rest of the liquid,
there does not exist a minimum requirement.

Eqn 3 is known as the Landau criterion
for superfluidity [15], and it corresponds
to a flow velocity of 58 m/s. The actual
critical velocity in bulk superfluid helium
is much lower because in a bulk liquid
large scale rotational excitations can form.
These excitations are akin to the vortex

Volume 32, Number 4, Article Number: 4 www.physedu.in



Physics Education 7 Oct - Dec 2016

Figure 4: Detailed view of the excitations of
4He corresponding to the roton minimum in
the superfluid phase (shaded) and in the nor-
mal fluid phase (points plus errorbars) [16].
The data are taken by means of neutron scat-
tering experiments. The neutron transfers
energy E to the liquid and an amount of
momentum corresponding to the roton mini-
mum [see vertical arrow in Fig. 2]. When the
amount of energy transferred exactly matches
the energy difference between the ground
state and the excited state, then a sharp reso-
nance peak (at 0.743 meV) can be seen in the
superfluid. Note that there is no signal below
this peak. In the normal fluid the behavior is
very different; even a small amount of energy
is sufficient to excite the liquid, and there is a
clear signal even at E =0. The signal at E <
0 implies that the liquid can transfer some of
its energy to the neutron, which, of course,
can only take place if the liquid is not at zero
Kelvin.

that we can see when stirring a cup of
coffee. However, these excitations can be

suppressed by making the superfluid flow
through very small orifices that inhibit the
formation of such large scale vortices. When
this is done, as demonstrated in experiments
by Varoquaux et al. [17], then the critical
velocity is indeed close to the one predicted
by eqn 3. Experiments where negative ions
are used to create excitations yield critical
velocities as high as 60 m/s [18]. Thus, eqn
3 is a correct measure of the underlying
mechanism behind superfluidity.

2.3 BEC and superfluidity

Eqn 3 also explains why an ideal Bose
gas does not become superfluid. In an
ideal Bose gas, consisting of non-interacting
particles, the excitation energies are given
by Eex = p2ex/2m. Of course, a parabolic
curve does not have a minimum slope, and
therefore, no matter how slow an ideal Bose
liquid is flowing, it is always possible to
transfer energy to the rest of the liquid by
creating an excitation, and the liquid will
slow down. This is shown in Fig. 5a. Also,
note that even though it requires less energy
to create a sound wave than a roton excita-
tion, the roton minimum actually determines
the critical flow velocity (compare the two
slopes in Fig. 2).

As an aside, this is a good point to eluci-
date why the presence of a Bose condensate
is still required in order to obtain superfluid-
ity, and what the difference is between dilute
superfluid Bose Einstein condensates (BEC)
and superfluid helium. This also explains

Volume 32, Number 4, Article Number: 4 www.physedu.in



Physics Education 8 Oct - Dec 2016

Figure 5: (a) An ideal Bose gas forms a BEC,
but because the particles are non-interacting,
the dispersion will be quadratic in momen-
tum q. As a result, there is no minimum
slope to the dispersion curve, and the system
is not superfluid. (b) In a weakly interacting
Bose system, the presence of the condensate
renormalizes the low-q part of the dispersion
[4]; the result is a minimum slope (dashed
line), and the system is a superfluid. (c)
Once the system becomes strongly interact-
ing, the dispersion curve will also reflect the
local structure of the liquid. This does not
affect its superfluid properties, even though
the condensate fraction can be depleted. (d)
In a stongly interacting system, we still find a
minimum slope to the dispersion, but unlike
in weakly interacting Bose systems, the ac-
tual minimum value of the slope is no longer
determined by the Bose condensate, that is,
by the slope given by the low-q part of the
dispersion curve (dashed line).

why the roton excitation is the determining
factor in superfluidity in helium, whereas
such an excitation is not even present in
dilute BECs. Bogoliubov showed [4] that
the low momentum part of the dispersion
of a dilute Bose system renormalizes from
a quadratic dependence ∼ q2 to a linear
dependence ∼ q in the presence of a Bose

condensate. This is shown in Fig. 5b. By
and large, this is the situation in the experi-
mentally realized BECs where superfluididty
has been established [19]. There now exists
a non-zero slope to the dispersion, and by
virtue of the Landau criterion, such a system
will exhibit superfluidity. This was verified
in 2005 by Zwierlein et al. [19]

With increased ensity of the liquid (Fig. 5c
and d), the dispersion curve will also reflect
the local structure of the liquid. Compared
to the (barely) interacting liquid, it will take
more energy to create a hole in the liquid,
and less energy to impose a fluctuation
that already matches the natural separation
between the atoms. This results in an
increase in excitation energy in the maxon
region, and a decrease in the roton region.
Once the density is high enough, the slope
that is tangent to the excitation energy of
the roton will be lower than the slope given
by the low momentum excitations. This is
how the roton excitation energy becomes the
determining factor for the critical velocity of
superfluid helium; this effects is not present
in dilute BECs.

2.4 Feynman’s explanation for
superfluidity

Next, we will explain why there is this roton
energy gap in the first place, how the size of
this gap relates to the superfluid transition
temperature, and how actual values for all
parameters involved can be estimated. To be
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clear, with a gap we mean that the minimum
excitation energy (of the roton) is non-zero.
We would also call the liquid shown in
Fig. 5b a liquid with a gapped excitation
spectrum, whereas we refer to Fig. 5a as a
non-gapped liquid since this dispersion does
not have a minimum slope associated with
it.

Feynman explained in a beautiful argu-
ment why this energy gap is the unavoidable
consequence of the fact that 4He atoms
obey Bose statistics. We refer the reader
to Feynman’s 1955 account [7] and 1972
textbook [8] for details, but in a nutshell the
argument is the following.

Assume that a certain configuration
of the helium atoms represents the state
with lowest energy, the ground state. The
quantum mechanical wave function φ of
this state depends on the positions of all
atoms: φ(

−→
R 1,
−→
R 2, ..

−→
RN). The energy of this

ground state consists of a kinetic energy
term that depends on the gradient of the
wave function ∼ |∇φ|2, and of a potential
term V |φ|2. The same holds for the wave

function ψ(
−→
R 1,
−→
R 2, ..

−→
RN) describing the

excited state that is lowest in energy of all
excited states. The potential operator has
terms ∼ 1/|−→R i −

−→
R j|n which tell us that the

force between the atoms is strongly repulsive
when they are too close together, which is
another way of saying that atoms cannot
occupy the same space.

The exact details of the ground state are

Figure 6: A depiction of various configura-
tions representing different energies [8]. Part
(a) shows an unlikely ground state config-
uration since two atoms being in the same
spot implies a high potential energy. Simi-
larly, part (b) shows an unlikely ground state
because this configuration would represent a
high kinetic energy (see text). By and large,
in the ground state the atoms will be spread
out as shown in part (c).

not important, but both the kinetic and
potential term should be small. From this
requirement we can expect that the atoms
in a configuration that could represent the
ground state are fairly well spread out (see
Fig. 6c). After all, if they were to sit on
top of each other (Fig. 6a), we would have
to pay a high price in potential energy, and
hence, we can assume the amplitude of the
ground state wave function φ to be zero for
those cases where Ri ≈ Rj.

Also, the atoms will not be very close to
each other (Fig. 6b), because this would
correspond to a high gradient ∇φ, making
it an unlikely choice of ground state. We
can verify that atoms almost touching each
other would correspond to a high gradient as
follows: if the amplitude of φ would not be
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zero for a configuration where two atoms are
very close, then we would have the situation
that by slightly changing the coordinate of
one atom to make it sit on top its neighbor
(going from Fig. 6b to 6a), we would go
from a non-zero to a zero amplitude for φ.
This, in turn, would imply a steep gradient
∇φ (high kinetic energy), and therefore,
the amplitude of φ must also be zero for
configurations where atoms are too close.

Another way of saying the above is that
if an atom actually were to move from Fig.
6b to 6a, it must have had a large kinetic
energy in the first place in order to be able to
approach the other atom as closely as shown
in Fig. 6a. However, note that we do not
actually ’move’ atoms, we just compare the
wave function for two different configurations
−→
R
N

. Thus, when we say ’move’, we do not
imply any dynamics. Rather, we are trying
to get our mind around quantum mechanical
manipulations by evoking classical images.

We also know that φ (Fig. 6c), being
the ground state, will not have any nodes
other than at the edge of the box confining
the liquid. Hence, we can assume without
loss of generality that the amplitude of φ
is positive for all configurations. Also, the
excited state wave function ψ should have
at least one more node. This is equivalent
to the first harmonic of a guitar string
not having a node other than where it
is being held in place, while the second
harmonic has a node in the middle of the
string. Also note that the second harmonic

is a higher note, representing higher en-
ergy, similar to the excited state in helium
having a higher energy than the ground state.

The preceding statements imply that half
of the configurations representing the excited
state ψ(

−→
R 1,
−→
R 2, ..

−→
RN) should correspond to

a positive amplitude, and half of the con-
figurations should correspond to a negative
amplitude [20]. Next, we will try to create
an excited state that barely differs in energy
from the ground state. If we were to succeed,
then the roton minimum would be close (in
energy) to the ground state (yielding a very
small minimum slope), and we would be able
to stifle superfluidity. However, Feynman
showed that this cannot be done [7], and
that one always has to end up with a sizeable
energy difference between the ground state
and the excited states for excitations that
are not phonons.

In Fig. 7 we have sketched a configuration
that we arbitrarily will take to correspond
to a maximum positive amplitude for ψ. We
do not really know what the configuration
should look like, but we tried to make it
look like the ground state, with atoms not
sitting on top of each other. Next, we
will rearrange the atoms to end up with a
configuration that would correspond to a
maximum negative amplitude. To achieve
this, we should rearrange the helium atoms
over large distances. We are not interested
in short distances, because this would imply
that ψ goes from a maximum to a minimum
over short distances, which would correspond
to a large gradient ∇ψ, and therefore, to a
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Figure 7: A reasonable guess of what a low
energy state ψ in helium could look like [8].
In an attempt to flip the sign of ψ, atoms
are ’moved’ over large distances (long arrows)
while smoothing out any holes left in the liq-
uid to minimize the energy cost. However,
since Bose particles cannot be distinguished
from each other and since permutation of par-
ticles does not affect the wave function, the
outcome of the ’movements’ indicated by the
solid arrows are identical to the ’movements’
indicated by the short arrows.

high energy. We will also smooth out any
holes or bumps that may materialize, oth-
erwise we would end up with an excitation
that would look like a phonon (see Fig. 3)
and we already know that a phonon does
not represent the minimum slope of the
excitation curve. The required changes to
the configuration are shown in Fig. 7 by the
long arrows, and we appear to have achieved
our aim.

However, the above approach does not
work in a Bose liquid since all the atoms are

indistinguishable: interchanging two atoms
does not lead to a change in the amplitude
of the wave function. Thus, one could
have gotten the same final configuration by
simply ’moving’ the atoms affected by the
rearrangement over distances less than half
the atomic separation (denoted by the short
arrows in Fig. 7). In fact, half the atomic
separation is the best that one could hope
to achieve. However, such rapid variations
(from maximum positive amplitude to maxi-
mum negative amplitude over half the atomic
separation) would represent a large gradient
and thus, it would signify a significant step
up in energy. This is the exact opposite of
our intended goal of creating a configuration
for an excited state that would be very close
in energy to the energy to the ground state.

In other words, because of the Bose nature
of the atoms, it is not possible to make an
excited state (which is not a phonon) that
differs by a vanishingly small amount in
energy from the ground state. Therefore, an
energy gap must be present in a Bose liquid
and provided the liquid does not freeze,
it must become a superfluid. Whether a
Bose-Einstein condensate forms or not is not
relevant to this argument since it links the
property of superfluidity to the scarcity of
excited states. Even a Bose liquid where
only a tiny fraction of the atoms condenses
will (necessarily) become a superfluid when
the temperature is low compared to the
energy gap.

Thus, from a qualitative point of view, it
is clear why a Bose liquid that remains liq-
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uid down to low enough temperatures has to
become a superfluid: Bose statistics force the
emergence of an energy gap. However, this
argument does not provide us with a numer-
ical estimate for the size of the gap. More-
over, it does not even tell us how the tran-
sition temperature is linked to the size of
a gap. This may explain why introductory
textbooks tend not to mention Feynman’s ar-
guments.

3 Superfluidity:

quantitative

understanding

So how low does the temperature have to
be for the liquid to become a superfluid?
Since we do not think that the temperature
at which BEC occurs in an ideal Bose gas
(for the record [8], at 3.13 K) has much to
do with the magnitude of the energy gap
in a real liquid, we must take a different
approach. We first discuss the relationship
between the size of the energy gap and the
superfluid transition temperature, followed
by a discussion on how to estimate the size
of the gap based on the speed of sound and
on the particle density of the liquid. Doing
so, we will end up with an accurate estimate
of the superfluid transition temperature.
Our estimates apply to 4He at zero pressure,
possible extensions to higher pressures are
given in the references.

As a note of caution, while our estimates
turn out to be remarkably accurate, the fol-

lowing should not be read as anything other
than being a set of instructional exercises in-
tended to help students in their understand-
ing of liquid helium in particular, and in us-
ing their acquired knowledge from introduc-
tory physics to real world problems. Thus,
the following is not a rigorous derivation of
the transition temperature in superfluid he-
lium, even though our estimate turns out to
be very accurate.

3.1 Connection of Tλ to the
excitation gap

We first apply the same reasoning as in the
preceding section to figure out what the min-
imum velocity requirement is for a single he-
lium atom to be able to slow down. For this
atom of mass m moving with speed v through
the sea of other atoms to be able to slow down
to speed v′ we have:

1
2
mv2 = 1

2
mv′2 + Eex(p)

m−→v = m−→v ′ +−→p ex.
(4)

Since we are interested in the bare mini-
mum, we assume that this atom will give up
all of its energy [v′=0]. Dividing the above
equations we get a minimum condition on the
speed of the atom for it to be able to transfer
energy to the rest of the liquid:

vmin ≥ 2[Eex/pex]min (5)

Compared to eqn 3 we have picked up a
factor of 2, which is the result of dealing with
a small mass m instead of with the large
mass M of a moving liquid. Note that the
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actual mass of the atom does not play a role
in this expression. This ensures the validity
of eqn 5 in real liquids in which the actual
movement of an atom is accompanied by a
flow pattern where atoms are temporarily
pushed out of the way, bestowing the moving
atom with an effective mass which is larger
than the mass of a non-interacting atom
(about 2∼3 times larger, see ref [21] for
details).

If an atom moves faster than this min-
imum velocity requirement, then it can
create an excitation in the rest of the liquid
and slow down; if it moves slower then it
cannot and it will not be able to slow down
(that is, it will not experience any friction).
Thus, we should expect to see a qualita-
tive difference in behavior of the liquid
above and below the temperature at which
the average thermal speed vthermal meets
the minimum requirement contained in eqn 5.

In order to estimate this temperature, we
assume that the classical equipartition of en-
ergy principle can be extended to quantum
liquids at low temperature, namely

1

2
mv2thermal =

3

2
kBT, (6)

with kB being Boltzmann’s constant. Com-
bining eqn 6 with eqn 5, we find that we can
expect changes in liquid behavior at a tem-
perature Tλ when vthermal = vmin:

Tλ =
4m[Eex/pex]

2
min

3kB
. (7)

We read off the value for the minimum of
the slope [21] from Fig. 2: (Eex/pex)min=

(58.05 ± 0.15) m/s, which combined with the
mass of a helium atom of 6.646 x 10−27 kg
yields a transition temperature of Tλ = 2.162
K ± 0.012 K, in good agreement with the
actual transition temperature of 2.17 K. The
fact that the agreement is essentially perfect
might be fortuitous, however, it does show
that our assumption of being able to use the
equipartition of energy theorem to be not too
far off the mark [22]. Also, eqn 7 tells us that
the transition temperature is determined by
an intrinsic microscopic velocity of the liquid,
as we would have expected for superfluidity.

3.2 Connection between the
excitation gap and the
speed of sound

Now that we have made the connection
between the macroscopic transition temper-
ature and the microscopic parameters for
the roton, we can try to estimate these roton
parameters based on other macroscopic
quantities. We start with the value of the
energy gap at the roton minimum. As an
aside, we note that the entire excitation
curve shown in Fig. 2 can in principle be
calculated with great precision from first
principles [23], including the flat part at
higher momentum values (p∗ ≥ 3 Å−1) and
its termination at twice the roton energy
[16]. The procedure is straightforward, but
cumbersome. Since we only need the value
of the energy gap at the roton minimum, we
use the following more instructive shortcut.

As Feynman pointed out in his argument
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as to why a Bose liquid should exhibit an
energy gap [7], one gets the lowest lying
excited state when one ’moves’ atoms by
half the atomic separation. We can use this
to calculate the value of the energy gap
based on the macroscopic speed of sound in
superfluid helium.

From thermodynamics we have that the
speed of sound c is given by

c2 =
γ

m

(
∂P

∂n

)
T

(8)

with P the pressure, γ the ratio of specific
heat at constant pressure cp and at constant
volume cv, and n the number density for N
atoms in a volume V : n = N/V . For super-
fluid helium at low temperature we find that
γ = 1 [13] as a direct consequence of the large
zero-point motion of the atoms [24]. Thus, at
constant volume V we have

c2 =
1

m

(
∂PV

∂N

)
T,V

. (9)

We can now calculate c by adding one
more atom to the liquid at constant volume.
In this case, 4N =1 and4PV is the amount
of work we have to do to make room for this
additional atom.

We calculate the amount of work by
comparing the energy of a configuration with
a hole in it to the energy of a configura-
tion without such a hole. We can make a
cubic hole in the liquid by ’moving’ atoms
along the positive x-direction by half the
atomic separation d/2, and by doing the

same thing along the negative x-direction,
and by repeating the process in the y and
z-directions. Each of these 6 configurational
changes should increase the energy of our
state, namely by Eroton for every step. This
can be seen as follows.

Provided we can ’move’ atoms over a dis-
tance of at least d/2, and provided we have
plenty of room to smooth out any variations
in local particle density, then we should be
able to do each of the six steps of the pro-
cess at a minimum cost in energy. Thus, the
total cost will be six times the minimum ex-
citation energy in liquid helium, or 6Eroton.
Of course in doing this, we actually made
the hole too big (volume d3) since we only
needed to make a sphere of diameter d [vol-
ume 4π(d/2)3/3]. Thus, the hole was too big
by a factor of π/6; we only needed to provide
6Erotonπ/6 = πEroton in work. Combining
this with eqn 9 we find [25]

Eroton = mc2/π. (10)

To see how reliable an estimate this is,
we compare this prediction to the measured
quantities of superfluid helium at 1.2 K. Us-
ing c = 237.4 m/s [13] (Fig. 1), we ob-
tain Eroton = 11.92 x 10−23J = 0.744 meV.
The value that has actually been measured
by means of neutron scattering [11] is 0.743
meV. Thus, we have found a very accurate
value for the energy gap based on the speed
of sound. In essence, we have used the speed
of sound to gauge the strength of the inter-
atomic potential, which in turn determines
the roton energy.
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3.3 Connection of the roton
excitation to the density of
the liquid

So far we have connected the superfluid
transition temperature to a minimum flow
velocity determined by the excitation curve
shown in Fig. 2, and we have connected the
minimum excitation energy Eroton to the
macroscopic speed of sound. To complete a
quantitative estimate of the superfluid tran-
sition temperature, we should also estimate
the momentum value corresponding to this
minimum excitation energy, so that we can
get an overall estimate of the minimum value
of Eex/pex for the excitations shown in Fig. 2.

As can be seen from Fig. 2, Eroton/proton
is an accurate estimate for the mini-
mum slope, only fractionally too large.
The roton momentum proton is given by
proton = h/λroton = h/d, with h Planck’s
constant and d the interatomic separation.
In words, the energy cost to create an
excitation of wavelength λ is least when the
wavelength of this disturbance matches the
natural length scale in the liquid, namely the
atomic separation. This can also be seen in
Fig. 7 which contains a roton excitation, yet
the average separation between the atoms is
pretty much as it is in the ground state. Had
it not been the case, then the energy of the
excited state would have been much higher.

The separation d depends on the number
density n of liquid helium as d ∼ n−1/3.
For a solid consisting of spheres packed in

a cubic structure the atomic packing factor
nd3 would be exactly 1 since one atom
occupies a volume of d3, so that d = n−1/3.
Estimating the proportionality factor in a
liquid is a somewhat nebulous undertaking
because unlike in a solid, we do not have
a nice periodic arrangement. We do expect
that the average separation in a liquid will be
smaller than that in a simple cubic structure
since the atoms are not packed as tightly as
possible. For our estimate we will use that
helium fairly accurately resembles a liquid of
closely packed spheres. This is shown in Fig.
8.

The atomic packing factor for atoms in a
close packed structure is π/3

√
2= 0.741 [26].

If we identify this close-packed packing fac-
tor with nd3, then we obtain the folowing es-
timate for the average atomic separation in
a liquid resembling a close packed structure
[27]

d = [π/(3n
√

2)]1/3; proton = h[π/(3n
√

2)]−1/3.
(11)

Note that the above average separation is
slightly lower than that for a simple cubic
structure (d = (1/n)1/3), something which
simply tells us that the atoms are closer
together in a more closely packed structure.
Putting in the helium density ( n= 0.02183
atoms/Å3), we find p∗roton= 1.94 Å−1. This
number is spot on, so it would appear that
eqn 11 provides us with a good estimate of
the interatomic separation.

We are now in the position to combine all
our estimates into one expression for the su-
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Figure 8: The average separation between
atoms is, by and large, given by a closely
packed structure. The atoms, depicted by the
grey disks, cut out a volume for themselves
(shown by the larger, transparent disks) by
colliding with their neighbors and thereby
keeping them at a distance. Since all atoms
have very similar kinetic energies, we can ex-
pect the cages that they create to be of very
similar sizes. These cages are stacked in a
pattern that closely resembles a close packed
structure.

perfluid transition temperature. Combining
eqns 7, 10 and 11 we get

Tλ =
4m

3kB
[
mc2(π/3

√
2)1/3

hπn1/3
]2. (12)

When we plug in all the numbers (c= 237.4
± 0.5 m/s, n= 0.02183 atoms/Å3), we
find Tλ= 2.17 ± 0.02 K. Thus, when we
combine our quantitative approximation for
the relationship between the minimum of
the dispersion curve and Tλ (eqn 5) with our
approximation for the roton energy (eqn 10)
and with our approximation for the roton
position (eqn 11), we still find very good

agreement with experiment.

While it is satisfying to have ended up
with such a good agreement, we note that
the agreement is probably better than we
had reason to expect given the simplicity of
our estimates. From an instructional point
of view however, we consider the individual
links that we have made between microscopic
parameters and macroscopic quantities (that
is, Eqs, 5, 10 and 11) to be the most im-
portant points of this section since it allows
students to apply basic physics reasoning in
order to arrive at predictions for measurable
quantities.

In summary, we have shown that su-
perfluidity can be explained to students
without going into lengthy calculations, and
without having to invoke details about a
Bose condensate. We have tied Feynman’s
arguments about the origin of the energy gap
to the actual superfluid transition tempera-
ture, and we have shown that very accurate
estimates of all parameters involved can be
obtained through straightforward reasoning.
While we have included the actual numerical
values for our calculations in this paper to
make the discussion less abstract, and while
we have even given an expression of the
superfluid transition temperature in terms of
macroscopic quantities such as the density
and speed of sound, the real message of the
paper is that students should be able to
develop a better sense of what causes the
property of superfluidity in terms of Bose
statistics and energy gaps; that is, better
compared to the standard Bose-Einstein
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condensation remarks that are normally
encountered in textbooks. Finally, since a
very similar relationship exists between the
transition temperature and the energy gap
in superconductors, this paper could also
serve as an introduction to the physics of
superconductivity.
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Abstract

In this article we study the gravitational waves produced from inspiral phase of compact binaries in
circular orbit using the Newtonian chirp of leading order post-Newtonian(PN) approximation.
Expressions governing the Newtonian chirp are useful for obtaining the inspiral waveform, frequency
variation plot, merging time value and to plot the amplitude spectral density. We start with the
discussion of Newtonian chirp, where we assume the compact binaries to be located at galactic center to
obtain the waveform and frequency variation plots. For the singular value of peak frequency seen at end
of inspiral phase in Newtonian chirp, the concept of gravitational wave frequency corresponding to inner
most stable circular orbit(ISCO) provided by general relativity is described. The qualitative differences
observed in chirp duration and frequency evolution of these systems is explained. We also take the
GW150914 event parameters reported by LIGO team to obtain the inspiral waveform from Newtonian
chirp with FISCO as inspiral limit and overlay on LIGO discovered full waveform to show the merger
and ringdown phase of a real signal. We plot the amplitude spectral density of various compact binaries
along with GW150914 and GW151226 events and overlay it on LIGO and aLIGO sensitivity curve; it
establishes the merging events and possible distances which can be detected in detectors. We also give a
brief discussion on the supermassive black hole binary and slowly orbiting binary systems. We also
bring out the contribution of higher order PN terms to number of cycles for various compact binaries.
Inferences are drawn from these studies which reveals useful insights and information.

1 Introduction

Einstein’s theory of general relativity describes
gravity as curvature of space time. Einstein’s
equation are non-linear whereas the linearised
Einstein’s equation in free space can be written
down as a wave equation [1]. In leading order

the gravitational waves are produced by a
time varying mass-energy quadrupole moment.
This is because for a given mass-energy
configuration the monopole and dipole moment
corresponds to total energy and total angular
momentum of the system respectively. The
laws of conservation of mass-energy and angular
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momentum prohibits any change in monopole
and dipole moment. Binary stars are continuous
sources of gravitational waves because its
quadrupole moment when calculated for circular
and elliptical orbit allows non-vanishing time
derivatives [1].

The quadrupole moment is defined as [2],

Iij =

∫
ρ(r)rirjd

3r (1)

where ρ(r) is mass-energy density.

Consider a binary system where the massesm1

and m2 are moving in circular orbit about their
common center of mass with an angular velocity
ω. We assume the masses to be confined in x-
y plane and the distance between them to be a.
In the center of mass frame this can be reduced
to a one body problem, where a mass µ moves
in a circular orbit of radius a. We have µ =
m1m2/(m1 +m2) which is the reduced mass and
M = m1 + m2 is the total mass of the binary.
The position coordinates are x = acos(θ), y =
asin(θ) and z = 0.

Ixx = µxx = µa2 cos2(ωt) =
µa2

2
(1 + cos(2ωt))

Iyy = µyy = µa2 sin2(ωt) =
µa2

2
(1− cos(2ωt))

Ixy = Iyx = µxy = µa2 cos(ωt) sin(ωt) =
µa2

2
sin(2ωt)

Ixz = Izx = Iyz = Izy = Izz = 0

The presence of rirj in quadrupole moment Iij
results in cos2 ωt function which gives cos(2ωt)
function. We know that the phase of cos(2ωt) is
twice than that of cos(ωt). Hence the frequency
of cos(2ωt) is twice of cos(ωt).

The time varying quadrupole moment govern
the gravitational waves produced, thus for a
circular binary in leading order the frequency of
gravitational waves comes out to be twice the
orbital frequency of binary [2].

2 Newtonian Chirp

Due to the emission of gravitational waves the
stars inspiral and the orbital frequency of the
system increases as per Kepler’s third law. In
the leading order post-Newtonian approximation
we compute the GW signal. The emitted
gravitational waveform is a "chirp" signal due
to its increasing amplitude and frequency. We
consider the masses to be point objects, hence
their size and radius doesn’t come into picture in
any of the expressions. The essential expressions
of this approximation presented in this section is
based on Ref. [3] & [4].

The distance D of the binary system from
earth, the masses m1 and m2 in the binary and
the frequency of orbital motion Fsystem are the
determining parameters of gravitational waves
produced by the system. The gravitational wave
parameters like amplitude, frequency and strain
are closely related to D, m1, m2 and Fsystem
parameters of the binary. We usually consider
the chirp mass of the system, which is

M = µ3/5M2/5 (2)

The time varying strain of gravitational waves
is given by

h(t) = A(t) cosφ(t) (3)

where A(t) is the amplitude and φ(t) is the
gravitational wave phase.

The strain is a time-varying signal due to the
time dependence of amplitude and gravitational
wave phase. As the binary system evolves with
time its orbital radius decreases and frequency
increases. The energy emitted due to gravi-
tational waves is large in smaller radii orbit,
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therefore the amplitude and phase is expected
to change with time. In the approximation
considered the amplitude and phase formula are

A(t) =
4M 5/3π2/3F (t)2/3

D
(4)

φ(t) = φ0 − 2

[
1

256(πf0M )8/3
− t

5M

]5/8
(5)

where F (t) is the instantaneous gravitational
wave frequency and f0 is the initial frequency of
the wave received in detectors. The frequency
variation with time is given by

F (t) =
(M f 9

0 )
1/8

[(M f0)1/3 − 256f 3
0M 2π8/3(t/5)]

3/8
(6)

By defining the term

τm =
5

256(πf0)8/3M 5/3
(7)

We have the gravitational wave frequency
rewritten as,

F (t) = f0

(
1− t

τm

)−3/8

Starting from an initial frequency at t = 0,
the frequency of gravitational wave increases
with time. This is to be expected since the
instantaneous frequency of gravitational wave
is twice the instantaneous frequency of the
binary system from which it is produced. The
separation between the masses is governed by the
equation

a = a0

(
1− t

τm

)1/4

Where at t = τm the separation between the
masses becomes zero. This is the merging time at
which the corresponding binary frequency ω2 =
M/a3 goes to ∞, thus we can see that at this
instant the frequency of gravitational waves also
shoots to ∞.

The singular value of frequency is due to the
merging of two point masses in which inspiral
continues till a = 0. But it has been found
in general relativity that not all the orbits are
stable till a = 0 and the inner most stable
circular orbit (ISCO) corresponds to a = 6M�
[5]. Hence in post-Newtonian approximation,
the inspiral phase is taken to end at this orbital
separation and the corresponding gravitational
wave frequency at this separation is given by

FISCO ≈
4400

M
Hz (8)

Inspiral phase is followed by a short lived-
merger phase. The merger phase begins
when the masses starts to merge into a single
object. After this the ringdown phase starts
where the new object formed radiates away
the deformations resulted from merging [6].
Gravitational waves are produced in all these
phases. The merger phase is studied by
solving Einstein’s equation numerically whereas
perturbation theory is required for ringdown
phase.

Gravitational waves are continuously pro-
duced by binary systems and many of them
might reach earth but can be too weak to be
noticed in the LASER interferometer detectors.
As the inspiral phase of the binary system con-
tinues, the frequency of orbital motion increases
and if it reaches a value at which the signal is
strong enough to be detected, we start seeing
the GW from this frequency value (called as
initial frequency). Ground based gravitational
wave detectors are capable of detecting signals
of frequency greater than 10 Hz. At lower
frequencies the sources from space is overcome
by seismic and other earth-based environmental
noise sources [5]. Hence in this study we are
interested in the beginning of signal in the
detector at t = 0 starting at f0 = 10Hz.
The period where frequency and amplitude is
increasing considerably is called as the chirp
duration.
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3 Binaries at galactic center

We reside in the milky way galaxy. The
galactic center is located at 8 Kpc distance
from Earth. We consider Black Hole-Black
Hole (BH-BH) binary, Black Hole-Neutron Star
(BH-NS) binary, Black Hole-White dwarf (BH-
WD) binary, Neutron Star-Neutron Star (NS-
NS) binary, Neutron Star-White dwarf (NS-
WD) binary and White dwarf-White dwarf
(WD-WD) binary being at our galactic center.
Chandrasekhar’s limit gives the maximum mass
of a stable white dwarf star which is about
1.39M�. Most white dwarf stars are less massive
than this value, so we have taken the mass of
white dwarf star for Newtonian chirp study to
be 1M�. The theoretical value of maximum
mass of a stable neutron star is uncertain
[7]. Tolman-Opphenheimer-Volkoff (TOV) limit
gives the maximum mass of stable neutron star,
the modern estimates range from approximately
1.5M�-3M�. Equation of state for extremely
dense matter is not well known and hence
there exists an uncertainty in the limit. The
observational data suggests that mass of most of
the pulsars lies between 1.30M� to 1.50M� [7].

With this regard we take the mass of neutron
star to be 1.4M� in this study. Since there exists
no well defined limit on mass of neutron star for
gravitational collapse we consider the black hole
to be of 10M�.

We assume that at time t = 0 the frequency
of gravitational wave received in detector to be
f0 = 10 Hz. We can find the corresponding
orbital frequency of the masses in the binary
system, fsystem = f0/2 = 5 Hz. Gravitational
waves takes time to travel from binaries to
earth. On receiving in detector at t = 0 if the
gravitational wave has initial frequency of 10 Hz
it doesn’t imply that the binaries are currently
orbiting at 5 Hz, but it should be thought of
as the information encoded about binary system
in gravitational waves signal at t = 0. The
aim is to see for a binary system undergoing 5
orbital rotation per second whose corresponding
gravitational wave signal arrives with frequency
10 Hz on Earth, what will be the waveform and
frequency variation as they inspiral to merge. We
use the binary parameters: masses of two stars,
distance from the earth and frequency of orbiting
in the Mathematica code to obtain the plots in
figure[1,2,3]. The details of Mathematica code
which can be downloaded is given in appendix.
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Figure 1 : Frequency variation plot of compact binaries
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Figure 2: Waveforms of BH-BH, BH-NS, BH-WD at galactic center
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It can be seen that the waveforms produced
from Mathematica code starts at t = 0 and
extends till the merging time τm which can be

calculated from the formula. The frequency
varies from the initial value starting at t = 0
and approaches to infinity at τm.

Table 1: Compact binaries at galactic center

Name Masses(M�) Peak strain(approx) Merging time Peak freq.
m1 m2 M hpeak τm (sec) FISCO (Hz)

BH-BH 10 10 8.7005 8000× 10−21 37.8377 220
BH-NS 10 1.4 2.9943 2000× 10−21 224.089 385.96
BH-WD 10 1 2.46446 1000× 10−21 310.012 400
NS-NS 1.4 1.4 1.2187 400× 10−21 1002.41 1571.43
NS-WD 1.4 1 1.02715 250× 10−21 1333.08 1833.33
WD-WD 1 1 0.870551 200× 10−21 1756.27 2200

For binaries at same distance from Earth with same initial orbital frequency in terms of merging time
τm we can arrange as-

τm(BH−BH) < τm(BH−NS) < τm(BH−WD) < τm(NS−NS) < τm(NS−WD) < τm(WD−WD)

For binaries at same distance from Earth with same initial orbital frequency in terms of peak strain Sp
we can arrange as-

Sp(BH −BH) > Sp(BH −NS) > Sp(BH −WD) > Sp(NS −NS) > Sp(NS −WD) > Sp(WD−WD)

With point mass consideration in terms of variation of frequency per unit time (δVf ) in 10 Hz to 40 Hz
interval we can arrange as-

δVf (BH−BH) > δVf (BH−NS) > δVf (BH−WD) > δVf (NS−NS) > δVf (NS−WD) > δVf (WD−WD)

Massive binaries lose large amount of energy
in the form of gravitational waves hence they
inspiral more rapidly which can very well be seen
in their frequency-time plot. They rapidly sweep
through frequency interval 10Hz−40Hz com-
pared to less massive binaries. They also undergo
less number of cycles due to rapid inspiral which
can be seen in their waveforms and they merge
faster. In case of less massive binaries, since
they emit small amount of gravitational they
inspiral slowly, they sweep through frequency
interval 10 Hz−40 Hz slowly undergoing large
number of cycles and take comparatively longer

time to merge. Since massive binaries emit
more gravitational radiation during their inspiral
phase than less massive ones their magnitude of
strain is always more during the evolution stage
and at the end of inspiral stage they attain peak
strain larger than less massive ones.

Different binary systems end up their inspiral
phase with final orbital frequency given by
FISCO/2, which depends inversely upon the
total mass of system. This is based upon the
assumption that masses are treated as point
objects hence in reality the binaries may end up
with different orbital frequency before merging,
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as their size and radius may cause them to collide
and merge prior to reaching peak frequency.

4 Supermassive black holes
and slowly orbiting
systems

Supermassive black holes can have masses rang-
ing from few hundred solar masses to thousands
of solar mass. We have considered a supermas-
sive BH-BH binary with each BH having a mass
of 100M� and another such system with each BH
having a mass of 200M�. The binaries are taken
to be located outside our galaxy at 500 Mpc
orbiting at 5 Hz. We have obtained its waveform
and the frequency variation plot in figure[4] and
the results tabulated in table 2.

Table 2 : SBH binary at 500 Mpc

Masses(M�) strain τm FISCO
m1 m2 M hpeak (sec) (Hz)
100 100 87.0051 10−21 0.815188 22
200 200 174.11 10−21 0.256768 11

For supermassive black hole binaries with
masses 100M� each and 200M� each, orbiting
at 5 Hz the merging happens within a second
and their FISCO values being 22 Hz and 11 Hz
respectively lies very near to gravitational wave
starting frequency 10 Hz. The study of these
supermassive black holes reveal that by the time
5Hz is reached in their evolution stage which
makes their gravitational signal cross the seismic
noise frequency 10 Hz and detectable in ground
based interferometer detectors they are at very
end of their inspiral stage and merge within
a second, hence rather than inspiral phase the
merger and ringdown phases are more possible
to be detected in aLIGO [8].
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Figure 4: SBH binary at 500 Mpc

For supermassive black hole binary with mass
1000M� the FISCO comes out to be 4.4 Hz and
for 106M� the FISCO comes out to be 4.4×10−3,
hence their gravitational waves in inspiral phase
never reach 10 Hz to be observed in aLIGO.
Considerable inspiral phase of GW from these
supermassive black holes can be seen using Laser
Interferometer Space Antenna(LISA) which has
observable frequency in milli-Hertz [8].

The astrophysical process where merging of
supermassive black holes can be seen is in
merging of two galaxies. There exists ob-
servational evidence that every galaxy has a
supermassive black hole at its center and hence
the supermassive BH-BH merger is very likely to
happen. Strong evidence of supermassive black
hole binary exist in NGC 6240 [9], it is considered
as a new galaxy formed by the merging of two
different galaxies. The two black holes present

Volume 32, Number 4, Article Number : 5 www.physedu.in



Physics Education 9 Oct - Dec 2016

in it are currently about 3000 light-years apart.
The galaxy spans only 300000 light-years so it is
expected that the black holes will merge to form
a single black hole.

Not all binary systems orbit very rapidly to
have a orbital frequency of 5 Hz, so we consider
slowly orbiting binaries for our discussion. The
orbital frequency of known double neutron star
systems comes out to be about 10−6 Hz so

we assume that initially the double neutron
star system possesses this frequency. We also
consider WD-WD binary orbiting at the same
frequency. Hence, the arriving gravitational
waves is seen with initial frequency of 2 × 10−6

Hz. We assume both the systems to be located
at 1pc distance. The waveform and frequency
variation plot can be obtained for these systems,
the results are tabulated in table 3.

Table 3 : Slowly orbiting binary system at 1 pc

System Masses(M�) Peak strain order Merging time Peak freq.
m1 m2 M hpeak τm (sec) FISCO (Hz)

NS- NS 1.4 1.4 1.21877 10−21 7.32765× 1020 1571.43
WD-WD 1 1 0.870551 10−21 1.28384× 1021 2200

The merging time of slowly orbiting NS-NS
system comes out to be 7.32765 × 1020 sec and
WD-WD system comes out to be 1.28384× 1021

sec whereas the age of our universe is 13.799×109
yrs = 4.35165× 1017 sec. Hence compact binary
systems which at present are slowly orbiting their
merger is not likely to be seen in aLIGO anytime
in future. The detections of NS-NS merger, NS-
WD merger and WD-WD merger if is spotted
in aLIGO then those systems must have evolved
in cosmic times to reach this late inspiral stage
or they had a very less orbital separation and
relatively large orbital frequency at the time of
formation or due to any other factor.

5 LIGO discovery

LIGO collaboration discovered gravitational
waves produced from merging events. The events
detected by LIGO are named as "GW" followed
by date in YYMMDD format. Two of the events
are the most promising merger events detected
in year 2015 run of LIGO detectors. When
GW150914 was received in detectors it had a
strain which attained peak order of 10−21, this

signal was seen to increase in frequency from
35Hz and reached 250 Hz in about 0.2 seconds.
It was seen that in 8 cycles the signal increased
from 35 Hz to 150 Hz [10]. The gravitational
wave frequency of 150 Hz corresponds to the
orbital frequency of 75 Hz for the binary system.
For Newtonian point mass binary this gives
350 Km as the orbital separation. The WD-
WD, NS-NS or NS-BH merger should occur at
a much larger distance than this value hence
LIGO collaboration suggested that the signal
to be from a BH-BH binary. This was the
first direct observation of black holes and their
existence. The masses of binary system could
be computed from data analysis and estimated
to be 36M� and 29M� [10]. The luminous
distance of this system was estimated to be
410 Mpc. The second event GW151226 when
received in detectors it had a peak strain of the
order 10−22, this signal was seen for about a
second in which its frequency increased from 35
Hz to 450 Hz in about 55 cycles [11]. The binary
parameters predicted from analysis was reported
to be 14.2M� and 7.5M�. The luminous distance
of this system was estimated to be 440 Mpc. We
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take the prameters of GW150914 and GW151226 to obtain the Newtonian Chirp plots in figure[5],
the results are tabulated in table 4.
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Figure 5: LIGO events Newtonian chirp

Table 4: Newtonian chirp of GW150914 and GW151226

Data source Masses(M�) Peak strain order Merging time Peak frequency
m1 m2 M hpeak τm (sec) FISCO (Hz)

GW150914 36 29 28.0956 10−21 0.19 67.69
GW151216 14.2 7.5 8.89442 10−22 1.29 202.76

GW151226 chirp has a smaller strain ampli-
tude, undergoes large number of cycles and its
signal energy is spread over a longer time interval
than GW150914 chirp.

The strain recorded by LIGO’s Livingston

detector for GW150914 is plotted along with the
inspiral part from Newtonian chirp with FISCO
as inspiral limit in figure[6]. The FISCO comes
out to be 67.69 Hz and the time corresponding
to it can be found from frequency-time plot of
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Newtonian chirp. For a signal starting at 0.25
seconds this corresponds to 0.407 seconds. The
Newtonian chirp doesn’t mimic exactly the real
signal’s amplitude and phase observed, but its
worth appreciating that the strain order and
evolution during inspiral phase has resemblance.
This is to be expected as higher order terms

of Post-Newtonian approximation if considered
bring changes in phase and amplitude. We can
also see that merger and ringdown part of the
actual signal is not captured by the Newtonian
chirp. The sources for LIGO detectors observed
strain data and details of Mathematica code
which can be downloaded is given in appendix.
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Figure 6: GW150914 strain observed in Livingston with Newtonian chirp

6 Sensitivity curve

Sensitivity curve is used to determine whether
a source is detectable by the detector. The
power spectral density Sh is the power per unit
frequency. The square root of the power spectral
density gives the amplitude spectral density
defined as hf =

√
Sh [2]. If hf of the source lies

above the sensitivity curve of the detector then
the source can be detected [2]. For a source the
amplitude spectral density is given by [12],

√
Sh = hcf

−1/2 = 2f 1/2
∣∣∣h̃c∣∣∣ (9)

where hc is characteristic strain and h̃c is the
Fourier transform of signal.

For inspiraling binaries in the leading order it
has been found that [3],

h̃c = A(f)eiψ

where

A(f) =

√
5

24

M 5/6

Dπ2/3
f−7/6 (10)

ψ = 2πft0 − φ0 − π/4 +
3

128
(πM f)−5/3
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Using the above expressions we get,

√
Sh = 2f 1/2

∣∣∣h̃c∣∣∣ =√5

6

M 5/6

Dπ2/3
f−2/3 (11)

In inspiral a gravitational wave signal spends
greater number of cycles in lower frequency
whereas lesser number of cycles in higher
frequency. Since the amplitude spectral density
hf is inversely related to frequency, with increase
in frequency hf decreases. Detectors sensitivity

curve is governed by various noises present
in the detector. We plot the hf vs frequency
plot for the various chosen compact binaries
and also for the two LIGO events along with
the LIGO design sensitivity curve and aLIGO
design sensitivity curve to see if the signal could
be detected. The area between the signal curve
and detector’s noise curve indicates the signal
to noise ratio [13].
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Figure 7: Compact binaries at 8kpc along with GW150914 and GW151226
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We first consider the compact binaries in their
location at galactic center and then at 410 Mega
parsec (the distance from which GW150914
originated). We keep the distance of GW150914
event and GW151226 their respective ones to
obtain the plots in figure[7,8]. The details of
data obtained for LIGO and aLIGO sensitivity
curve along with Mathematica code for the plot
is given in appendix.

In the plot with Newtonian chirp context we
have extended the frequency of these systems
till 1000 Hz but the inspiral phase of each
compact binary will end at their respective
peak frequency FISCO. The amplitude spectral
density curves of GW150914 and GW151226
during the inspiral, merger and ringdown phases
reported by LIGO and VIRO collaboration can
be seen from Ref [13].
The amplitude spectral density curve of compact
binaries at galactic center (8kpc) lie above LIGO
and aLIGO sensitivity curve, hence they are
within the detector detection capabilities. When
the same binaries are located at 410 Mpc
only the BH-BH is well within the detection
capability of LIGO whereas BH-NS and BH-WD
systems lie very slightly above the LIGO curve
in a small frequency range but extracting the
signal from noise is hard. The NS-NS, NS-WD
and WD-WD systems lie below the sensitivity
curve of LIGO at all frequency values. Even

when located at 410 Mpc NS-NS, NS-WD and
WD-WD systems are in detection capabilities
of aLIGO. Hence the merger of these systems
can be expected to be observed in future.
GW150914 signal lies well above the aLIGO
detector sensitivity curve than GW151224;
whereas the NS-NS, NS-WD and WD-WD
binary curve located at 410 Mpc lies over the
aLIGO curve lowest among the all. Hence
sophisticated data analysis is required to pull
out such signals from noise.

7 Higher order
Post-Newtonian terms

In Post-Newtonian approximation the expres-
sions for orbital frequency, phase of gravitational
wave and waveform is in the form of expansion
of PN order contributions. The 0 PN order term
(neglecting higher order contributions) gives the
orbital frequency, phase φ and h describing the
Newtonain chirp. The higher order terms gives a
significant contribution to phase and amplitude
of gravitational wave. The nomenclature of the
nPN order is for terms proportional to xn [6].
Where,

x = (Mω)2/3 (12)

and ω = πF is the angular velocity, F is the
gravitational wave frequency.

The expression for the phase as a function of x is given by the equation [6],

φ =
−x−5

2

32η
[C0 + C1x+ C1.5 x

3
2 + C2 x

2 + C2.5 x
5
2 + C3x

3 + C3.5x
7
2 ]

The coefficients are-

C0 = 1 C1 =

(
3715

1008
+

55

12
η

)
C2 =

(
15293365

1016064
+

27145

1008
η +

3085

144
η2
)
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C1.5 = −10π C2.5 =

(
38645

1344
− 65

16

)
π ln(

x

x0
) C3.5 =

(
77096675

2032128
+

378515

12096
η − 74045

6048
η2
)
π

C3 =
12348611926451

18776862720
−160

3
π2−1712

21
C−856

21
ln(16x)+

(
−15737765635

12192768
+

2255

48
π2

)
η+

76055

6912
η2−127825

5184
η3

C=0.577 called as the Euler-Mascheroni constant.

Table 5: Contribution of each PN term to the number of gravitational wave cycles

PN order BH-BH BH-NS BH-WD NS-NS NS-WD WD-WD
0 602.712 3582.14 4956.29 16056.7 21354.6 28134.8
1 59.3521 213.313 280.495 441.305 526.559 618.958
1.5 -51.3811 -181.362 -242.645 -210.884 -241.22 -265.799
2 4.06297 9.80028 12.4367 9.91219 10.733 11.3563
2.5 -7.14497 -20.0051 -26.426 -11.6897 -12.4027 -12.4674
3 2.17844 2.28362 2.26033 2.55632 2.56639 2.58872
3.5 -0.81811 -1.81626 -2.33096 -0.90533 -0.93078 -0.91179

We take F1 = f0 and F2 = FISCO, the
value of f0 is related to lowest possible frequency
observable by the detector. The contribution of
nth PN order to number of cycles can be found
using [14],

Ncyles =
φ(F2)− φ(F1)

π
(13)

Using φ expression with n = 0 order term alone
and neglecting the higher orders, we can find
the contribution to number of cycle due to 0 PN
order. The phase of 0 PN order is given by ,

φn=0 =
−(x)−5/2

32η
=
−(MπF )−5/3

32η

Ncycles =
−(Mπ)−5/3

32η

(
F

−5/3
2 − F−5/3

1

π

)

In similar way the contribution due to higher
order terms can also be found. For the compact
binaries taken in this study we have found
contribution to number of cycles due to various
PN orders. The results are tabulated table 5.
The Mathematica code to find contributions due
to various orders is given in Appendix.

8 Conclusion

Newtonian chirp in the leading order Post-
Newtonian approximation is based upon the
assumption that masses are point objects, which
is not true for real systems but still is a good
approximation. The amplitude spectral density
of Newtonian chirp is used to determine whether
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the inspiral phase of a binary can be observed
in ground base detectors and hence the study
of it for binaries with the aLIGO and LIGO
sensitivity curves helps us to understand the
detector’s capabilities and the possible develop-
ments that could be made to make the detectors
more efficient.

The real gravitational wave signals obtained
from the detectors are more complicated, when
we try to match the Newtonian chirp waveform
against the real waveform obtained from LIGO
Livingston detector for GW150914 we could
see that it didn’t exactly match with the real
signal’s amplitude and phase observed. It needs
the study of the higher order terms (Post-
Newtonian terms) to describe the real wave’s
inspiral exactly.

We see that the formula for peak frequency
of gravitational waves together with the phase
formula having the higher order PN terms, could
determine the number of cycles contributed by
each higher order in addition to the leading order
for the real gravitational wave signal from the
binary.

This study brings out the essential features
of GW produced by different compact binary
systems and the possibilities of detecting them
; also helps us to understand the insights which
Newtonian chirp convey regarding the actual
gravitational wave signals which are complex in
nature.

Appendix

All expressions are taken in geometrized
units where G=c=1. Mass and distance
have units of seconds. In geometrical
units, 1M�=4.92549095×10−6sec and
1pc=1.0292712503×108sec. Physical units
can be obtained by replacing a mass M by
GM /c3 and a distance D by cD.

The Newtonian chirp waveform, frequency-
time plot and amplitude spectral density plot

can be obtained using the Mathematica code
(or any programming language). LIGO event
data and sensitivity curves can be plotted in
2-D using GNU, R program, Mathematica or
any other tool. We provide the Mathematica
code nb file and pdf file along with required txt
files for the plots used in the paper.

1. Waveform and frequency variation

Mathematica code for waveform and
frequency-time plot be downloaded as
nb file : https://drive.google.com/open?id=0B1PM7VcZPwY2eWZwQWdSRk1mREU

pdf file : https://drive.google.com/open?id=0B1PM7VcZPwY2X0NzVWxHZkxiQXM

Mathematica code for frequency-time plot for
all compact binaries plotted together can be
downloaded as
nb file : https://drive.google.com/open?id=0B1PM7VcZPwY2bVRNWi1EeVNaN3c

pdf file : https://drive.google.com/open?id=0B1PM7VcZPwY2T1ljM2o0T2FxR0k

Mathematica code for single column
waveform plot can be obtained as nb file :
https://drive.google.com/open?id=0B1PM7VcZPwY2QUUzUFB2LXZxbUE .

2. LIGO events

GW150914 event strain data observed in
Livingston detector can be obtained from
the LIGO website : https://losc.ligo.org/events/GW150914/ .
Alternatively can also be downloaded as txt file
from : https://drive.google.com/open?id=0B1PM7VcZPwY2WFhOVkFzS0M0T0U .

Mathematica code to plot the strain of
GW150914 and overlay the inspiral part of
Newtonian chirp can be downloaded as
nb file : https://drive.google.com/open?id=0B1PM7VcZPwY2cU9WXzh5M2lWX1E

pdf file : https://drive.google.com/open?id=0B1PM7VcZPwY2RVJ1VXJmT2NOZjQ

3. Strain spectral amplitude

The LIGO design sensitivity curve data
can be obtained from LIGO website :
https://dcc.ligo.org/LIGO-E950018/public , where the file
named "SRD-strain-4k.txt" is the required txt
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file. Alternatively as txt file from :
https://drive.google.com/open?id=0B1PM7VcZPwY2VUhYd1dsQzBUVDA.

The aLIGO design sensitivity curve
data can be obtained from LIGO website
: https://dcc.ligo.org/LIGO-T0900288/public , where the
file named "ZERO-DET-high-P.txt" is the
required txt file. Alternately as txt file from :
https://drive.google.com/open?id=0B1PM7VcZPwY2SlFPa3JrWWRmd00 .

Mathematica code for plotting sensitivity
curves and amplitude spectral density of
compact binaries(at galactic centre) can be
downloaded as
nb file : https://drive.google.com/open?id=0B1PM7VcZPwY2TlhJTUpKRzAwUDQ

pdf file : https://drive.google.com/open?id=0B1PM7VcZPwY2alNyQzBjdEVOeWs

Mathematica code for plotting LIGO
sensitivity curves and amplitude spectral
density of compact binaries binaries(at 410
Mpc) can be downloaded as
nb file : https://drive.google.com/open?id=0B1PM7VcZPwY2SnJFTkkwQ1FDRDA

pdf file : https://drive.google.com/open?id=0B1PM7VcZPwY2M0lNZllJMGZBOVE

4. Higher order PN terms

The code to calculate the contribution of
higher order PN terms to number of cycles can
be obtained as
nb file : https://drive.google.com/open?id=0B1PM7VcZPwY2ZWhnNUo1cDl6dzg

pdf file : https://drive.google.com/open?id=0B1PM7VcZPwY2U0tsYkFFbEM3aEU

All the Mathematica nb files, pdf files and txt
files can be downloaded in single folder as zip file
from : https://drive.google.com/open?id=0B1PM7VcZPwY2UlNpR3ZENHJtTm8 .
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 Abstract 

The most elusive Gravitational waves have finally been detected by the Laser Interferometer 

Gravitational waves Observatory (LIGO) located in United States, produced by the collision 

of two massive black holes almost 1.3 billion years ago. The discovery has confirmed the 

predictions made by Albert Einstein almost a century back in 1916 about the existence of 

gravitational waves. 

 

Introduction:  

11th Feb, 2016 was a remarkable day not 

just for the scientific community but for 

the human kind, a day when an 

international team of scientists, including 

Indian scientists, announced the first direct 

detection of the most elusive waves: the 

gravitational waves. The LIGO (Laser 

Interferometer Gravitational waves 

Observatory) observatory in United States 

heard and recorded the sound of 

gravitational waves for the first time ever 

in history which were produced by the 

collision of two massive black holes 1.3 

billion years ago.   

The signals of this event were first 

recorded on 14th Sep, 2015. It was a 

century back, in 1916, when the world 

famous physicist, Albert Einstein, 

first hypothesized the existence of 

gravitational waves. According to him, the 

whole Universe is permeated by a flexible 

space-time fabric and the sheer presence of 

matter or energy results in warping or 

curving of the space-time around it which 

gives rise to gravity and whenever a mass 

is accelerated on the surface of this fabric, 

gravitational waves are produced. 

 

FIG. 1The binary system of black holes 

orbiting each other and producing 

gravitational waves; source: 

www.space.com 

WHAT ARE GRAVITATIONAL 

WAVES? 

But exactly what are gravitational waves 

and how are they produced? According to 

Einstein, the three dimensions of space and 

one dimension of time are unified in a 
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single 4 dimensional space-time. This 

unified space-time fabric is warped by the 

presence of heavy objects like planets and 

stars, akin to the curvature produced in the 

surface of a rubber sheet or a trampoline 

by a marble or a heavy iron ball. Due to 

this depression produced in the space-time 

fabric a nearby object experiences an 

attractive force towards it which we know 

as “gravity”, similar to a marble rolling 

down on the surface of the trampoline 

towards a depression produced by the 

heavy iron ball. Heavier the object larger is 

the curvature produced in the space-time 

fabric and larger is the force of attraction 

(gravitational pull) experienced by a body 

in its vicinity. 

 

FIG. 2 warping of space-time; source: 

www.ligo.caitech.edu 

This is the reason why earth and other 

planets move around Sun. Whenever a 

cataclysmic event happens in the outer 

space, such as neutron stars or black holes 

orbiting each other at great speeds, 

gravitational waves are produced as ripples 

in the fabric of space-time and travel 

outward from the source with the speed of 

light, similar to the ripples produced on the 

surface of water in a pond when a pebble 

is dropped in it. In general, anything 

having mass when accelerated, produces 

gravitational waves.  

Any accelerated mass which we observe 

around us; a moving car,  a  rotating top or 

a planet moving around sun, is a source of 

gravitational waves, but the strength of 

these waves is quite weak rendering them 

very difficult to be detected. Strong 

gravitational waves are produced by 

violent or catastrophic events taking place 

in the outer space such as coalescing 

neutron stars or white dwarf stars, 

supernovae, colliding black holes or the 

Big Bang itself. The gravitational waves 

which have been detected by the LIGO 

detector were produced by two massive 

black holes having masses 36 times and 29 

times the mass of the sun, orbiting about 

each other at tremendous speed, 

continuously losing their energy and 

finally colliding and forming a single black 

hole having mass 62 times the mass of the 

sun; the remaining mass (3 times the mass 

of the sun) being radiated as energy in the 

form of gravitational radiation (energy 

carried by gravitational waves).   

DETECTION: 

Was it easy to detect these waves? 

Certainly not! From the day when the 

gravitational waves were first predicted by 

Einstein, scientists and engineers all over 

the world made efforts to devise some 

method to detect them directly, but till 

now they had been able to get only some 

indirect proof of their existence. Like in 

1974 the strong evidence of existence of 

gravitational was found by Joseph Taylor 

and Russell Hulse from the radiation 

emitted by a binary system of stars, one of 

them was a pulsar, revolving about each 

other and observing how their orbital 

period was continuously reducing, losing 

energy as a result, and giving off this lost 

energy as gravitational waves. But the idea 
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of making use of a laser interferometer for 

direct detection of gravitational waves had 

already been taken up by then, the 

fundamental principle employed by LIGO. 

LIGO is an observatory having world’s 

most sensitive experimental setup for 

detection of gravitational waves. It is so 

sensitive that it can detect vibrations from 

its nearby regions to as far as deep regions 

of the outer space. 

 

FIG.3 LIGO at Livingston and 

Hanford; Source: www.ligo.caltech.edu 

It is not a single observatory; there are two 

observatories working in unison, one 

located at Hanford, Washington and the 

other 3002 k.m. away from it, at 

Livingston, Louisiana. The reason for the 

“twin observatory” and their being so far 

apart is to make the observations of 

gravitational waves more prominent over 

any local noise by filtering out the noise 

detected by the detectors due to a number 

of sources like vehicles moving nearby, 

any internal fluctuations in the laboratory 

or instruments, earthquakes etc.          

DESCRIPTION OF THE 

EQUIPMENT: 

The heart of this experimental setup is a 

large “laser interferometer” which works 

on the principle of “interference of 

waves”. It is the largest interferometer in 

the world consisting of two 4k.m. long 

steel vacuum tubes, 1.2m in diameter 

arranged perpendicular to each other, and 

having mirrors at their ends to reflect light. 

It consists of a beam splitter which splits 

the laser beam coming from a laser source 

into two beams of equal intensity, 

travelling down the two arms of the 

interferometer. To make the effective 

distance travelled by the laser beam larger 

in an arm, two more mirrors are arranged 

near the beam splitter, one in each arm. 

This is done to increase the sensitivity of 

interferometer because larger the distance 

travelled by the beam before interference, 

more sensitive it becomes to vibrations. 

The laser beam travelling down the arm 

suffers multiple reflections between the 

end mirror and the mirror near the beam 

splitter, making the effective distance 

travelled by the beam much larger than the 

physical distance of 4k.m. before 

superimposing with the laser beam coming 

from the other arm. 

 

FIG. 4 The Interferometer (modified 

version of a basic Michelson’s 

Interferometer) used in LIGO; source: 

www.ligo.caltech.edu 

The advanced LIGO can detect change in 

its arm’s length to 10,000 times smaller 

than the diameter of a proton, making it 

most sensitive instrument till date.  In the 

absence of any gravitational waves, the 

beams reaching the detector superimpose 

on each other destructively producing no 



Physics Education                                            4                                Oct – Dec 2016 

Volume 32, Issue 4, Article Number: 6.                                                               www.physedu.in  
 

resultant light. But in the presence of 

gravitational waves, the arm length of the 

interferometer change; if one arm 

stretches, the other is contracted and vice-

versa because the space-time is distorted 

by the gravitational waves. Because of this 

contraction and expansion of the arms, one 

laser beam travels larger distance as 

compared to the other at a given time. As a 

result the two beams do not interfere 

destructively and some light is detected by 

the detector, which carries information 

about the incoming gravitational waves. 

SIGNIFICANCE OF THE 

DISCOVERY: 

Why is the scientific community so excited 

and thrilled about this discovery? Why is it 

so significant? The answer is simple- the 

detection of gravitational waves has given 

us a new vision to look and explore the 

universe from a completely new 

perspective, revealing the secrets of the 

deepest region of space. The information 

carried by gravitational waves is different 

from that carried by light waves, x-rays, 

gamma rays etc.; they can pass through 

matter unchanged unlike electromagnetic 

waves which get absorbed or reflected 

when interact with matter. This will make 

us understand events in the outer space 

which do not radiate in electromagnetic 

spectrum and therefore go unnoticed. With 

the help of these waves we would be able 

to track supernovae, understand life cycles 

of black holes and neutron stars. It would 

also make it possible to get more 

information about dark matter and the Big 

Bang itself. The discovery has also 

provided an evidence for the existence of 

black holes. The contribution of Indian 

scientists has also been significant in this 

discovery. And it can be said that they 

have been well rewarded by the Indian 

government by approving the construction 

of a LIGO observatory in India; definitely 

beginning of a new era for science and 

humanity. 
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Abstract

The Keplerian distribution of velocities is not observed in the rotation of large scale
structures, such as found in the rotation of spiral galaxies. The deviation from Keplerian
distribution provides compelling evidence of the presence of non-luminous matter i.e.
called dark matter. There are several astrophysical motivations for investigating the dark
matter in and around the galaxy as halo. In this work we address various theoretical and
experimental indications pointing towards the existence of this unknown form of matter.
Amongst its constituents neutrino is one of the most prospective candidates. We know the
neutrinos oscillate and have tiny masses, but there are also signatures for existence of
heavy and light sterile neutrinos and possibility of their mixing. Altogether, the role of
neutrinos is of great interests in cosmology and understanding dark matter.

1 Introduction

As a human being the biggest surprise for us
was, that the Universe in which we live in
is mostly dark. The NASA’s Plank Mission

revealed in 2013 that our Universe contains
68.3% of dark energy, 26.8% of dark matter,
and only 4.9% of the Universe is known mat-
ter which includes all the stars, planetary sys-
tems, galaxies, and interstellar gas etc.. This
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raises a number of questions in our minds;
e.g. how much and how well we know about
our Universe? What are dark matter and
dark energy? What are they made up of?
The very first suggestion of dark matter in
our galaxy was made by Kapteyn and Jeans
in 1922 and then by Lindblad in 1926. They
proposed the existence of dark matter while
observing the motions of nearby stars at right
angle to the plane of our Milky way galaxy.
Oort in 1932 claimed that there exists sub-
stantial amount of dark matter near the sun
by observing the vertical motions of stars.
However, in 1991, Kuijken and Gilmore ar-
gued that there were no significant evidence
for dark matter with in the galactic disk near
the sun.

Sinclair Smith and Fritz Zwicky in 1933,
studied the large clusters of galaxies and
found that galaxies were on average moving
too fast for the cluster to be held together
only by the mass of the visible matter. They
concluded that in rich clusters of galaxies, a
large portion of the matter is not visible i.e.
the dark matter. The idea of dark matter in
galactic halo was given by Freeman in 1970,
while studying the rotation curve for NGC
300 and M33 by using the 21cm-Line of neu-
tral hydrogen did not show the expected Kep-
lerian decline beyond the optical radii. Then
in 1979, Vera Rubin proposed that normal
spiral galaxies contain substantial amount of
dark matter present at great distances from
the central regions. An influential model was
proposed by Caldwell and Ostriker in 1981 for
the density of core-halo type model of dark
matter. The halo model is valid till now but
the exact distribution of dark matter is still

a mystery.
The next question to be addressed is about

the constituents of dark matter. One of the
biggest discoveries made by Hubble Space
Telescope (HST) of NASA was the confir-
mation of invisible matter in the Universe.
A 3D map of dark matter was derived from
largest survey of the Universe made by the
HST, the Cosmic Evolution Survey (COS-
MOS). The COSMOS survey covers a suffi-
ciently wide area of sky - nine times the area
of the full Moon (1.6 square degrees) - for
the large-scale filamentary structure of an in-
visible form of matter that makes up most
of the mass of Universe i.e. dark matter to
be clearly evident [1]. The theory of Big-
Bang nucleosynthesis (BBN), i.e. formation
of light nuclei just after Big-Bang, as well
as experimental evidences from anisotropies
in Cosmic Microwave Background Radiation
(CMBR) observed by NASA’s Wilkinson Mi-
crowave Anisotropy Probe (WMAP) indicate
that most of the dark matter stuff is non-
baryonic (which is not made up of regular
matter).

Many experiments has been performed in
search of dark matter candidates. Neutrinos,
which are electrically neutral and tiny parti-
cles, seem potential candidates for dark mat-
ter, as they are long-lived and almost non-
interacting with other particles. However,
the three known types of neutrinos, called ac-
tive neutrinos, are not massive enough to ac-
count for all of the dark matter of Universe.
So, theorists proposed another type of neu-
trinos that would not interact at all with the
regular matter, but are massive. If the sterile
neutrino is heavy enough about ∼ 10 keV ,
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it could account for the substantial amount
of dark matter. The present article aims to
introduce reader about the dark matter, its
evidences, possible constituents and the po-
tential candidature of neutrinos in the com-
position of dark matter.

2 Dark Matter

As discussed above the dark matter is the
matter, which does not interact with light at
all or may interact very poorly that it remains
dark and unseen. As such, a question arises
in ones mind; how one can detect something
which does not interact with light. The an-
swer may be ’gravity’; such that there are
many astrophysical motivations for the de-
tection of dark matter. There have been ob-
tained a number of observational evidences
for the existence of dark matter because of
its gravitational effects, like galactic rotation
curves of galaxies measured by Vera Rubin,
confinement of hot gas in the galaxies, mea-
surement on the basis of gravitational lensing
[2], etc...

2.1 Flattened Orbital Velocity
Curves

Before describing observations let us see how
celestial objects respond to the gravitational
force acting on them and how that response
can reveal the large scale distribution of mat-
ter. For the planets in orbit around the sun
which embodies essentially all the mass of the
solar system, the decrease in gravitational at-
traction with distance is given by Newton law

of gravitation. It has been found that or-
bital velocities of planets decreases with dis-
tance from the centre of the sun. In spiral
galaxy the gas, dust and stars in the disk of
the galaxy all orbit around a common cen-
tre. Like planets in solar system, the gas
and stars move in response to the combined
gravitational attraction of all other mass. If
the galaxy is visualized as a spheroid, we can
calculate the gravitational attraction due to
mass Mr lying between the centre and an ob-
ject of mass m in an equatorial orbit at a
distance r from the centre. If the galaxy is
neither contracting nor expanding then the
gravitational force is exactly equal to the cen-
trifugal force on the mass at distance r is
given by the equation

GmMr/r
2 = mv2

r/r, (1)

where vr is the orbital velocity. When the
equation is solved for vr , the value of m drops
out and the velocity of a body at a distance
r from the centre is determined only by the
mass Mr inward from its position. In the so-
lar system, virtually all the mass is concen-
trated near the centre and the orbital velocity
decrease as 1/

√
r, that is called Keplerian de-

cline.

In a galaxy the brightness is strongly
peaked near the centre and falls off rapidly
with distance. As per the distribution of lu-
minosity, it was expected that stars at in-
creasing distance from the centre would have
decreasing Keplerian orbital velocities. When
the orbital velocity of different stars present
at different distances in a galaxy was studied
by Vera Rubin, the unexpected results came
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Figure 1: Variation of orbital velocity with
radius [3]

out. This observation has been made for dif-
ferent spiral galaxies like Sa, Sb, Sc etc... Al-
though each galaxy exhibits distinctive fea-
ture in its rotational pattern, the systematic
trends that emerge are impressive. With in-
creasing luminosity galaxies are bigger, or-
bital velocities are higher and the velocity
gradient across the nuclear bulge is steeper.
Moreover, each type of galaxy displays char-
acteristic rotational properties.

Therefore we can draw conclusion from our
observation that all the rotation curves are
either flat or rising out to the visible limits
of the galaxy. There are no extensive re-
gions where the velocities fall off with dis-
tance from the centre, as would be predicted
if mass were centrally concentrated. The con-
clusion is inescapable- mass unlike luminosity
is not concentrated near the centre of spi-
ral galaxies. Thus the light distribution in
a galaxy is not at all a guide to mass dis-
tribution. Instead the mass inside any given
radial distance is increasing linearly with dis-
tance and contrary to what one might expect,
is not converging to a limiting mass at the
edge of the visible disk. The linear increase

in mass with radius indicates that each suc-
cessive shell of matter in the galaxy must con-
tain just as much mass as every other shell of
the same thickness. Since the volume V of
each successive shell increases as the square
of the radius, the density ρ of matter in suc-
cessive shells must decrease in order to keep
ρV constant [4].

The widely accepted idea about the dark
matter is that each spiral galaxy is embed-
ded into a halo of dark matter. The gravi-
tational attraction of the unseen mass keeps
the orbital velocities high at larger distance
from galactic centre. Till now we are not able
to find the exact distribution of dark matter
but we can say that it is strongly clumped
around the galaxies. The density of dark halo
decreases with distance from galactic centre
as given by Caldwell and Ostriker

ρd =
ρ0

1 + r2

a2

. (2)

They found a fit for the data with ρ0 = 1.37×
10−2M�pc

−3, and a = 7.8kpc.

If we consider a different distribution for
dark matter in which we put all the unseen
matter in a disk, the disk will quickly become
unstable. Therefore P. Ostriker and Pee-
ble suggest that the halos are important for
stabilizing the disk. Additional evidence on
the high rotational velocity was provided by
the 21-centimetre radio waves emitted by the
neutral hydrogen in the galactic disk. From
the above discussion we can draw a conclu-
sion that the density of dark matter halo sur-
rounding the visible matter decreases slowly
outwards.
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2.2 Gravitational lensing

According to Einstein’s theory of general
relativity large objects with their immense
masses can distort space-time therefore large
massive objects such as galaxy clusters bend
light from distant sources, creating distorted
images that we can see here on earth. This is
called gravitational lensing. This technique
is especially useful for detecting dark matter.
Since dark matter doesn’t interact with light,
it can’t be seen directly. However, since dark
matter is very massive, it can be detected in-
directly by the distorted images it creates of
normal matter through gravitational lensing.
By measuring the angle of bending, the mass
of the gravitational lens can be calculated-
greater the bend, more massive the lens is.
Therefore the angle of deflection is given by
[5]

α =
4GM

c2b
, (3)

where b is the impact parameter. Us-
ing this method, astronomers have confirmed
that the galactic clusters indeed have high
masses exceeding those measured by the lu-
minous matter. There have been several posi-
tive reports on the observation of such micro-
lensing, even though typically only one in a
million stars examined is expected to show
such an effect. The bending of light by
a massive object, a general relativity effect
has been verified to extreme accuracy (bet-
ter than 1%) by studying radar echoes from
the planets when they are in conjunction.
Experiments like the Large Synoptic Sur-
vey Telescope (LSST), under construction in
Chile, aim to take advantage of gravitational

lensing to map the dark matter in the Uni-
verse and provide clues to its nature. MOA
(Micro-lensing Observations in Astrophysics)
is a Japan/NZ collaboration that makes ob-
servations on dark matter, extra-solar plan-
ets and stellar atmospheres using the grav-
itational micro-lensing technique at the Mt
John Observatory in New Zealand. HST of
NASA recently produces several images of
gravitational lensed objects. Therefore find-
ing enough gravitational lenses to constrain
the properties of dark matter structures re-
quires a powerful telescope with a huge field
of view like LSST.

2.3 Fluctuations in CMBR

The Cosmic Microwave Background (CMB)
is the earliest photograph of our Universe.
The patterns that we see in observations of
the CMB were set up by competition between
two forces acting on matter; the force of grav-
ity causing matter to fall inward and an out-
ward pressure exerted by photons (or parti-
cles of light). This competition caused the
photons and matter to oscillate into-and-out-
of dense regions. If the Universe consisted
partially of dark matter in addition to nor-
mal matter, that pattern would be affected
dramatically. The existence of dark matter
leaves a characteristic imprint on CMB ob-
servations, as it clumps into dense regions
and contributes to the gravitational collapse
of matter, but is unaffected by the pressure
from photons. We can predict these oscil-
lations in the CMB with and without dark
matter, which often present in the form of a
power spectrum.
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The power spectrum of the CMB shows us
the strength of photon-matter oscillations at
different parts of sky. The Far-Infrared Abso-
lute Spectrophotometer (FIRAS) instrument
has measured the spectrum of the cosmic
background radiation, making it the most
precisely measured black body spectrum in
nature. The Cosmic Background Explorer
(COBE) was launched in 1989 in search of
temperature anisotropies; frequency power
spectrum; solar system and galactic dust
foregrounds. The WMAP in 2010 was the
first instrument to measure the CMB power
spectrum through the first peak of oscilla-
tions, and showed that the existence of dark
matter is favoured. Comparison of such cal-
culations with the observations of CMB Ra-
diation by Plank mission team in 2013 have
shown that the total mass energy of the
known Universe contains 4.9% ordinary mat-
ter, 26.8% dark matter and 68.3% dark en-
ergy. Thus dark Universe constitutes 95.1%
of the total matter energy content of the Uni-
verse [6].

2.4 X- Ray Studies

The observational evidences from X- ray
studies also supports the existence of dark
matter. The basic technique is to estimate
the temperature and density of the gas from
the energy and flux of the X-rays using X-
ray telescopes, which would further enable
the mass of the galactic cluster to be de-
rived. The measurements of hot gas pressure
in galactic clusters by X-ray telescopes, such
as CHANDRA X-ray observatory by NASA,
have shown that the amount of superheated

gas is not enough to account for the discrep-
ancies in mass and that the visible matter ap-
proximately constitutes only 12− 15% of the
mass of the cluster. Otherwise, there won’t
be sufficient gravity in the cluster to prevent
the hot gas from escaping [6].

Recently in 2014, data came from the Euro-
pean Space Agency’s (ESA’s) XMM-Newton
spacecraft, which was analysed by an inter-
national team of researchers. After scouring
through thousands of signals, they spotted a
weird spike in X-ray emissions coming from
two different spots in the Universe: the An-
dromeda galaxy and the Perseus galaxy clus-
ter. The signal doesn’t correspond to any
known particle or atom, and is unlikely to
be the result of a measurement or instrument
error hence it could have been produced by
a dark matter particle. The signal’s distribu-
tion within the galaxy corresponds exactly to
what we expects with dark matter i.e. con-
centrated and intense in the centre of objects
and weaker and diffuse on the edges. Scien-
tists believe that there is a possibility that it
could come from dark matter candidate i.e.
possibly the hypothetical heavy sterile neu-
trinos; as it is believed the decay of these
particles could produce X-rays [7].

3 Baryonic &

Non-Baryonic Dark

Matter

On the basis of observed orbital velocity
curves, and other evidences we can say that
dark matter exists. Baryonic dark matter is
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non-luminous matter in which most of the
mass is attributed to baryons, most proba-
bly neutrons and protons. Candidates for
baryonic dark matter include non-luminous
gas, Massive Astrophysical Compact Halo
Objects (MACHOs). These MACHOs may
include condensed objects such as black holes,
neutron stars, white dwarf, very faint stars,
or non-luminous objects like planets and
brown dwarfs. Baryonic dark matter can-
not be detected by its emitted radiation be-
cause these objects have very low luminosity,
but the presence of these objects can be in-
ferred from their gravitational effects on vis-
ible matter [6].

The nucleosynthesis of the elements and
observations of the Cosmic Microwave Back-
ground Radiations (CMBR) puts constraints
on the density of baryonic matter. No more
than 15% of the matter in the Universe can
be baryonic but most of dark matter stuff
is non-baryonic. Non-baryonic dark matter
(NBDM) is non-luminous matter made from
non-baryonic stuff (other than protons, neu-
trons etc.). Recent measurements of the mat-
ter density Ω0

m and the energy density Ω0
Λ

comes from three types of observations: 1)
supernova measurements of the recent expan-
sion history of the Universe; 2) cosmic mi-
crowave background measurements of the de-
gree of spatial flatness, and 3) measurements
of the amount of matter in galaxy structures
obtained through big galaxy redshift surveys
agree with each other in a region around the
best current values of the matter and energy
densities Ω0

m ' 0.27 and Ω0
Λ ' 0.73. Where

Ω is the energy density of Universe defined

by

Ω =
ρ

ρc
, (4)

where ρc is the critical density (average
density of Universe to halt its expansion)
of the Universe and Ω0 represents present
energy density of Universe. Measurements
of the baryon density in the Universe using
CMBR spectrum and primordial nucleosyn-
thesis (i.e. BBN) constrain the baryon den-
sity Ω0

b to a value less than 0.05. The dif-
ference Ω0

m − Ω0
b ' 0.22 must be in form of

non-baryonic dark matter [8]. The value of
total matter density

Ω0
mh

2 = 0.135+0.008
−0.009, (5)

out of which the baryonic matter is

Ω0
bh

2 = 0.0224+0.0009
−0.0009, (6)

in the form of neutrinos

Ω0
νh

2 < 0.0076, (7)

and the matter in the form of Cold Dark
Matter (CDM) is

Ω0
CDMh

2 = 0.113+0.008
−0.009. (8)

The results of BBN that tell that ΩB ∼
0.01 and therefore if Ω total is truly unity,
then the bulk of the mass of the Universe
must be in the form of some sort of non-
baryonic matter. From baryon to photon ra-
tio i.e. η = ηB/ηγ, one can find the range for
η as given by [20]

4.7× 10−10 ≤ η ≤ 6.5× 10−10. (9)
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We can find relative baryon density ΩB as

0.017 ≤ Ω0
Bh

2 ≤ 0.024. (10)

This shows that Universe is not closed by
baryonic matter and this gives the indication
of existence of dark matter. From the analy-
sis of the existing data follows that

ΩDM ' 0.20. (11)

The non-baryonic dark matter is classified
in terms of the mass of the particle that
is assumed to make it up, and the typical
velocity dispersion of those particles (since
more massive particles move more slowly).
There are three prominent hypotheses on
non-baryonic dark matter, called Hot Dark
Matter (HDM), Warm Dark Matter (WDM),
and Cold Dark Matter (CDM); some com-
bination of these is also possible. CDM is
composed of substantially massive particles
(∼ GeV ) expected to be moving with non-
relativistic speeds. The leading candidates
for CDM called WIMPs (Weakly Interact-
ing Massive Particles). WIMPs could include
large number of exotic particles such as neu-
tralinos, axions, photinos etc. These parti-
cles forms dark matter, because they have too
much mass to move at high speeds and that
they are the best candidates for dark mat-
ter. As WIMPs can interact through grav-
itational and weak forces only, they are ex-
tremely difficult to detect. There are several
experiments setup for detection of WIMPs
such as SuperCDMS, NASA’s Fermi Gamma-
Ray Space telescope, Large Hydron Collider
(LHC) at Geneva etc... Experimental efforts

to detect WIMPs include the search for prod-
ucts of WIMP annihilation, including gamma
rays, neutrinos and cosmic rays in nearby
galaxies and galaxy clusters; direct detection
experiments designed to measure the collision
of WIMPs with nuclei in the laboratory, as
well as attempts to directly produce WIMPs
in colliders, such as the LHC. However all the
efforts in this direction has been fruitless so
far.

The HDM consists of particles to be mov-
ing nearly at the speed of light, when the
pre-galactic clumps began to form. HDM in-
cludes massive (∼ eV ) neutrinos. The neutri-
nos are the only hot dark matter candidate
as they are light enough to move with the
speed of light. The Universe is full of neu-
trinos left over from just after the Big-Bang,
when matter and anti-matter were formed.
There are huge amount of neutrinos, that
if they have just a tiny mass, then they
can significantly account for the dark mat-
ter. The dark matter that has properties in-
termediate between those of hot dark matter
and cold dark matter named as Warm Dark
Matter (WDM). WDM is composed of sub-
relativistic particles having masses (∼ keV )
causing structure formation to occur bottom-
up (micro to macro scale)from above their
free-streaming scale, and top-down (macro to
micro scale) below their free streaming scale.
The most common WDM candidates are con-
sidered to be sterile neutrinos and gravitinos.
The WIMPs when produced non-thermally
could be candidates for WDM [9].

The most widely discussed models for non-
baryonic dark matter is based on the CDM
hypothesis. CDM leads to bottom-up forma-
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tion of structure in the Universe i.e. small
scale structures led to the formation of large
scale structures. On the other hand, the
HDM results in top-down formation scenario
i.e. first super-cluster formed and then galax-
ies and then the formation of small structure
takes place. However, WDM has intermedi-
ate role in large scale structure formation.

4 Neutrino Dark Matter

Neutrinos are most abundant particles in the
Universe. They are electrically neutral and
have tiny mass. Out of four interactions in
nature neutrinos interact only via the weak
interaction and feebly via gravitational force.
They rarely interact with any material, which
makes experimental detection of these parti-
cles extremely challenging. There are three
types of neutrinos so far detected, which are
denoted as electronic (νe), muonic (νµ), and
tauonic (ντ ) flavour eigenstates. In fact, in
the Standard Model of particle physics, neu-
trinos are massless. However, in the late 90’s
and beginning of 21st century, physicists ob-
served neutrino oscillation, a quantum me-
chanical effect which would not occur unless
neutrinos have mass. The theory of neutrino
oscillation describes the flavor eigenstates as
the mixing or linear superposition of mass
eigenstates ν1, ν2, ν3. For two flavour case
the mixing is shown as(

νe
νµ

)
=

(
cos θ sin θ
−sinθ cos θ

)(
ν1

ν2

)
,

(12)
where θ is a mixing angle. From the ob-

servation of the neutrino oscillations phe-

nomenon, it is confirmed that neutrinos have
mass. The nature of neutrinos is not yet un-
derstood i.e. whether they are Dirac or Ma-
jorana particles. In case of Dirac nature neu-
trino and antineutrino are different, while in
the Majorana nature they are the same par-
ticle. Despite the tininess, the neutrino mass
has far-reaching implications in astrophysics
and cosmology.

Neutrinos are considered to be the con-
stituent of dark matter via thermal mecha-
nism. As discussed above the hot dark matter
is the matter that was relativistic until just
before the epoch of galaxy formation, neutri-
nos of very low mass are strongest candidates
for hot dark matter. It is believed that neu-
trinos were in thermal equilibrium with the
hot plasma which filled the early Universe.
As the Universe expanded and cooled, the
rates of weak interaction processes decreases
and neutrino decoupled when these rates be-
came smaller than the Hubble expansion rate.
Since for the three known light neutrinos with
masses smaller than 1eV , the decoupling oc-
curred when they were relativistic called hot
relics. As their interaction of cross section
with matter is very small therefore, the di-
rect detection of these relativistic neutrinos
is an extremely difficult task. In early Uni-
verse, when 1MeV ≤ Tγ ≤ 100MeV , neutri-
nos were kept in equilibrium with primordial
plasma by the weak interactions. The reac-
tions of neutrinos with nucleons were neg-
ligible, because the number density of the
non-relativistic nucleons was much smaller
than the density of relativistic electrons and
positrons. The interaction rate for each neu-
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trino is given by[13]

Γ = n < σv >, (13)

where n is the number density of target
particles, σ is the cross-section and v is the
neutrino velocity. The bracket denote the
thermal averaging. For weak interaction pro-
cesses

< σv > = G2
FT

2
γ , (14)

where the temperature (Tγ) gives the order
of magnitude of the energies of the relativistic
particles participating in the reactions. As
the number density of relativistic particles is
given as n ∼ T 3

γ , the interaction rate for each
neutrino became

Γ ∼ G2
FT

5
γ . (15)

So we can say that interaction rate de-
creases rapidly with the decrease of the tem-
perature due to expansion of the Universe
and we obtain the decoupling temperature for
neutrinos T νγ ∼ 1MeV .

If the active neutrinos have a non-zero
mass, as indicated by several neutrino oscil-
lation experiments, the sterile neutrinos will
take part in the neutrino oscillations. The
sterile neutrinos are ’sterile’ as they practi-
cally inactive, and they don’t interact via any
other interactions with active neutrino except
by mixing [21]. This allows a possibility for
a radiative decay under emission of an X-ray
photon with energy of half the sterile neu-
trino mass. However, it needs much more
confirmation before one accepts this as the
explanation.

The sterile neutrino was originally pro-
posed as a dark matter candidate by Dodel-
son and Widrow in 1993 to solve the discrep-
ancies between the CDM predicted structure
formation and observations [20]. Since neu-
trinos were relativistic at the time of decou-
pling, the number density of relic neutrinos
is given by the relativistic expression inde-
pendent from the values of their masses. In
other words, light neutrinos are hot relics and
contribute to the hot dark matter in the Uni-
verse. Sterile neutrinos have been invoked to
generate masses for light neutrinos; as such
the mix with light neutrinos and hence can
be produced via oscillations [20]. With this
mechanism, their relic density is estimated to
be

ΩN ≈
(

sin2 θ

3× 10−9

)(
MN

3keV

)1.8

. (16)

Here, θ is the mixing angle between the
sterile neutrinos N with mass MN and the
active neutrinos. It has been seen that a vi-
able sterile neutrino to be the dark matter
candidate requires a mass of keV and a very
small mixing angle. It is a WDM candidate
and its interactions are dominated by gravity,
as preferred by the structure formation [22].

Neutrinos with masses much smaller than
the effective neutrino temperature are still
relativistic and have negligible contribution
toward the energy density of the Universe.
Despite the second most abundant particles
after the photons, neutrinos fail to accommo-
date the observed abundance of dark matter.
The relic density of light neutrinos is fixed as
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[13]

Ω0
νh

2 =

∑
imi

94.14eV
. (17)

Thus, the neutrino energy density is pro-
portional to the sum of neutrino masses. This
value is relevant for the present energy bal-
ance if there are neutrinos with masses of the
order of 1eV or more. Before the neutrino de-
coupling around Tγ ' 1MeV , the weak pro-
cesses were in equilibrium.

Ω > 1, implies a closed Universe, which
means that at some time the gravitation at-
traction will stop the expansion and Universe
will collapse again. An Ω < 1, means a Uni-
verse which expands forever. However Ω = 1
means a flat Universe. At present time, Ω
is changing on time scale of seconds. Since
our existence is not compatible with the Uni-
verse which is either closed or continuously
expanding, the only long term value that Ω
is close to unity. Although the detailed phys-
ical mechanism for driving the expansion is
not well determined and differs in different
grand unified theories.

The phenomenon of sudden and fast ex-
pansion of Universe caused by a scalar field
present in the nascent stage is known as ’in-
flation’. Inflation provides a possible mecha-
nism to set the initial conditions. From the
inflation paradigm, it is the argument that
the only long lived natural value for Ω is unity
and that inflation provided the early Universe
with the mechanism to achieve that value and
thereby solve some of the main problems of
standard model of cosmology; e.g. the flat-
ness and smoothness problems.

The WMAP-7 data provides a quite strin-
gent constraint on the sum of neutrino masses

of
∑
mν < 1.3 eV at 95% c.l. [10], which is

more constrained than ≈ 2.1eV , that is the
first releases [11]. However, the most recent
and sophisticated analysis of Lyman-a data
gives an upper bound of 0.9 eV for the sum of
neutrino masses. In summary, at present the
bound on the sum of neutrino masses can be
in the range between 0.3 and more than 2 eV,
depending on the data and parameters used.
The bound can be relaxed somewhat when
more parameters, such as sterile neutrinos
(νs) are included. In the most conservative
case the bound is above 2.5 eV if only CMB
data is used. When CMB data is combined
with LSS data in the linear or almost linear
regime, combined with a prior on the Hub-
ble parameter the upper bound is robustly
below 1 eV. This is true even for extended
models. Here it should perhaps also be noted
that the bound on neutrino mass from cos-
mic structure formation applies to any other,
hypothetical particle species which decouples
while still relativistic. This could for exam-
ple be low mass sterile neutrinos. It could
also be relatively high mass axions which de-
couple after the QCD phase transition.

Neutrinos have a kinematical advantages
over the dark matter candidates is that they
cluster on large scales, where the dark matter
is needed to hold the large clusters of galaxies.
In HDM, since they decoupled at a temper-
ature of the order of 1MeV when they were
relativistic and formed relativistic HDM gas.
The HDM perturbations within the horizon
are erased by free streaming (i.e. the ran-
dom particle velocities close to the velocity of
light disperse all HDM over-densities). Free
streaming ceases when the HDM gas becomes
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non-relativistic at some red-shift Znr. Thus,
only the HDM perturbations with wavelength
larger than the horizon distance at Znr sur-
vive and can take part in the generation of
structure in the Universe. Since the horizon
distance at Znr is typically much larger than
the volume corresponding to the galactic size
masses, so in a Universe dominated by HDM,
the formation of structures must proceed ac-
cording to top-down mechanism. However
the observed statistical properties favours
bottom-up mechanism i.e. small structures
leading to the formation of large scale struc-
tures. Hence the HDM contribute to the for-
mation of small scale structures while CDM
is responsible for binding of large scale struc-
tures [13].

The standard model does not predict any
masses for the active neutrinos, but as stated
above the masses are required by the ex-
perimentally verified neutrino oscillations.
A simple way to incorporate the neutrino
masses is to extend the model with the right-
handed neutrinos just as done for the other el-
ementary particles of SM. It is possible to add
an arbitrary number of sterile neutrinos, but
at least three sterile neutrinos are needed to
explain the neutrino oscillations, the baryon
asymmetry, and the dark matter [14]. The
successful ’three sterile neutrinos’ extension
of the standard model is called the (Neu-
trino Minimal Standard Model)(νMSM). It is
re-normalisable and in agreement with most
particle physics experiments [15]. The Big-
Bang production of 4He increases with η.
Thus upper limit to 4He abundance and a
lower limit to baryon density lead to an upper
limit to number of neutrino species Nν (i.e.

so called BBN bound). The lower limit to
baryon density is based on the Big-Bang pro-
duction of deuterium 2H, which rises rapidly
with decreasing baryon density. Since all the
neutrons end up in forming 4He, which is the
most tightly bound stable light nucleus, the
mass fraction of 4He is denoted as Yp, and is
given by [13]

Yp '
(

2nn
nn + np

)
' 0.25. (18)

As per recent estimates of Yp with con-
servative assumptions - for 3He chemi-
cal evolution and Yp = 0.252, less than
four neutrino species are possible; how-
ever, for extreme assumption- no limit to
primeval deuterium- less than five neutrino
species are allowed which implies there ex-
ist fourth neutrino flavor that is sterile neu-
trino. In summary, there are healthy sig-
natures for additional degrees of freedom
Nν > 3 i.e. the species of sterile neutri-
nos from various studies, which are given
below [16]: 2.98 < Nν < 4.48 [BBN](68%
CL); 3.03 < Nν < 7.59 [WMAP5+SDSS-
DR7+Ho ] (95% C.L.); 3.46 < Nν < 5.20
[WMAP7+BAO+New Ho](68% CL); 4.0 <
Nν < 6.6 [WMAP7+ACT data](68% C.L.);
2.22 < Nν < 9.66 [WMAP3](68% CL).

Using recombination-era observables
including the CMB, the shift parame-
ter RCMB and the sound horizon from
Baryon Acoustic Oscillations (BAO)
severely constrain the sterile neutrino
sin 2θ < 0.026(ms/eV )−2.[17]. Recent
bounds on the mixing between the active
and the sterile neutrinos have been derived
from the combination of neutrino oscillation
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data and direct experimental searches for
sterile neutrinos.[18] Electron neutrino-sterile
neutrino mixing bound [19] from joint fits
of solar, KamLAND, Daya-Bay and Reno
experiments is sin 2θes < 0.2. and the analy-
sis of cosmological data in terms of ΛCDM
constrains the mass square difference with
one sterile family ∆m2

41 < 0.25eV 2.

5 Conclusions

Ever-since the dawn of civilisation man has
been fascinated by the stars, planets and
other heavenly objects, wondering what es-
sentially the magnificent Universe was made
up of. We learnt that our Universe is almost
completely dark. To understand this mys-
tery was the main thrust to know more about
the invisible Universe. The story of dark
matter began nearly a century ago, when
Kapteyn and Jeans propounded of existing a
such kind of weird matter. Later, Smith and
Zwicky discovered that in some large clus-
ters of galaxies the individual members are
moving so rapidly that their mutual gravi-
tational attraction is insufficient to keep the
clusters from flying apart. Either such clus-
ters should be dissolving or there must be
enough dark matter present to hold them to-
gether. Since, almost all the evidences sug-
gest that clusters of galaxies are stable con-
figuration. Hence it was concluded that the
clusters consist of both luminous and non-
luminous matter, which was termed as dark
matter.

In this paper we have discussed about the
dark matter, various experimental hints and

evidences for dark matter, its composition,
the role of neutrinos in dark matter formation
and understanding of its dynamics. Baryon
to photon ratio shows that our Universe is
not closed by baryonic matter, which gives a
clear indication of the existence of dark mat-
ter. Given the properties, neutrinos fit to be
a strong candidate constituent for the dark
matter as they have an advantage over other
dark matter candidates, e.g. they cluster on
large scale where the dark matter is needed
to hold the large clusters of galaxies. Despite
the weakness of interactions and smallness of
masses, they can play an important role in
cosmology.

In addition to three active flavours of neu-
trinos, there could also exist extra massive
neutrino states that are sterile, i.e. they
are singlets of the Standard Model gauge
group and thus insensitive to weak interac-
tions. Most of the current data on neutrino
oscillations can perfectly be explained with
only three active species, but there exist a
few experimental results [23]-[28] that can-
not be explained in this framework. If neu-
trino oscillations are responsible for all the
experimental data, a solution might require
additional (sterile) neutrino species. These
kind of particles are predicted by many the-
oretical models beyond the SM [29]. Their
masses are usually heavy, while lighter ster-
ile neutrinos are rarer but possible. Recent
studies propose sterile neutrino with a mass
of the order of a few keV’s and a very small
mixing with the active neutrinos. Such heavy
neutrinos could be produced by active-sterile
oscillations but not fully thermalized, so that
they could play the role of dark matter and
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replace the usual CDM component. But due
to their large thermal velocity (smaller than
that of active neutrinos), they would behave
as WDM and erase small-scale cosmological
structures. At present the neutrino physics
and neutrino astrophysics and cosmology are
at the cross roads. On the one hand, it is im-
possible to deny that neutrinos oscillate and
thus presumably have small masses, and on
the other unless a sterile neutrino truly ex-
ists, there is a sense that neutrino masses are
too small to be of very much cosmological in-
terests.

In the galaxy formation scenario, galax-
ies can only form by the collapse of super-
clusters. The detailed study shows that the
collapse of super-clusters only happens very
late and may be in contradiction with the ex-
istence of quasars of large red shift. Although
the evidences for dark matter is wide and
deep and existence of dark matter is based
on the assumption that the laws of motion
and gravity as formulated by Newton and ex-
tended by Einstein apply. On the other hand
the modification in the theory of gravity can
explain the effects attributed to dark mat-
ter and some scientists have proposed MOND
(Modified Newtonian Dynamics). According
to this theory at very low acceleration, corre-
sponding to large distances, the usual law of
gravitation is modified. Although MOND has
had some success in explaining observations
of galaxies, but failed to explain the obser-
vation of Bullet Clusters. So we need more
experimental evidences to give a conclusive
theory of dark matter.
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