
www.physedu.in 



 

Physics Education                                                                                                                                    Jul – Sep  2017 

 

 
 
33/3                                                                                                                                        www.physedu.in  

Volume 33, Number 3 

 

In this Issue 

• Editorial                                                                                                                       01 Page 

M. S. Santhanam  

• Derivation of Van Der Waal's Equation of State in Microcanonical Ensemble 

Formulation                                                                                                              06 Pages 

M. Ponmurugan, Aravind P. Babu and Kiran S. Kumar 

• Van Der Waal's Gas Equation For an Adiabatic Process and Its Carnot Engine 

Efficiency                                                                                                                  10 Pages 

M. Ponmurugan, Aravind P. Babu and Kiran S. Kumar 

• Restoring Force for a Slinky's Fundamental Oscillation                                      06 Pages 

Philip Gash  

• Stacking 2-D Lattices to Construct 3-D Bravais Lattices                                      10 Pages  

               Jyoti Bhardwaj, OSKS Sastri and Vandana Sharda 



Physics Education                                                                                   Jul ­ Sep 2017

EDITORIAL

 

This  issue  of  Physics  Education comes
along at a time when Nobel prizes in physics have
been  announced.  This   year's  winners,  Rainer
Weiss, Barry Barish and Kip Thorne were awarded
the prize for their decisive contributions that led to
the  observation  of  gravitational  waves.  The
observation  of  gravitational  waves  last  year
opened up another window to the universe. 

Based  on  some  of  the  feedback  we  had
received  for  the  redesigned  website  of  Physics
Education, we understand that there are still few
small problems to be ironed out. I assure you that
these issues will be sorted out soon. 

We are in the midst of festival season in
India and elsewhere too. I take this opportunity to
convey my festival greetings to all the readers of
Physics Education.

M. S. Santhanam
Chief Editor

Physics Education   
          

_______________________________________________________________________________________________ 
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Abstract

The Van der Waal’s equation of state for

a (slightly) non-ideal classical gas is usually

derived in the context of classical statistical

mechanics by using the canonical ensemble. We

use the hard sphere potential with no short range

interaction and derive Van der Waal’s equation

of state in microcanonical ensemble formulation.

1 Introduction

The ensemble theory of equilibrium statisti-

cal mechanics connects the macroscopic re-

lations of thermodynamic systems and its

microscopic constituents [1, 2, 3]. An ensem-

ble of a given thermodynamic system is a set

of distinct microstates with appropriately

assigned probability for a fixed macrostate

[4]. In a macrostate of fixed energy E, vol-

ume V and the number of particle N and all

its microstates are equiprobable then such

an ensemble is called as microcanonical en-

semble [5].

The most important concept in statis-

tical mechanics theory is the equivalence

of ensemble, that is, the ensemble theory

should provide the same macroscopic re-

lations in the thermodynamic limit of infi-

nite size irrespective of the chosen ensemble.

This concept of ensemble equivalence has

been verified easily by incorporating dif-

ferent ensemble approach to simple system

known as ideal gas. Whatever the ensem-

ble one may choose, we can finally obtain

the ideal gas equation of state as PV = nRT

[2, 5], where P is the pressure, V is the vol-

ume, T is the temperature of the system, n is

the number of moles and R is the universal

gas constant.

An ideal gas is the simplest thermody-

namic system in which there is no inter-

molecular interactions. By considering the

intermolecular interactions, Van der Waals

proposed the equation of state for a real gas
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which is given by [6]
(

P +
n2a

V2

)

(V − nb) = nRT, (1)

where a and b are the Van der Waal’s con-

stants. The derivation of Van der Waal’s

equation of state has been found in most

of the Statistical Physics books which are

in canonical ensemble formulation [7]. To

our knowledge, there is no such study avail-

able in the literature for any other ensem-

ble formulation, in particular, microcanon-

ical ensemble formulation. In this paper, we

use the hard sphere potential approximation

and derive the Van der Waal’s equation of

state in microcanonical ensemble formula-

tion.

2 Hamiltonian for Van der Waal’s

gas

Consider a monoatomic non ideal gas of N

particles having identical mass m in a con-

tainer of fixed volume V at temperature T.

In order to treat the problem in classical sta-

tistical mechanics, we assume that the tem-

perature is taken to be sufficiently high and

the density ρ = N
V is sufficiently low. The

total energy (Hamiltonian) of the system is

H = K + U, where K = 1
2m ∑

3N
l=1 p2

l is the

kinetic energy of the gas of 3N degrees of

freedom moving with momentum pl. U is

the total potential energy due to the interac-

tion that exists between the molecules. In

semi-classical approximation, we consider

the molecules to be hard spheres of radius

r0, so that the distance between the two

molecules can come close to r0 [2]. The in-

teraction between a pair of molecules i and

j separated by the intermolecular distance r

is given by the hard sphere potential with no

short range interaction as [7, 8]

u(r) = −u0

(

r0

r

)6

for r ≥ r0, (2)

where u0 is the depth of the potential.

The total potential energy is given by the

sum of interactions between the pair of all

molecules as

U =
1

2

N

∑
i=1

ui, (3)

where ui is the interaction energy of ith

molecule with all other molecules in the

specified region given in spherical polar co-

ordinates as

ui =
∫ ∞

r0

∫ 2π

0

∫ π

0
ρu(r) r2sinθ drdθdφ (4)

ui = −4π
Nu0

V

∫ ∞

r0

r6
0

r4
dr = −

4πNu0r3
0

3V
. (5)

Here, we assume that the density (ρ = N
V )

of the gas to be uniform throughout the vol-

ume. Thus, the total potential energy is

given by

U =
1

2
Nui =

−a′N2

V
, (6)

where a′ =
2πu0r3

0
3 . Therefore the total

Hamiltonian is given by

H =
3N

∑
l=1

p2
l

2m
−

a
′
N2

V
≡ E. (7)
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3 Microcanonical entropy and

equation of state

Because of the hard sphere approximation,

there should be a correction in the total vol-

ume of the Van der Waal’s gas. By con-

sidering the molecules as a hard sphere of

diameter 2r0, the center of each molecules

excluded by other molecule by a volume

which is equivalent to the volume of sphere

of radius 2r0 is known as the excluded vol-

ume. The excluded volume for the two

molecules of radius r0 is 4
3 π(2r0)

3. Since the

system contains N molecules, the excluded

volume v for N molecule can be obtained

as v = Nb′ where b′ = 2π(2r0)
3

3 . The cor-

rected volume which is available for the gas

molecules in the container is given by

V′ = V − Nb′. (8)

Consider a small volume in phase

space, the total number of microstates avail-

able for the system in microcanonical en-

semble of fixed E, V and N of Eq.(7) is given

by [2, 3, 6]

Ω(E, V, N) =
1

N!h3N

∂ω

∂E
, (9)

where h is the Planck’s constant and the vol-

ume integral [5, 6, 9]

ω(E, V, N) =
∫ ∫

H(q,p)6E
d3Nq d3N p. (10)

For hard sphere potential, the above integral

can be written as

ω(E, V, N) = (V − Nb′)N
∫

H(q,p)6E
d3N p,(11)

where
∫

H(q,p)6E d3Nq = (V′)N = (V −
Nb′)N for Van der Waal’s gas and Eq.(7) can

be rearranged as

3N

∑
l=1

p2
l = 2m

(

E +
a′N2

V

)

(12)

The integral in Eq.(11) is just the volume

of a 3N dimensional sphere of radius R =
√

2m(E + a′N2

V ) which can be obtained as

(see appendix) [2, 3]

ω(E, V, N) =
π3N/2

3N
2 Γ(3N

2 )
(V − Nb′)NR3N (13)

=
π3N/2

3N
2 Γ(3N

2 )
(V − Nb′)N

[

2m

(

E +
a′N2

V

)

]3N/2

(14)

Using the above equation we can calculate the number of microstates as in Eq.(9) for Van

der Waal’s gas in micro canonical ensemble as

Ω(E, V, N) =
1

N!h3N

π3N/2

Γ(3N
2 )

(V − Nb′)N(2m)3N/2

(

E +
a′N2

V

)
3N
2 −1

. (15)
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For large N, we can approximate 3N
2 − 1 ≃ 3N/2 and Γ(3N

2 ) = (3N
2 − 1)! ≃ 3N

2 ! then

Ω(E, V, N) =
1

N!h3N

π3N/2

3N
2 !

(V − Nb′)N(2m)3N/2

(

E +
a′N2

V

)
3N
2

. (16)

The Boltzmann microcanonical entropy

of the system is given by [2, 5, 6],

S(E, V, N) = kB ℓnΩ(E, V, N). (17)

Using Eq.(16) and applying Stirling approx-

imation ℓnN! = NℓnN − N, we can ob-

tain the microcanonical entropy of Van der

Waal’s gas is

S(E, V, N) = kBN

{

5

2
+ ln

{

(

V − Nb′

N

)

[

4πm

3Nh2

(

E +
a′N2

V

)

]

3
2
}}

. (18)

At constant V and N, from the

Maxwell’s First thermodynamic relation

dE = TdS − pdV, we get [1, 5]

∂S

∂E
=

1

T
(19)

∂S

∂V
=

P

T
(20)

Using Eq.(18), we obtain

1

T
=

3

2
NkB

(

E +
a′N2

V

)−1

(21)

The above equation can be rearranged in

terms of energy as

E =
3

2
NkBT −

a′N2

V
(22)

Using Eq.(18) and Eq.(22), one can get

P

T
=

NkB

(V − Nb′)
−

a′N2

V2T
. (23)

(

P +
a′N2

V2

)

(V − Nb′) = NkBT (24)

Substitute N = nNa, a = a′N2
a , b = b′Na and

kBNa = R in the above equation, we get
(

P +
n2a

V2

)

(V − nb) = nRT. (25)

where R is gas constant, n is the number

of moles and Na is the Avogadro’s num-

ber. Thus, we have obtained Van der Waal’s

equation of state with Van der Waal’s con-

stants a and b.

4 conclusion

We used the hard sphere potential and de-

rived Van der Waal’s equation of state in

microcanonical ensemble formulation. Even

though the canonical ensemble is much eas-

ier to use in actual application than the mi-

crocanonical ensemble, one should not ruled

33/3/01 4 www.physedu.in
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out the various studies of the same system

in other ensemble formulation. In this con-

text, our result also verified the equivalence

of ensemble for Van der Waal’s gas.

Appendix:

The integral in Eq.(11) can be considered as

the volume of 3N dimensional spheres of ra-

dius R =
√

2m(E + a′N2

V ) which is given by

[5, 6]

VN(R) =
∫

∑
3N
l=1 p2

l 6R2
d3N p (26)

= R3N
∫

∑
3N
l=1 y2

l 61
d3Ny (27)

= R3NC3N, (28)

where yl = pl/R, C3N =
∫

∑
3N
l=1 y2

l 61 d3Ny and

d3Ny = dVN(R) = 3NC3NR3N−1dR (29)

Using the identity
∫ +∞

−∞
e−y2

dy =
√

π and

Eq.(29), we consider the integral

∫ +∞

−∞
....

∫ +∞

−∞
e−(y2

1+y2
2+.......+y2

3N)d3Ny = π
3N
2

(30)

and transform it in to polar coordinates as,

3NC3N

∫ ∞

0
R3N−1e−R2

dR = π
3N
2 . (31)

Substituting R2 = x, we obtain

C3N =
π3N/2

3N
2 Γ(3N

2 )
(32)

where the Gamma function

Γ

(

3N

2

)

=
∫ ∞

0
x

3N
2 −1e−xdx. (33)

Therefore, Eq.(11) becomes

ω(E, V, N) =
π3N/2

3N
2 Γ(3N

2 )
(V − Nb′)NR3N (34)

=
π3N/2

3N
2 Γ(3N

2 )
(V − Nb′)N

[

2m

(

E +
a′N2

V

)

]3N/2

(35)
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Abstract

There has been many studies on gases which

obeys Van der Waal’s equation of state. How-

ever there is no specific and direct studies of

Van der Waal’s gas which undergoes adiabatic

processes are available in the undergraduate

text books and also in literature. In an adiabatic

process there is no heat energy exchange

between the system and its surroundings.

In this article, we find that the Van der

Waal’s equation for the adiabatic process as
(

P + n2a
V2

)

(V − nb)Γ = constant, where P is

the pressure, V is the volume, n is the number

of moles of the Van der Waal’s gas, a and b

are Van der Waal’s constant and Γ is a factor

which relates the specific heat at constant

pressure and at constant volume. We use this

relation explicitly and obtained the efficiency

of a Carnot engine whose working substance

obeys Van der Waal’s equation of state. Our

simplest approach may provide clear idea to the

undergraduate students that Γ is different from

γ of the ideal gas for an adiabatic process. We

also shown that the efficiency of the Carnot

engine is independent of the working substance.

1 Introduction

In thermodynamics, heat and work are the

form of energy transfer across the bound-

ary between the system and its surround-

ings. If the boundary forbids the flow of

heat energy between the system and the sur-

roundings then the thermodynamic process

which changes the state of the system is

called as adiabatic process. If the energy

transfer takes at a fixed system tempera-

ture then such a process is called as isother-

mal process. All heat engines make use of

the mechanism of converting heat (Q) in to

work (W), without involving any resultant

change in the state of the system. It is a

series of processes taking place in a cyclic

manner in which the engine or system will

be returned to its initial state.

33/3/02 1 www.physedu.in
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During each of the processes, there may

be a heat energy flow between the system

and its surroundings. This comprises of a

hot reservoir and a cold reservoir, which

will be maintained at constant tempera-

tures, and the working substance which ex-

changes heat. Therefore, the engine is said

to operate between these two reservoirs.

During a part of cycle performed by the

working substance in an engine, some heat

QH is absorbed from the hotter reservoir

and a smaller amount of heat QL is rejected

to the cooler reservoir during the another

part of cycle. In a cyclic process, the system

returns to the initial state with no change in

internal energy (∆U = 0). So, from the first

law of thermodynamics Qnet − Wnet = 0,

where Qnet = QH − QL is the net heat ex-

changed between the system and the sur-

roundings and Wnet = Qnet = QH − QL is

the total or net work performed on the sys-

tem. The engine efficiency η is defined as

[1, 2, 3],

η =
Net Work

Heat absorbed
(1)

=
QH − QL

QH
= 1 −

QL

QH
.

1.1 Carnot Cycle

Carnot proposed a thermodynamic cycle

called as Carnot cycle which is a set of equi-

librium reversible processes any thermody-

namic system can perform [1, 2]. Initially

the system or working substance in Carnot

cycle is imagined to be in thermal equilib-

rium with a reservoir at lower temperature

TL. Four processes are then performed in the

following order:

1. A reversible adiabatic process is per-

formed in such a direction that the tem-

perature rises to that of hotter reservoir

temperature TH. However, no energy in

the form of heat flows in to or out of the

system.

2. The working substance is maintained

in contact with the reservoir at TH and

a reversible isothermal process is per-

formed in such a direction to the extent

that QH is absorbed from the reservoir.

In this case the system is kept at a fixed

reservoir temperature.

3. A reversible adiabatic process is per-

formed in a direction opposite to that

of the first process with no heat ex-

change. This is done until the tem-

perature reaches TL, temperature of the

cooler reservoir.

4. A reversible isothermal process oppo-

site to the direction of the second pro-

cess is performed until the working

substance reaches the initial state and

QL is rejected by the working substance.

In this case the system is kept at a fixed

reservoir temperature TL.

Thus an engine in Carnot cycle operates be-

tween two reservoirs in a particular simple

way. All the absorbed heat enters the system

at a constant high temperature, namely that

of a hotter reservoir. Also, all the rejected

33/3/02 2 www.physedu.in
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heat leaves the system at a constant low tem-

perature, that of a cooler reservoir. Since all

processes are reversible, the Carnot engine

is a reversible engine. An engine which op-

erates in this cycle is called as Carnot en-

gine whose efficiency is always greater than

any engines operated by the cycle other than

Carnot cycle. Any hypothetical engine oper-

ated in this cycle is said to be ideal if it gives

100% efficiency. Since it is fact of experience

that some heat is always rejected to cooler

reservoir, the efficiency of actual engine is

always less than the ideal and the Carnot en-

gine [1, 2, 3].

Considering a working substance in a

Carnot engine as an ideal gas, with no in-

termolecular interactions, the gas satisfies

the ideal gas equation of state PV = nRT.

Where P is the pressure, V is the volume,

T is the temperature of the system, n is the

number of moles and R is the universal gas

constant. The thermal efficiency of a Carnot

engine whose working substance is an ideal

gas is given by [2, 3]

η = 1 −
TL

TH
. (2)

Thus, a Carnot engine absorbing QH

amount of heat from the reservoir at higher

emperature TH and rejecting QL amount of

heat to the reservoir at lower temperature TL

has an efficiency that is independent of the

nature of the working substance. The above

result is obtained by using the ideal gas

equation of state for the isothermal process

PV = constant and the ideal gas equation

for the adiabatic process PVγ = constant.

Here, γ is the ratio of the specific heat capac-

ity at constant pressure to the specific heat

capacity at constant volume. Further stud-

ies using various gas equations [4, 5, 6, 7]

also showed that the efficiency of a Carnot

cycle is independent of working substance

and depends only on temperatures of reser-

voirs.

1.2 Van der Waal’s gas

By considering the intermolecular interac-

tions, Van der Waal proposed the equation

of state for a real gas which is given by[2, 3,

5]

(

P +
n2a

V2

)

(V − nb) = nRT, (3)

where a and b are the Van der Waal’s con-

stants. There has been several studies for

Van der Waal’s equation of state [5, 6]. How-

ever, there is no specific and direct studies

available in undergraduate text books and

also in literature for the equation of Van der

Waal’s gas subjected to an adiabatic process.

In this paper we explicitly find that the Van

der Waal’s equation for an adiabatic process

as
(

P +
n2a

V2

)

(V − nb)Γ = constant, (4)

where Γ is a factor which relates the specific

heat at constant pressure and at constant

volume. We use the above relation and ob-

tained the relation between the specific heat

capacity at constant pressure and at constant

volume. As similar to ideal gase approach

we also used the above relation directly and

33/3/02 3 www.physedu.in
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showed that the efficiency of a Carnot cy-

cle is independent of the working substance

and depends only on the temperature of the

reservoirs.

2 Van der Waal’s gas equation

for an Adiabatic process

The entropy of pure substance can be con-

sidered as a function of any two variable T

and V as

S = S(T, V) (5)

dS =
( ∂S

∂T

)

V
dT +

( ∂S

∂V

)

T
dV.

Multiply both sides by T we get,

TdS = T
( ∂S

∂T

)

V
dT + T

( ∂S

∂V

)

T
dV. (6)

Since dQ = nCVdT and TdS = dQ for a

reversible isochoric process, from the above

equation one can obtain

T
( ∂S

∂T

)

V
= nCV , (7)

where CV is the specific heat capacity at con-

stant volume. According to Maxwell’s third

thermodynamic relation

( ∂S

∂V

)

T
=

(∂P

∂T

)

V
. (8)

Therefore Eq.(6) becomes

TdS = nCVdT + T
(∂P

∂T

)

V
dV. (9)

For an adiabatic process dQ = TdS = 0,

hence

nCVdT = −T
(∂P

∂T

)

V
dV. (10)

Using Eq.(3), one can obtain

(∂P

∂T

)

V
=

nR
(

V − nb
) . (11)

Therefore Eq.(10) becomes

nCVdT = −T
nR

(

V − nb
)dV (12)

1

T
dT = −

R

CV

dV
(

V − nb
) .

Integrating the above equation we get

ℓn T = −
R

CV
ℓn
(

V − nb
)

+ ℓn z, (13)

where ℓnz is an integrating constant. Rear-

ranging the above equation one can get

T
(

V − nb
)

R
CV = z. (14)

Combining Eq.(3) and Eq.(14) one can ob-

tain Van der Waal’s gas equation for an adi-

abatic process as

(

P +
n2a

V2

)

(V − nb)Γ = K, (15)

where Γ = R
CV

+ 1 and K = nRz = a con-

stant. It should be noted that, for real gas

Γ 6= γ = CP
CV

of an ideal gas, where CP is the

specific heat capacity at constant pressure.

Thus, it would be interesting to obtain the

relation between the CP and CV of the Van

der Waal’s gas as follows.

2.1 Relation between CP and CV for

Van der Waal’s gas

The internal energy of a given system can be

considered as a function of any two variable

33/3/02 4 www.physedu.in
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T and V as

U = U(T, V) (16)

dU =
(∂U

∂T

)

V
dT +

(∂U

∂V

)

T
dV.

Using the above equation, the first law of

thermodynamics in an infinitesimal form

dQ = dU + dW with dW = −PdV, can be

written as

dQ =
(∂U

∂T

)

V
dT +

(∂U

∂V

)

T
dV − PdV. (17)

In our study we have used the sign con-

vention that the work done on the system

is taken as positive and the work done by

the system is taken as negative. For con-

stant volume dV = 0, the above equation

becomes,

nCV =
(∂U

∂T

)

V
. (18)

Since dQ/dT = nCV for constant volume

and dQ/dT = nCP for constant pressure,

Eq.(17) can be rewritten as

dQ = nCVdT +
(∂U

∂V

)

T
dV − PdV (19)

nCPdT = nCVdT +
(∂U

∂V

)

T
dV − PdV (20)

n(CP − CV) =
{(∂U

∂V

)

T
− P

}dV

dT
. (21)

From the first thermodynamic potential

dU = TdS + PdV and using Eq.(17) and

Eq.(8) at constant temperature one can ob-

tain

(∂U

∂V

)

T
= T

( ∂S

∂V

)

T
+ P (22)

= T
(∂P

∂T

)

V
+ P. (23)

Then Eq.(21) becomes

n(CP − CV) = T
(∂P

∂T

)

V

dV

dT
. (24)

If V is a function of T and P, then change in

V for a constant pressure is

dV =
(∂V

∂T

)

P
dT +

(∂V

∂P

)

T
dP. (25)

dV

dT
=
(∂V

∂T

)

P
. (26)

From Eq.(3) on can obtain

(∂P

∂T

)

V
=

nR
(

V − nb
) , (27)

(∂V

∂T

)

P
= nRV3

(

V − nb
)

G−1, (28)

where G = V3nRT − 2n2a
(

V − nb
)2

.

Therefore Eq.(24) can be written as

CP − CV =
R

fv
, (29)

where

fv =
{

1 −
2na

V3RT

(

V − nb
)2
}

. (30)

We have obtained the relation between the

CP and CV of Van der Waals gas. Divide

Eq.(29) throughout by CV we get

CP

CV
= 1 +

R

fvCV
= 1 +

Γ − 1

fv
. (31)

Thus we have finally obtained the relation

between γ of ideal gas and Γ of Van der

Waal’s gas as

γ = 1 +
Γ − 1

fv
. (32)
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There has been few studies to find out

the efficiency of the Carnot cycle whose

working substance is different from ideal

gases [5, 6, 7]. In what follows, we employ

simple approach to find out the efficiency of

the Carnot engine whose working substance

obeys the Van der Waal’s equation of state.

3 Carnot engine efficiency for

Van der Waal’s gas

Efficiency of the Carnot engine, η, is defined

as the ratio of the net work done to the heat

absorbed in the Carnot cycle. As discussed

earlier, this reversible cycle consist of four

processes such as i) adiabatic compression

ii) isothermal expansion iii) adiabatic expan-

sion and iv) isothermal compression. In or-

der to find out η, we calculate the total work

done during the Carnot cycle as follows.

3.1 Work done in an adiabatic

compression

In this process, the volume changes from V1

to V2 (V1 > V2), the pressure changes from

P1 to P2 and the temperature from TL to TH.

There is no heat exchange between the sys-

tem and the surroundings. The work done

during this process W1 is given by,

W1 = −

∫ V2

V1

PdV. (33)

The Van der Waal’s equation for an adiabatic

process obtained in Eq.(15) as

(

P +
n2a

V2

)

(V − nb)Γ = K. (34)

P =
K

(V − nb)Γ
−

n2a

V2
. (35)

Substitute Eq.(35) in Eq.(33) and integrating,

we get

W1 = −
K(V − nb)1−Γ

1 − Γ

∣

∣

∣

∣

∣

V2

V1

−
n2a

V

∣

∣

∣

∣

∣

V2

V1

,

W1 =
K(V1 − nb)1−Γ − K(V2 − nb)1−Γ

1 − Γ

−
n2a

V2
+

n2a

V1
.

The Van der Waal’s equation of state for the

system in the initial state (P1, V1) at TL is
(

P1 +
n2a

V2
1

)

(V1 − nb) = nRTL (36)

and for the system in the final state (P2, V2)

at TH as
(

P2 +
n2a

V2
2

)

(V2 − nb) = nRTH. (37)

From the Van der Waal’s equation (Eq.34)

for the adiabatic process, we can relate the

system in the initial state (P1, V1, TL) and fi-

nal state (P2, V2, TH) as
(

P1 +
n2a
V2

1

)

(

P2 +
n2a
V2

2

) =
(V2 − nb)Γ

(V1 − nb)Γ
(38)

Substitute Eq.(36) and Eq.(37) in the above

equation, we get

nRTL

(V1 − nb)1−Γ
=

nRTH

(V2 − nb)1−Γ
≡ K. (39)

Therefore,

K(V1 − nb)1−Γ = nRTL (40)

K(V2 − nb)1−Γ = nRTH (41)
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and hence the work done in an adiabatic

compression becomes

W1 =
nR(TL − TH)

1 − Γ
−

n2a

V2
+

n2a

V1
. (42)

3.2 Work done in an isothermal

expansion

In this process, the system undergoes vol-

ume expansion V2 to V3 and the pressure

change from P2 to P3, while the temperature

remains constant at TH. During this process

the system absorbs QH amount of heat en-

ergy from the hot reservoir, then the work

done,

W2 = −

∫ V3

V2

PdV. (43)

For a reservoir temperature TH, Eq.(3) can be

written as,

P =
nRTH

V − nb
−

n2a

V2
(44)

Substitute the above equation in Eq.(43) and

integrating, we get

W2 = nRTHℓn

(

V2 − nb

V3 − nb

)

−
n2a

V3
+

n2a

V2
. (45)

From the Van der Waal’s equation of state

(Eq.3), we can relate the system in the initial

state (P2, V2) and final state (P3, V3) at a fixed

temperature TH as
(

P2 +
n2a
V2

2

)

(

P3 +
n2a
V2

3

) =
(V3 − nb)

(V2 − nb)
. (46)

Substitute Eq.(46) in Eq.(38), then

P1 +
n2a
V2

1

P3 +
n2a
V2

3

=
(V3 − nb)(V1 − nb)−Γ

(V2 − nb)1−Γ
. (47)

3.3 Work done in an adiabatic

expansion

As similar to adiabatic compression, the

heat exchange in an adiabatic expansion is

zero. As the system expands from V3 to V4,

the pressure changes from P3 to P4, and the

temperature changes from TH to TL, then the

work done W3 during this process is given

by,

W3 = −

∫ V4

V3

PdV. (48)

Substitute Eq.(35) for an adiabatic process in

the above equation, we get

W3 =
K(V3 − nb)1−Γ − K(V4 − nb)1−Γ

1 − Γ

−
n2a

V4
+

n2a

V3
.

The Van der Waal’s equation of state for the

system in the initial state (P3, V3) at TH is

(

P3 +
n2a

V2
3

)

(V3 − nb) = nRTH (49)

and for the system in the final state (P4, V4)

at TL as

(

P4 +
n2a

V2
4

)

(V4 − nb) = nRTL. (50)

From the Van der Waal’s equation (Eq.34)

for the adiabatic process, we can relate the

system in the initial state (P3, V3, TH) and fi-

nal state (P4, V4, TL) as

(

P3 +
n2a
V2

3

)

(

P4 +
n2a
V2

4

) =
(V4 − nb)Γ

(V3 − nb)Γ
. (51)
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Substitute Eq.(49) and Eq.(50) in the above

equation, we get

nRTH

(V3 − nb)1−Γ
=

nRTL

(V4 − nb)1−Γ
≡ K. (52)

Therefore,

K(V3 − nb)1−Γ = nRTH (53)

K(V4 − nb)1−Γ = nRTL (54)

and hence the work done in an adiabatic ex-

pansion becomes

W3 =
nR(TH − TL)

1 − Γ
−

n2a

V4
+

n2a

V3
. (55)

3.4 Work done in an isothermal

compression

In this process, the pressure changes from P4

to P1, the volume changes from V4 to V1 and

QL amount of heat energy rejected to a cold

reservoir at constant temperature TL. Work

done during this process W4 is given by

W4 = −

∫ V1

V4

PdV. (56)

For a reservoir temperature TL, Eq.(3) can be

written as,

P =
nRTL

V − nb
−

n2a

V2
(57)

Substitute the above in equation in Eq.(56)

and integrating, we get

W4 = nRTLℓn

(

V4 − nb

V1 − nb

)

−
n2a

V1
+

n2a

V4
.

(58)

From the Van der Waal’s equation of state

(Eq.3), we can relate the system in the initial

state (P4, V4) and final state (P1, V1) at a fixed

temperature TL as
(

P4 +
n2a
V2

4

)

(

P1 +
n2a
V2

1

) =
(V1 − nb)

(V4 − nb)
. (59)

Substitute Eq.(59) in Eq.(51), then

P3 +
n2a
V2

3

P1 +
n2a
V2

1

=
(V1 − nb)(V3 − nb)−Γ

(V4 − nb)1−Γ
. (60)

3.5 Efficiency of the engine

The net work done Wnet for one complete cy-

cle is Wnet = W1 +W2 +W3 +W4. Therefore,

the total work done for the Carnot cycle is

given by

Wnet = wH + wL, (61)

where

wH = nRTHℓn

(

V2 − nb

V3 − nb

)

(62)

wL = nRTLℓn

(

V4 − nb

V1 − nb

)

. (63)

According to the first law of thermody-

namics Qnet − Wnet = ∆U, where Qnet =

QH − QL is the net heat energy exchange be-

tween the system and the reservoir and ∆U

is the change in the internal energy. Here

we have used the sign convention that the

heat energy flow in to the system is taken

as positive and the heat energy flow out of

the system is taken as negative. For a cyclic

process, the change in internal energy ∆U

is zero. Therefore, the net heat energy ex-

change between the system and the reser-

voir in a given cycle is completely converted
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in to net work done which is given by

Wnet = QH − QL. (64)

In the Carnot cycle, all the absorbed heat QH

enters the system at a constant high temper-

ature TH and all the rejected heat QL leaves

the system at a constant low temperature TL.

Hence, comparing Eq.(61) and Eq.(64), one

can identify

QH =
∣

∣

∣
wH

∣

∣

∣
=

∣

∣

∣

∣

∣

nRTHℓn

(

V2 − nb

V3 − nb

)

∣

∣

∣

∣

∣

(65)

−QL =
∣

∣

∣
wL

∣

∣

∣
=

∣

∣

∣

∣

∣

nRTLℓn

(

V4 − nb

V1 − nb

)

∣

∣

∣

∣

∣

. (66)

It should be noted that Q can also be

obtained from other approaches. Using

Eq.(23) and Eq.(27) for an isothermal pro-

cess, Eq.(17) becomes

dQ = T
(∂P

∂T

)

V
dV =

nRT
(

V − nb
)dV.

Integrating the above equation from the ini-

tial volume Vi to the final volume Vf , one

can obtain the amount of heat transferred

between the system and the sorrounding as

Q = nRTℓn
(

V − nb
)

∣

∣

∣

∣

∣

Vf

Vi

.

The efficiency of the engine obtained from

Eq.(2) as

η = 1 −
QL

QH
= 1 +

TL ℓn
(

V4−nb
V1−nb

)

TH ℓn
(

V2−nb
V3−nb

) .

The above equation can be rewritten as

η = 1 −
TL ℓn

(

V4−nb
V1−nb

)

TH ℓn
(

V3−nb
V2−nb

) . (67)

In order to simply the above equation, sub-

stitute Eq.(60) in Eq.(47) and rearranging,

we get

(

V3 − nb

V2 − nb

)1−Γ

=

(

V4 − nb

V1 − nb

)1−Γ

.

So,
(

V3 − nb

V2 − nb

)

=

(

V4 − nb

V1 − nb

)

(68)

Therefore, Eq.(67) reduces to

η = 1 −
TL

TH
. (69)

Thus, we used Van der Waal’s gas as a work-

ing substance and obtained the efficiency of

the Carnot engine which is independent of

the working substance.

4 Conclusion

In summary, we have obtained the Van der

Waal’s equation for the adiabatic process as
(

P + n2a
V2

)

(V − nb)Γ = constant. Our result

explicitly shows that Γ of the Van der Waal’s

gas is different from γ of ideal gas for adi-

abatic process. This equation has been used

directly in Carnot cycle for the adiabatic pro-

cess and shown that the efficiency of the

Carnot engine is independent of the work-

ing substance. For this calculation we have

used the simple approach as similar to the

ideal gas usually found in the undergradu-

ate text books. With this we find out the effi-

ciency of the Carnot engine whose working

substance obeys Van der Waal’s equation of

state
(

P + n2a
V2

)

(V − nb) = nRT. Using the
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above two equations, we have also shown

that the alternative Van der Waal’s equation

for an adiabatic process is T(V − nb)Γ−1 =

constant. We can also write the above rela-

tion as
(

P + n2a
V2

)

T
Γ

1−Γ = constant.
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Abstract 
 

A Slinky’s fundamental oscillation is the lowest 
order standing longitudinal wave the Slinky 
supports. The frequency is determined by solving a 
transcendental equation obtained from a wave 
equation solution. To evaluate the frequency a so-
called “Slinky effective mass” is employed in 
contrast of the fact a Slinky has a well defined 
mass. The solution’s mathematical complexity 
obscures a significant Slinky physical property to 
find the fundamental frequency: The Slinky’s 
center-of-mass restoring force is produced by only 
the coils between the support and the center of 
mass. Experimental evidence is presented to verify 
the aforementioned property. 
 

1. Introduction 
 

In previous works dealing with Slinky oscillation 
frequencies, the Slinky is modeled as a continuous 
mass distribution undergoing longitudinal wave 
motion [1-8]. In general, the model does not 
incorporate some of the Slinky’s obvious features 
such as the number of coils, the fact their separation 
decreases with increasing displacement from the 
support, and the fact the mass per unit length is not 
constant [2] . In addition, a so-called effective mass 
is introduced despite the fact the Slinky mass is 
well defined. For these reasons, a Slinky center-of-
mass model ( hereafter COM ) is adopted as a 
series configuration of equivalent single coil 
springs. The model takes into account the number 

of coils, their variable separations and the Slinky’s 
distinct mass. The first four sections discuss the 
specifics of the Slinky used for the experimental 
data, the physical rational for the COM model and 
its properties. The remaining sections discuss the 
experimental procedures and their results and the 
conclusion. 
The major physical conclusion from the 
experimental evidence here is to determine a 
constraint or physical justification for neglecting 
the spring’s mass in simple harmonic motion 
analysis.  In general, the analysis is of a two-body 
problem with two equations of motion for the 
simultaneous motion of both the spring and the 
attached mass. Introduction of the massless spring 
approximation reduces the analysis to a simple one-
body equation of motion for the attached. However 
there is no discussion of any physical constraints or 
restrictions in order for the approximate solution to 
be valid. The conclusion here is a physical criterion 
for the validity of the approximation: The system’s 
COM must be at or below the spring’s bottom coil. 
 
2. The Slinky 

 

 The Slinky is a Poof-Slinky (www.poof-
slinky.com) of 206 grams with 84 coils. Each coil 
has a thickness of 0.7 mm and a mass of 2.45 
grams. Two coils are clipped together for support at 
each end. The two top coils do not participate in the 
oscillatory motion, they are used to support the 
hanging Slinky. The two coils at the bottom are 
included in the attached mass. Close inspection of 
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all the Slinky coils indicate they are members of 
one of two groups [9]. The ��free coils of the top 

group are visually separated whereas the lower 
group of ��  coilsare not. The physical reason for 
the two groups is that near the spring’s bottom the 
mass of the lower coils is not sufficient to produce 
a visible separation. These few coils move in 
tandem during the oscillation. They behave as a 
single mass attached to the end of the free coils. 
Hence, the lower group is referred to as the 
attached Na coils. Their group integrity (hereafter 
the attached mass ) is maintained by placing two 
small zip-ties around them. The set of ��free coils 

and the set of �� bound or attached coils  are 
referred to as the Slinky. In the event the attached 
mass is not a set of bound coils, ��  is the 
equivalent number of coils given by  �� = ��/��, 
where �� is the attached mass and �� is the mass 
of one coil. Only the free coils, all or inpart, 
contribute to the restoring force. However all the 
coils, both free and attached, contribute to the 
oscillating Slinky’s mass. 
 
3. Rational for the Center of Mass Model  

 

The classic solution of an oscillating mass attached 
to a spring is an oversimplification of the physical 
arrangement because both the spring and attached 
mass oscillate. In format terms, it is a two-body 
problem. The classic solution assumes the spring is 
massless which simplifies it into a one-body 
problem. One approach to the two-body problem is 
to consider only the fundamental oscillation of both 
the spring and the mass. In this particular case, all 
coils oscillate in phase; hence, the coils and the 
Slinky’s COM oscillate with the same frequency. 
Both are taken into consideration by focusing our 
attention on only the COM oscillation. Of principle 
interest is the restoring force acting upon the COM 
which accounts for both the motion of the attached 
mass and the spring. 

The present analysis begins with the physical 
interpretation of �	 expressed by Crawford[10] 
which is 

             �	   �F / x M                           (1) 
 
In the present case, F is COM restoring force, x is 
the COM displacement from equilibrium. And 
oscillating mass M is the sum of the masses of the 
free (��) and attached coils (��). 

 
4. Center of Mass Model’s Properties.  

 

We adopt the scheme initially put forth by 
Sawicki[11] to model the Slinkyas a configuration 
of identical Hooke’s Law coils, where each coil 
supports the weight of all the coils below it.  Figure 
1 illustrates the Slinky segments described below. 
Hooke’s Law applied to the i-th free coil yields. 

 
��
� = �� g (�� – i) + ����g ,        (2) 

 
Where �� and �� are the spring constant and mass 
of one coil. 
� is the separation between the i-th 
coil’s top and bottom. The displacement ��  to the 

bottom of the j-th free coil from the top support is 
obtained by summing 
� from i=1 to i=j. Using the 

integer summation identity∑ �
�
�  = (j/2) (j+1), the 

result is 

�� = Σ�
�

�   = (� ��

	⁄ )((�� � ���j – (j/2)(j+1))  (3) 

 
where�	= �� /��, and �	 is the angular frequency 
of one coil.  The factor g/�	has units of length and 
is therefore taken as a Slinky natural length and is 
set equal to the parameter �. 
The value of �  is determined by recognizing the 
Slinky’s hanging length from the support to the 
bottom of the free coils  �� is the displacement to 

the �� free coil. We solve for � which satisfies 

 
��= � ((�� + ��) �� -  (��/2)(��+1)),             (4) 
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Where, ��  = 70, ��  = 10, and ��  = 1.27 m we 

obtain  �  =0.40 mm. By way of observation 
� appears to be about one-half with thickness of a 
Slinky coil.  
 
The angular frequency � for one coil is 155 rad/sec 
or 24.7 Hz. The corresponding single coil spring 
constant �� is equal to 59 N/m as determined from 
the single coil mass of 2.45 grams. 

 
The expression for the Slinky’s COM, ����  is 
obtained in a straight forward fashion using the 
expression for the COM of the free coils���, the 

COM of the attached coils��, and isexpressed by  
 

����= ( ����� + ����)/( ��+ ��) .               (5) 

 
The expression for ���  is evaluated using the 

definition of the COM and summation identity 
 

∑ �	�
� � (j/6)(j+1)(2j+1). 

 
 The result is 
 

��� = �((��+1)/2) (2/3)((��-1)+Na)    (6) 

 
The displacement of the COM of the attached coils 
is expressed by 

 
�� = ��+(cw/2) ��,                         (7) 

 
Where cw is the coil thickness of 0.7 mm. 

 
 

5. The Experimental Procedure 
 

The COM Slinky model is a series configuration of 
individual identical coils each with spring constant 
��  , mass ��  with a corresponding single coil 
oscillation frequency�	 . The series spring 

constant�� for a configuration of j free coils is 

expressed as [12] 
 

�� = ��/j                               (8) 

 
 For data taking purposes, the Slinky is partitioned 
into five different configurations corresponding to 
20,30,40,50,  and 60 free coils and in each 
configuration �� =10 coils. The remaining coils 
were tied together above the free coils using zip-
ties. For each configuration the fundamental 
frequency �� is measured and recorded in Table 1. 

 
An experimental value for the series spring 
constant of  j free coils ,��

�is obtained from Eq.(1). 

Hence, the expression for the experimental spring 
constant is given by 
 

��
� = ��

	��=��
	 ((��+ ��) ��)             (9) 

 
Where the last factor  ((��+ ��) �� ) is the well 

defined oscillating mass  and�  is the observed 
oscillation frequency. The experimental values are 
shown in column three of Table 1. 

 
At specific issue here is how many individual coils 
�� in series are responsible for the experimental 
series spring constant ��

� ?  The number of coils �� 

is obtained from Eq.(8) which yields, 
 
      J* = �� / ��

�                          (10)  

 
The corresponding  J* values are shown in column 
four of Table 1. 

 
The important question is: Which of the given �� 

free coils correspond to the J* coils providing the 
restoring force? 
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6. Results and Discussion.   
 

For a given configuration in the COM model, only 
two forces act upon the COM, the restoring force 
responsible for the oscillation and the weight. The 
weight is a constant force and has no influence 
upon the oscillation frequency. From a simple 
physical point of view we assume the only coils 
producing the restoring force are those between the 
COM and the support. To investigate the 
assumption two quantities are needed for each 
configuration of �� coils. First, is the displacement 

���� from the COM to the support obtained from 
Eq.(5).  Second is the displacement ��

�  of the 

corresponding J* coils from the support point 
obtained from Eq.(3).  Both are evaluated and 
presented in the fifth and sixth columns in Table 1. 

7. Conclusion.   
 

Table 1  displays for each free coil configuration �� 

the two corresponding displacements ���� and ��.  

The average percentage error between the two 
values is about 5% which is taken to be in good 
agreement with the assumption only the coils 
between the COM and the support provide the 
restoring force. This conclusion provides the 
physical constraint for the validity of the massless 
spring approximation. Namely it is valid only so 
long as the system’s COM is at or below the 
spring’s bottom coil. 

 
 

 
TABLE 1.  The first column displays the number of free coils ��. The attachedcoils  �� is 10 for all cases. The 

second column displays the observed fundamental frequency ��.Using Eq.(3), the third column contains the 

corresponding experimental series spring constant ��
�.Equation (10) is used to determine for the fourth column 

the number of coils �� necessary to produce the corresponding spring constant ��
�. Column five displays��

�the 

displacement of the �� coils from the support to the COM found from Eq.(3). Column six displays the Slinky’s 
COM displacement ���� from the support using Eq.(5). 
 

 !"#$#
�%�&#

�&'() 
 

Coils (rad/sec) ( N/m) Coils (m) (m) 
20 8.29 5.05 11.7 0.11 0.12 
30 6.15 3.71 15.9 0.21 0.20 
40 4.96 3.03 19.6 0.31 0.34 
50 4.14 2.52 23.4 0.46 0.47 
60 3.58 2.20 26.8 0.62 0.61 
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Figure 1. Diagram of a Slinky where the hanging length   is measured from the support to the top of the 
attached mass ( with   coils ), the i-th coil separation  is from its top to the bottom, and the i-th coil 
displacement is from the support to the bottom of the i-th coil. 
 
 

 
 
Figure 2. A plot of the displacements, ( filled circles )   and   ( open circles) vs     the number of free 
coils producing the Slinky’s  oscillations.  Both circles have been enlarged for visibility. 
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Abstract

In this paper, an activity has been proposed to

construct 3-Dimensional(3-D) Bravais lattices,

based on the idea of stacking 2-D Bravais

lattices. AA and AB stacking of 2-D square

lattices result in simple cubic and body-centered

cubic structures respectively. Extending these

stacking ideas to other 2-D Bravais lattices

results in the construction of all 3-D Bravais

lattices. While AA stacking of oblique, square

and regular centered hexagonal lattices results

in monoclinic, cubic and hexagonal lattices

respectively, AA stacking of rectangular lattice

gives rise to the formation of orthorhombic

and tetragonal lattices and that of centered

rectangular yields side-centered orthorhombic.

Similarly, AB stacking of oblique and square

lattices gives body-centered monoclinic and

body-centered cubic lattice and that of rect-

angular gives body centered orthorhombic and

body centered tetragonal lattices. Moreover,

AB stacking of centered rectangular lattice

results in face-centered orthorhombic, and that

of square lattice with special conditions imposed

on the height of stacking yields face-centered

cubic lattice. In addition to these, ABC stacking

of centered regular hexagonal lattice gives rise

to trigonal lattice with rhombohedral primitive

unit cell.

1 Introduction

One of the major challenges faced by stu-
dents is to learn the art of abstraction. An
activity has been proposed previously by us
[1], for arriving at the five 2-D Bravais lat-
tices based on the seven types of triangles.
In this paper, we extend the activity to con-
struct the 3-D Bravais lattices by stacking the
2-D Bravais lattices, taking inspiration from
graphene [2](that has been peeled out layer
by layer from graphite).

3-D Bravais lattices play an important
role in understanding about crystal struc-
ture. Even though many of these 14 Bra-
vais lattices are non-primitive, they are the
preferred unit cells for description of crystal
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structure for two reasons. Firstly, they are
easier to visualize as compared to the prim-
itive cells associated with them. Secondly,
most of them allow easy tessellation along
three specific directions, resulting in expres-
sion of the inherent translational symmetry
using simple mathematical formula[3, 4].

Since the discovery of fourteen Bra-
vais lattices, physicists have been trying to
propose various methods to realize these
in physical form. Based on the previous
work of Langmuir & Nelson[5], Patterson[6]
has probed the results of close packing of
spheres, which the former authors have pro-
posed to achieve through boxes with plane
walls. It has been deduced, that there ex-
ist fifteen possible arrangements, classified
on the basis of either symmetries or on the
basis of the contacts made by the spheres
with their neighbors. Ten 3-D Bravais lat-
tices have been obtained through these fif-
teen arrangements. In the book, Crys-
tallography: An Introduction[7], an attempt
has been made to stack the 2-D Bravais lat-
tice planes, but the effort has been limited
to constructing primitive unit cells. More-
over, point group symmetries have been em-
ployed to attain the remaining cells. Similar
endeavor has been taken up by Muecklich
[8], but once again point group symmetries
have been used. Here, we intend to utilize
simple physical considerations while stack-
ing the planes without too much emphasis
on point group symmetries.

In the next section we deliberate on the
thought process, that has evolved into de-

veloping the idea of stacking 2-D planes.

2 Rationale for Stacking

The main conceptual idea behind construc-
tion of a lattice is to identify the points in
space in such a way that by standing at any
one of the arbitrary points belonging to it,
one would always see the same environ-
ment all around. Such a structure requires
to have an inbuilt order and symmetry. In
general, we look for translational symmetry
so that it is easy to express such a structure
using mathematical formulas.

2.1 Covering 2-D space

To obtain the set of lattices in 2-D, we look
for the smallest unit that can be enclosed by
a set of points which covers an area (or 2-
D space) and then tessellate the figure ob-
tained (by connecting the points by straight
lines) along two directions to cover a 2-D
planar surface. Even though only 3 non-
collinear points in the form of a triangle are
enough to enclose such an area, a triangle
cannot be simply tessellated along 2-D to
cover a plane as a triangle would need to be
reflected or rotated for this task. Hence, we
have constructed different quadrilaterals us-
ing the seven classes of triangles and arrived
at the five unique units that can be easily tes-
sellated to cover a 2-D space[1]. These have
been referred to as 2-D Bravais lattices.
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2.2 Covering 3-D space

Using a similar argument, the smallest 3-D
space can be enclosed by using only 4 points
(3 non-collinear points in a plane and one
point chosen anywhere out of the plane) that
forms a pyramidal structure. Once again, it
is neither easy to visualize pyramidal stack-
ing, nor is it possible to tessellate these struc-
tures conveniently in 3 directions to obtain
a lattice structure in 3-D space that would
have the required translational symmetry.

Another option is to try and construct
parallelepipeds by appropriate rotation and
reflection of various available pyramidal
structures as was done in 2-D case. How-
ever we are not utilizing the effort put into
obtaining the 2-D lattices that allowed us to
tessellate in 2-directions. So for easy tessel-
lation in 3 specific directions to cover a 3-D
space, one must chose two or more planes
associated with one of the five 2-D Bravais
lattices, and stack them one over the other
to obtain parallelepipeds/cuboids wherever
possible.

In standard texts,[3, 4] to understand
fcc and hcp closed packed structures, we
assume that the spheres of equal sizes are
placed adjacent to each other such that they
touch one another in a plane. Then more
balls are placed either on the existing balls
or in the gaps resulting in various stack-
ing methods AA, ABAB or ABCABC. This
model has the disadvantage of creating only
sc, bcc, fcc and hcp structures. This is so,
because of the assumption that the spheres
have to touch one another. This automati-

cally limits the stacking to two types:

• AA and AB stacking of square lattices,
which results in sc and bcc structures re-
spectively.

• ABAB and ABCABC stacking of rhom-
bic (type-2 [1]) lattices, that gives rise to
hcp and fcc structures respectively.

This concept of AA and AB stacking has
been extended to all five 2-D Bravais lattices
in order to construct twelve 3-D Bravais lat-
tices. ABC stacking of equilateral triangular
lattices (subset of regular centered hexago-
nal lattice) results in trigonal lattice.

3 Constructing 3-D Bravais

Lattices

One of the simplest and straight forward
ways is to stack the most general 2-D Bra-
vais lattice, the oblique plane lattice with
no specific conditions imposed. This results
in most general space lattice, which can
be tessellated in order to generate a 3-D
periodic array of points. This primitive unit
cell in Fig. 1 corresponds to the 3-D Bravais
lattice known as triclinic, and includes
all remaining lattices as its special cases.
Boric acid powder, which is used on carrom
boards, and copper sulphate which is used
for dying purposes, are common day to-day
examples which exist in this structure.

The formation of the remaining lattices
by AA and AB stacking is discussed sub-
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sequently and the resulting lattices are pre-
sented in Table 1.

Figure 1: Random Stacking of Oblique Plane
Lattices

Figure 2: AA Stacking

3.1 AA Stacking: Primitive Crystal

lattices

Figure 2 shows A-A stacking of two Oblique
plane lattices, exactly one over the other as
this would yield a primitive unit cell which
has the advantage of being tessellated in
two perpendicular directions. The cell and
its parameters correspond to monoclinic
(primitive) Bravais lattice in 3-D. Here, ‘c’
is the perpendicular distance between the
two planes, while ‘α’ and ‘β’ are the an-
gles between sides ‘b’ and ‘c’, and sides ‘c’
and ‘a’ respectively. It is important to note
that distance ‘c’ may or may not be equal
to any one of the sides of the base plane,
but the resultant cell would be monoclinic
in both cases. Sugar, most commonly used
sweetener, crystallizes in the form of anhy-
drous prisms on oblique axes, is in mono-
clinic structure.

The following is a listing of AA stack-
ing of the five 2-D Bravais lattices resulting
in 5 primitive unit cells. The numbers in
the parenthesis next to a resultant lattice, are
given to keep track of the total expected 14
Bravais lattices.

• Oblique lattice for both cases of height
‘c’ gives monoclinic primitive unit
cell(2)

• Rectangular lattice with ‘c’ unequal to
either sides of the base plane gives or-
thorhombic primitive unit cell(3), and
same lattice with ‘c’ equal to either sides
of the base plane gives tetragonal prim-
itive unit cell (4).
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• Square lattice with ‘c’ unequal to either
sides of the base plane gives tetragonal
primitive unit cell (4) and with ‘c’ equal
to either sides of the base plane gives
cubic primitive unit cell (5)

• Regular centered hexagonal with ‘c’ un-
equal or equal to either sides of the base
plane gives hexagonal primitive unit
cell (6)

While crystal form of Sulphur is an
example corresponding to orthorhombic
structure, Zircon crystal possesses tetrag-
onal structure. Interestingly, Polonium
happens to be only monoatomic simple
cubic crystal in the entire periodic table.
Cesium chloride (CsCl), which is used for
cancer therapy, is an example of diatomic
simple cubic structure. In this, there are two
interpenetrating simple cubic lattices, of
cesium and chlorine (with Cs at (0,0,0) and
Cl at (1

2 ,1
2 ,1

2 )). The non-primitive unit cell
for this could be visualized as a bcc with
cesium ions at the corners and the chlorine
ion at the body-center or vice-versa. Gems
like ruby, emerald and sapphire are all
having simple hexagonal structure with
eight surfaces.

AA stacking of centered rectangular lat-
tice, with either c 6=a and c 6=b or c=a (or c=b),
would lead to orthorhombic side centered or
orthorhombic C-centered lattice (8).

Figure 3: (i)AB Stacking & (ii)Extending AB
Stacking

3.2 AB Stacking: Body Centered

Lattices

In the second method of stacking, the planes
are placed over each other in such a way
that the lattice points of the second (or up-
per) plane would be centered to those of
the first plane below. In Fig. 3(i) A-B stack-
ing has been shown, where the placement
of second oblique plane over the first one is
such that the vertex of the upper plane lies
exactly over the point of intersection of the
two diagonals of the lower plane. The re-
sulting parallelepiped is a primitive unit cell
that has the disadvantage of not being able
to tessellate in three orthogonal directions.
To overcome this, we extend the stacking by
placing a third oblique plane using the same
technique. This would result in third plane
being parallel to the base plane.

Figure 3(ii) shows the extension of this
stacking by placing a third oblique plane
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exactly parallel to the first one. The resul-
tant unit cell would comprise of a lattice
point at the center of the body of the cell be-
sides those at the corners, a non-primitive
unit cell, named as body-centered mono-
clinic lattice and referred as monoclinic (I)
in literature[9]. ‘c’ here is the distance be-
tween two consecutive coincident parallel
planes and might or might not be equal to
any one of the sides of the base plane.

Now, we discuss the various cases of
AB stacking:

• Oblique lattice for both cases of height
c, gives rise to monoclinic (I)(9).

• While the 2-D rectangular lattice gives
rise to orthorhombic (I)(10) in case of
c 6=a and b, tetragonal (I)(11) is obtained
when c=a or c=b.

• The 2-D Square lattice with third plane
stacked at a height unequal to the sides
of the base plane result in tetragonal(I),
at a height equal to the sides, cubic
(I)(12) is obtained. Sodium, the soft-
est metal, exists in body centered cubic
structure.

• Regular centered hexagonal, on AB
stacking results in hexagonal(P) itself.

3.3 AB Stacking Special Cases: Face

Centered Lattices

3.3.1 Square Lattice

Common salt or sodium chloride (NaCl),
available in every kitchen, happens to have

a face-centered cubic structure which is
extremely difficult to visualize. We have
also found in our endeavor that it is one of
the most intriguing structures to construct.
After much deliberation, we have come up
with the following process of obtaining this
structure.

AB stacking of square lattice, when
the height of second plane is a√

2
would re-

sult in face centered cubic(13) structure with
each side of length

√
2a. To view this struc-

ture, we need to rotate the whole structure
by an angle of 45o.

Figure 4: Formation of Face Centered Cubic

For constructing this structure, choose
four square lattices to form a big square lat-
tice of side 2a. But, we can also observe a
square of side

√
2a, which is formed by the

diagonals of the smaller square as shown in
Fig. 4, embedded in the bigger square. Now,
the second plane would have one square
with its vertices at the center of each of the
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Table 1: Stacking of 2-D Bravais lattices to obtain 3-D Bravais lattices.P: Primitive; I: Body Centered;

F: Face Centered; C: Side Centered

2-D Bravais
lattice

AA Stacking AB Stacking

‘c’ not equal to

either of the sides

‘c’ equal to either

one or both of the

sides

‘c’ not equal to

either of the sides

‘c’ equal to either

one or both of the

sides

Oblique lat-

tice, a 6=b,

γ 6= 90o

c 6=a 6=b or c=a 6=b,
α=β=90o,γ 6= 90o,
Mono.(P)

c 6=a 6=b or c=a 6=b,

α=β=90o,γ 6= 90o,
Mono.(I)

Rectangular

lattice,

a 6=b, γ = 90o

c 6=a 6=b,
α=β=γ=90o

Ortho.(P)

c=a 6=b,
α=β=γ=90o

Tetra.(P)

c 6=a 6=b,
α=β=γ=90o

Ortho.(I)

c=a 6=b,
α=β=γ=90o

Tetra.(I)

Square lattice,

a=b, γ = 90o

c 6=a=b,
α=β=γ=90o

Tetra.(P)

c=a=b,
α=β=γ=90o

Cubic(P)

c 6=a=b,
α=β=γ=90o

Tetra.(I)

c=a=b,
α=β=γ=90o

Cubic(I)

Centered

Rectangular

lattice,

a 6=b, γ = 90o

c 6=a 6=b or c=a 6=b,
α=β = γ = 90o,
Ortho.(C)

Regular

Centered

Hexagonal

lattice,

a=b,

γ = 60o/120o

c 6=a 6=b or c=a 6=b,
α=β=90o,
γ = 60o/120o,
Hex.(P)
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small squares of side a, at a height of a√
2
.

Then, the third plane would be coincident
with the base plane and shall be at a height
of
√

2a from it. Thus, we obtain a face cen-
tered cubic lattice of side

√
2a starting with

square lattices of side a. One should remem-
ber that this same lattice structure can also
be viewed as tetragonal(I) lattice with sides
a=b and height c=

√
2a.

Now, we explore if there would be
any further possibilities of centered stack-
ing which can be achieved using the funda-
mental rhombus type-1 and rhombus type-2
lattices, corresponding to the centered rect-
angular and centered regular hexagonal 2-D
Bravais lattices [1].

3.3.2 Rhombus Type-1

AB stacking of rhombus type-1 lattices
would result in face centered orthorhom-
bic(14), which again needs careful visualiza-
tion. Figure 5 gives the idea, wherein center-
ing of the rhombuses result in the desired 3-
D lattice. Similarly, AB stacking of rhombus
type-2 lattices would result in monoclinic(I)
with a special condition of a=b in the base
plane.

Thus random stacking, AA and AB
stacking of the five 2-D Bravais lattices in
two different ways has produced thirteen
of the fourteen 3-D Bravais lattice structures
except the trigonal lattice which needs spe-
cial discussion.

Figure 5: Formation of Face Centered Or-
thorhombic

4 ABC Stacking: Trigonal
(Rhombohedral) Lattice

Here, on considering the alternative possi-
bilities of centering rhombus type-2 lattice,
we would see that the answer lies in real-
izing an important aspect, which is, the di-
agonal of this rhombus is equal to its side
length and it is in fact an equilateral trian-
gle with perfect symmetry, the only trian-
gle with possibility of centering. The solu-
tion is to center stack the centered Hexag-
onal lattices at the centroid of the equilat-
eral triangle. At once we realize that fourth
plane instead of third, would match its ver-
tices with the first base plane. Hence, ex-
tended stacking has four planes (A-B-C-A),
instead of three to obtain a non-primitive
cell. The stacking is illustrated in Crystallog-
raphy: An Introduction[7] and is reproduced
here for completeness in Fig. 6. It results in
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two distinct unit cells. This is the reason for
it being a separate class in seven crystal sys-
tems.

Figure 6: Formation of Trigonal and Rhom-
bohedral Unit cell

Dolomite crystal, which is widely used
as a healing stone, has rhombohedral struc-
ture.

5 Conclusion

We have proposed two types of stacking of
2-D planes, A-A stacking and A-B stacking.
Using AA stacking, we have demonstrated
the construction of five primitive unit cells
and the lone side centered orthorhombic lat-
tice. The AB stacking along with extension
to a third plane allowed us to visualize the
four body centered crystal structures. While
the face centered cubic Bravais lattice is con-
structed by using AB stacking of square lat-
tice with the height between the first and
third plane being

√
2a, to obtain face cen-

tered orthorhombic, rhombus type-1 lattice

has been centered instead of centered rect-
angular lattice.

All these 12 lattices are the special
cases of the most general 3-D crystal sys-
tem obtained by randomly stacking the 2-D
oblique lattices, which is called the triclinic
primitive unit cell.

The trigonal system which encom-
passes the rhombohedral primitive lattice is
a special crystal structure that could be con-
structed by AB stacking of equilateral trian-
gular 2-D lattices with a total of 4 planes.

The proposed methodology to arrive at
the 14 Bravais lattices could be converted
into an interesting classroom/lab activity
which could be assessed for its effectiveness
using Physics Education Research strate-
gies.
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