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Abstract

Imaginary assemblies of intercommunicating

bottles-or boxes, in which marbles circulate

performing random walks, can help modeling

(and hence understanding) slow and long-lasting

diffusion processes and enable easy evaluations

of typical times involved in their dynamics.

Compared to the more traditional approaches to

explaining diffusion inspired by the Ehrenfest's

urn problem, these simple random walk models

offer a more straightforward way to illustrate

irreversibility/recurrence issues.

1 Introduction

Ideal models based on “Marbles and Boxes”
are well suited to acquaint students with the
basics of the diffusion and transport dynam-
ics in gases and other media. Mostly imple-
mented by computer algorithms, these ab-
stract artifacts can sometimes have a ma-

terial counterpart suitable for developing
hands-on classroom activities. An exam-
ple is the “Marble Game”, 1 proposed some
years ago in the U.S. in connection with
the reforms of the STEM curriculum [1].
In this game N marbles are distributed be-
tween two boxes. Marbles jump between
boxes (in both directions) at a constant rate,
with a random extraction rule (e.g., rolling
a multi-sided die) that decides which mar-
ble will next jump to the other box: if the
rolled number is less than or equal to the
number of marbles in box1, then a marble is
moved from box1 to box2, otherwise a mar-
ble is moved from box2 to box1.

The modeling with the “Marble Game”
is a kinetic Monte Carlo (kMC) simulation
of the classic Ehrenfest's two-urn model sys-
tem (also known as dog-fleas model) and
can be physically realized if the number

1Not to be confused with the popular LEGO Mar-
ble Maze Game (Labyrinth).
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N of marbles is not too large (say N =

10). This allows the possibility for a class-
room activity with a physical representa-
tion of the game, on which the students
can play moves by hand according to set
rules, and gives support in a sensory form to
the idea that diffusion and molecular trans-
port phenomena are marked by the evo-
lution of a dynamical system. Once the
process has started, its evolution is exam-
ined through the concepts of probability, sta-
tistical equilibrium and randomness of the
states reached by the system. By playing the
game, and at a later time running computer
simulations, students discover that equilib-
rium is the result of a dynamical process
yielding to an irreversible tendency, and rec-
ognize the key role that randomness plays
in the diffusion mechanism (ruled by Fick's
first law) modeled by the game.

In this paper, we consider a “Marbles
and Bottles-or Boxes” model explaining dif-
fusion, reported in the 90’s by Clifford Pick-
over, a researcher at IBM Watson Research
Center, who first introduced it in form of
a math puzzle connecting time to probabil-
ity [2, 3]. This model - that is as a matter
of fact the well-known random walk in one
dimension - leads to a startling representa-
tion of time intervals in terms of solutions
to simple random walk and diffusion prob-
lems, and offer an alternate view to the more
classical approaches, based on the “Marble
Game” or similar models, to explain macro-
scopic irreversibility.

The structure of this paper is organized

as follows. In section 2, we outline how the
“Marbles and Bottles-or Boxes” model op-
erates and what kind of physical systems
it could represent. In section 3, we intro-
duce some very elementary concepts about
random walks and stochastic processes, re-
quired in order to appreciate the statisti-
cal arguments developed in subsequent sec-
tions. In sections 4, 5, and 6, we present
three sample applications of the above con-
cepts and offer a proof, only relying on ele-
mentary probability theory and finite differ-
ence equations, of a formula to calculate the
first-passage time through a generic node
of a linear chain assembly. In sections 7
and 8, in order to illustrate irreversibility/
recurrence issues, we introduce a variant of
the basic random walk model applicable to
various physical situations and briefly re-
capitulate the Ehrenfest's urn model along
with generalizations thereof. Some remarks
on the discrepancy between recurrence and
irreversibility at the macroscopic level are
developed in sections 9 and 10, where sim-
ple simulation results are also summarized.
In section 11 a gas effusion process is pre-
sented as a microscopic analogue of the
model outlined in section 2. Conclusions
are drawn in section 12, along with a brief
discussion of the pedagogical value of the
above-mentioned models and their limita-
tions.
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2 Time in a bottle-or a box

What happens if we place a marble into a
large glass bottle that had a small opening at
its top and we began to shake the bottle ran-
domly? How long would it take for the mar-
ble to leave the bottle through the tiny aper-
ture if we were to continue shaking? The av-
erage time for the marble to get out of the
bottle will obviously depend on the size of
the hole (and the size of the marble). Let us
say the marble popped out after 1 hour of
constant bouncing around in the bottle.

What would happen now if we were to
place a series of bottles together so that only
a small opening connected the bottles: Bot-
tle 1 connects to Bottle 2, Bottle 2 connects
to both Bottle 1 and Bottle 3 (see figure 1),
and so on. Nothing prevents us from imag-
ining that more and more bottles could be
connected using their small openings, all in
the same way to make up a linear assembled
chain. The last bottle of the sequence (say
Bottle n) opens to the outside world. (As-
sume this is an ideal system: it has no fric-
tion, gravity, etc.). How long would it take
for the marble to exit Bottle n? We must bear
in mind that in each of the intermediate bot-
tles the marble, in its random motion, has
just as likely a chance of moving into a pre-
vious bottle as it does moving forward. Let
us also assume that it takes one hour for the
marble to find an opening as it did in the
single-bottle experiment.2

2All models involve some simplification. Models
as those considered in this paper, in which imagi-
nary marbles of a proper size are placed in imaginary

It can be easily shown, virtually starting
from scratch, that the average bottle number
reached in a given time approaches a con-
stant. This suggests a method for drawing
diagrams, of immediate visual effectiveness
for a student, connecting bottles-or boxes
(or chambers or other kind of container) in
long chains representing large expanses of
time, in fact so large that the flow of mar-
bles through them appears as essentially ir-
reversible.

In addition, the imaginary assembly
of bottles just described could represent a
macroscopic model demonstrating the dif-
fusion of an extremely rarefied gas in a net-
work of high vacuum flasks connected by
highly selective porous seals.

Finally, it could be used as a simula-
tion tool suitable to give just an idea of the
difference between a macroscopic and a mi-
croscopic system: how fast (and how small)
should the marble be, in order to reduce the
“diffusion” time to values that can actually
be experienced even for this kind of rela-
tively complex system?

3 Random walks and Poisson

processes

The concept of random walk (or drunk
man walking) was introduced by the En-
glish philosopher and statistician Karl Pear-
son (1857-1936) in a letter to Nature, dated

boxes, are well suited for high-speed computer simu-
lations and were used in Physics since the pioneering
work by Berni Adler [4] on hard sphere systems.
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July 27, 1905 [5], where the following prob-
lem was presented for the first time: “A man
starts from a point O and walks l yards in a
straight line; he then turns through any angle
whatever and walks another l yards in a second
straight line. He repeats this process n times. I
require the probability that after these n stretches
he is at a distance between r and r + dr from his
starting point, O.”.

Intensively studied in the 20th cen-
tury, examples of random walk are ubiq-
uitous, from Brownian motion to diffusion
processes in chemical-physics, biology and
sociology [6]; other examples, frequently
quoted, concern the motion of a body
through a series of adjacent passages or, oc-
casionally, in confined geometries, with var-
ious applications to transport and separa-
tion processes [7–12]. As a special kind
of stochastic process, the random walk is a
mathematical model that schematizes, using
probabilistic-statistical methods, the time
course of a random phenomenon.

In the following, it is assumed that the
search for the exit in the random motion of
the marble inside a bottle is a stochastic pro-
cess, more specifically a Poisson process, in
which events occur in time completely at
random at intermittent times, like incom-
ing calls to a telephone. The mathemati-
cal description of natural phenomena such
as radioactive disintegration, and of lots of
demographic, economic and industrial pro-
duction processes are based on the Poisson
model [6–9].

In the Poisson model the probability

∆p for the marble to get to the opening in
a time interval ∆t is proportional to same
∆t, namely ∆p = λ∆t, where λ is a con-
stant whose dimensions are the inverse of
time and represents the probability per unit
time for the marble to leave Bottle 1. It can
be shown that the average time the mar-
ble would take to find the opening is λ−1.3

From now on, we will denote the above
quantity by m1 (1 hour in our example),
which corresponds to the time step in the
random walk. If the bottle includes more
openings, the exit probability increases ac-
cording to their number M (i.e., ∆p =

Mλ∆t), while the average time for the mar-
ble to get out follows the inverse proportion,
namely (Mλ)−1 = m1/M.

Very simple statistical reasonings allow
us to analyze the motion of the marble
within the bottle chain and derive an equa-
tion for the average time Bottle n is exited for
the first time.4 The above problem is widely
and well-known in Statistics, and reduces to
the simple random walk on N (the set of
natural numbers) of length n. As we do not
require the reader to have any prior knowl-
edge on random walk processes, our analy-
sis was conducted with the intent of achiev-
ing the goal by steps, and to this end it took
into consideration three cases:

1. Only one free-flowing connection be-
tween the n bottles (this reduces to the

3More exactly, it can be shown that the number of
openings found in time t is, on average, µ = λt (See,
e.g., [6, 9]). For µ = 1 it follows the assertion.

4In the stochastic jargon this is defined as first-
passage time or hitting time.
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trivial case of unidimensional diffusion
of a free walker).

2. The addition of backward openings
(case of a biased walker with equal
step size in both directions but unequal
probability of taking forward and back-
ward paths).

3. Addition of backward openings, after
considering that the first bottle is differ-
ent from the rest (due to the reflecting
barrier at the starting node).

Further generalizations could be imagined
considering more complex network topolo-
gies constituted by nodes having connec-
tions through both forward and backward
paths in various combinations of step sizes
and direction probabilities.

4 Random walk and diffusion in a

linear chain assembly

In the simplest case (1.) remember from sec-
tion 2 that in each of the intermediate bottles
(none at the end of the chain assembly) the
marble has just as likely a chance of passing
to the next bottle as it does to regressing into
a previous one.

Let mk represent the expected amount
of time the marble would take to pass from
Bottle k to Bottle k+ 1 (including any regres-
sions to previous bottles). Then, for k > 1,
there is a 50 percent chance that the marble
will go directly from Bottle k to Bottle k + 1,
incurring an average time m1, and a 50 per-
cent chance that it would regress to Bottle

k − 1, in which case the average time to re-
turn to Bottle k and then to move to Bottle
k + 1 would be mk−1 + mk. This leads to the
following difference5 equation involving the
averages of stochastic variables:

mk =
1
2

m1 +
1
2
(mk−1 + mk), (1)

which simplifies to mk = mk−1 + m1. By in-
duction, its solution is: mk = km1.

So, we get the simple but interesting re-
sult that the average time to pass from Bottle
k to Bottle k + 1 is k times the expected time
to exit Bottle 1. The average time m to move
from Bottle 1 to Bottle n would be 1 + 2 +

. . . + (n − 1) = n(n − 1)/2 times the aver-
age time m1 to find an opening (For a large
number of bottles the latter equation might
be approximated by n2/2). We ignore here
the fact that the first bottle is different from
the rest of the chain as well as any complica-
tions depending upon whether or not con-
tinuous space or discrete space settings were
assumed. Depending on the case, the results
are slightly different when the assemblage
contains just a few chambers. However, as
stated, if a large number of chambers are
considered, m increases according to n2. It
can be shown, in a strict form, that the first-
passage probability for the discrete random
walk and the continuum diffusion in trans-
mission mode are asymptotically identical
[13].

According to the stochastic jargon, the
free state of the marble is an absorbing state

5Following a widely used definition, the term dif-
ference equation is treated here as synonymous with
recurrence relation.
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(the state in which the marble is removed
from the system) and the m quantity is the
average absorption (or escape) time. The
chain has a reflecting node (supposed at the
origin) and ends on an absorbing barrier.
At the start of the experiment, the marble
is placed in the reflecting node. It should
be noted that if the connections between the
bottles were equipped with valves prevent-
ing the marble from making regression, the
average time to traverse the chain and reach
the absorbing (free) state would be the vi-
able minimum, equal to n times m1.

5 Random walk with addition of

backward connectors

Let us now examine the case (2.), for k > 1,
with M + 1 possible exits from a bottle (ex-
cept Bottle 1), one forward and M backward
(see figure 2). In other words, the system
is ruled so that one opening is free flowing,
while the remaining have a one-way valve
allowing the marble to only travel in a back-
ward direction (a direction away from the
opening of final egress).

Assuming as before that finding an exit

is a Poisson process, the average time to
find the first of M + 1 exits is m1/(M + 1).
There is a probability 1/(M + 1) that this
exit will be forward, in which case no addi-
tional transition time is required. Also, there
is a probability M/(M + 1) that the first exit
will regress to Bottle k− 1, in which case the
additional average time to return to Bottle k
and then to progress to Bottle k+ 1 would be
mk−1 +mk. This leads to the modified differ-
ence equation:

mk =
1

M + 1
m1 +

M
M + 1

(mk−1 + mk), (2)

(remember that eq. (2) is valid for k > 1),
which simplifies to mk = Mmk−1 + m1. Its
solution (verifiable by induction) is:

mk = (∑k−1
j=0 Mj)m1

=

 km1, if M = 1,
Mk − 1
M− 1

m1, if M > 1.

(3)

(Note that eq. (3) is also valid for k = 1).
The average time to exit the nth bottle (i.e.
the average absorption time of the chain) is
thus:

m = ∑n
k=1 mk =


[n(n + 1)/2]m1, if M = 1,
Mn+1 −M− n(M− 1)

(M− 1)2 m1, if M > 1.
(4)

The second line in the equation array (4)

34/1/1 6 www.physedu.in
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might be approximated by

m ≈ Mn+1

(M− 1)2 m1 (5)

for large n (say n ≥ 10).

6 Simple random walk model

We have assumed that the rate of exit from
each hole is the same and hence the rate
of exit from a bottle increases according to
the number of holes, namely it is M + 1
times the rate of exit from Bottle 1, which
has only one hole (this makes the first bot-
tle different from the rest). Then the marble
will find an exit with a probability per unit
time ∆p/∆t = (M + 1)λ = (M + 1)/m1, in-
curring an average time m1/(M + 1).

If it is assumed (case 3.) that the av-
erage time to leave a bottle is the same
for all bottles including the first (the sim-
ple random walk model), then the constant
in the difference equation (probability of
leaving Bottle 1) will increase by a factor
of M + 1. This can be obtained, for ex-
ample, by enlarging the hole of Bottle 1
by the same factor. Then, relative to the
first bottle, the remaining will have an exit
probability 1/(M + 1) for each opening. It
follows that the marble will take directly
the forward exit with a probability per unit
time ∆p/∆t = λ/(M + 1) = 1/[m1(M + 1)]
incurring an average time (M + 1)m1. Sub-
stituting in equation (2) the constant m1 with
(M + 1)m1 the solution then changes to:

mk = (2 ∑k−1
j=0 Mj − 1)m1 =

 (2k− 1)m1, if M = 1,
2Mk −M− 1

M− 1
m1, if M > 1.

(6)

The average time required to get past the nth bottle becomes:

m = ∑n
k=1 mk =


n2m1, if M = 1,
2(Mn+1 −M)− n(M2 − 1)

(M− 1)2 m1, if M > 1.
(7)

The second line in the equation array (7) might be approximated by

m ≈ 2Mn+1

(M− 1)2 m1 (8)

(for large n).
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The latter is the approximate equation
reported by Pickover in [2, 3]. It was de-
rived in 1991 by Shriram Biyani, Pickover's
colleague at IBM, using the statistical argu-
ments exposed above [14]. Various other
approaches to first-passage problems on N

have been devised, and some of them can
be found on the Internet (see, among oth-
ers, [15]). The number of steps to go from 0
to n in a simple random walk on the line of
natural numbers, with probability p in the
forward direction (except at the starting po-
sition, where the probability is 1) and with
probability 1 − p in the opposite direction,
is expressed as

n
2p− 1

+
2p(1− p)
(1− 2p)2

((
1− p

p

)n
− 1
)

,

which reduces to the second line in the equa-
tion array (7) for p = 1/(M + 1) and M > 1.

We preferred proposing here the
Biyani's derivation because of its greater
simplicity compared to other approaches.
So, equation (8) (as its avatar (5) reported in
the previous section) may be used for n� 1
and M > 1 - that is for large chains in the
presence of one-way backward connectors
in addition to the free flowing connection -
and gives the average time until the nth bot-
tle is exited for the first time (first-passage
or hitting time). As stated in section 2, it
turns out that the average bottle number
reached in a given elapsed time approaches
a constant.

7 Random walk with restarts:

The Sisyphus force

Many variants of the simple random walk
model could be developed as the bottles can
connect to each other through thin tubes in
lots of combinations, scaling up the connec-
tions from simple linear chains to complex
networks. Among the most interesting, the
introduction of one-way backward connec-
tors directly to Bottle 1 (figure 3), bypass-
ing the rest of the chain. This is a special
case, susceptible of a simplified mathemati-
cal treatment, of the random walk with ran-
dom restarts, in which, starting at the origin,
the walker faces two choices: either moving
forward to the next node, or jumping back
to the starting node with a “restarting prob-
ability” r,6 acting like a restoring force that
will tend to bring the walker back to ori-
gin. This force is known as “Sisyphus force”,
and the walking process as “Sisyphus ran-
dom walk” [16], by analogy with the Greek
myth of Sisyphus. The effect considered un-
derlies, in the context of Doppler laser cool-
ing, the behavior of some physical mecha-
nisms by which alkali atoms climbing from
the ground level to higher excited states ex-
perience an increasing probability of being
optically pumped into a minimum potential
energy state from where the process restarts.

In this situation, if the marble expe-

6In the random walk with restarts (RWR) stan-
dard algorithm, the walker is allowed to move to a
randomly chosen neighbor (with a certain probabil-
ity p = 1 − r), or to jump back to the origin with
probability r.
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riences a regression, suddenly going back
to Bottle 1 through any of the additional
tubes, then the process restarts afresh from

the source node, and the marble must re-
cross all intermediate nodes in order to re-
turn eventually to Bottle k. This is expressed
by the equation:

mk =
1

M + 1
m1 +

M
M + 1

(m1 + . . . + mk−1 + mk), (9)

(valid for k > 1), which simplifies to

mk = m1 + M(m1 + m2 + . . . + mk−1).

Hence, it is obtained, by induction,

mk+1 = m1 + M(m1 + . . . + mk−1 + mk)

= m1 + M(m1 + . . . + mk−1) + Mmk

= (M + 1)mk,

and at last mk = (M + 1)k−1m1, valid for
M ≥ 1. (M = 1 this time is not a special
case). The average absorption time is:

m =
n

∑
k=1

mk =
(M + 1)n − 1

M
m1

≈ (M + 1)n

M
m1

(10)

(for large n). Assuming the same average
exit time for all bottles, including the first
one, we have to replace in the equation (9)
the constant m1 by (M + 1)m1 and make the
necessary simplifications7, thus getting

m =
(M + 1)n − 1

M
(M + 1)m1

≈ (M + 1)n

M
(M + 1)m1

(11)

7The simplifications are straightforward and are
left as an exercise for the more energetic appenders.

(for large n).
All the former results might be further

generalized for a generic p probability for
the marble to directly take the forward exit
(and a generic restarting probability r) by re-
placing M = 1/p − 1 = r/p in the expres-
sions given above.8

8 Ehrenfest's urn experiment and

recurrence time

The Marble Game we encountered in sec-
tion 1 is a kMC simulation of the Ehren-
fest's urn experiment. This thought exper-
iment, originally conceived in the wake of
the grand debate about the apparent con-
tradiction between second law of thermo-
dynamics and Boltzmann’s kinetic theory of
gases, was authoritatively defined by Kac
“one of the most instructive models in the
whole of physics” [17]. In the simplest ver-
sion of the experiment [18], one starts with
N marbles in the left urn (or urn0). The mar-
bles are numbered from one to N and a third
urn exists, containing N cards with a natural

8m = p−n−1
1−p m1 ≈ p−n

1−p m1. (Cfr. eq. (18) in ref. [16]).
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number from one to N printed on each. The
procedure considers drawing a card at ran-
dom from the cards-urn, looking at the num-
ber printed on it, drawing the marble with
the corresponding number from its urn, and
putting it in the other urn. (The cards are
returned to the card-urn after each observa-
tion). The procedure is carried out repeat-
edly, virtually endlessly. Then, simply re-
lying on the counting of the possible con-
figurations and forcing the process to be re-
peated on a fairly large number of moves,
we expect the initial state with the whole of
the N marbles in the urn0 to be reproduced
with a probability of 2−N.

The literature also reports a num-
ber of interesting multi-urn extensions/
modifications of the original Ehrenfest's dog
fleas model, which would be worth explor-
ing [19–25]. In latter models, N marbles
circulate in the network relying on either
directed or random mechanisms that dis-
tribute the marbles until some specific con-
dition is reached, or the first-passage to
some special state is detected.

In the case of a multi-urn experiment
(M+1 urns from urn0 to urnM), the proba-
bility of the special state with the whole of
the N marbles in the urn0 would be (M +

1)−N [19]. The corresponding so called av-
erage recurrence time, that is the time after
which the system regains periodically (to ar-
bitrary closeness) its initial state (Poincar cy-
cle) is then calculated from the Kac's lemma
[26,27], taking the inverse of this probability:
m[N→N] = (M + 1)Nm1, being now m1 the

time slice spent to force a marble to change
urn.9

9 Emergence of irreversible

behavior

In the Marbles and Bottles-or Boxes model
subject of this paper we have seen that, in
the simplest case of a single two-way con-
nector joining the bottles (figure 1), the num-
ber of bottles reached on average by the
marble at a given time increases with the
square root of the same time: n ∝

√
m, as ex-

pected for unidimensional random walks.10

The introduction of additional one-way
backward connectors, as in figures 2 and 3,
leads to an increase in disorder in the path
of the marble. Now, as the number of back-
ward connectors increases, the marble is
more likely to undergo regression; so, on av-
erage, it would take longer to reach a given
number of chain nodes. This number grows
very slowly with time, in fact more slowly

9See, e.g., [27] for a proof of this. The value re-
ported obviously depends on the peculiarity of the
macroscopic state considered, namely the state of
minimum probability (the N-state or zero-entropy
state). Each macroscopic state has its own probabil-
ity (known in the literature as stationary probability
or Markov probability measure), ranging from a min-
imum in the N-state to a maximum in the N/2-state
(the equilibrium state or maximum-entropy state).
As the equilibrium state is reached, the probability
to deviate from it is so much smaller than N is bigger.
In this near-to-equilibrium regime, the probability is
well approximated by a Gaussian centered on N/2.

10In the unidirectional forward motion without re-
gression the growth would be linear: n ∝ m.
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Figure 1: A chain of three bottles communicat-
ing through free flowing (two-way) openings be-
tween them. This is called a C(3, 1) assembly,
denoting a chain of 3 bottles, with one forward
opening and one backward opening (M = 1)
each (except the first bottle that has only one
opening). If the marble takes one hour to leave
the first bottle, it will take about 32 = 9 hours of
shaking to get the marble out of the bottle chain.

than any growing function described by a
power law. We found that for M > 1 (and
very long chains) the relationship between
the length of the chain assembly and the ex-
pected elapsed (absorption/escape) time (or
between a given node number and the cor-
responding average first-passage time) ex-
hibits a logarithmic pattern.

Figure 2: A C(3, 2) assembly: three bottles
with two backward connectors ruled by one-
way valves (always with the exception of Bottle
1). It will take an average of 19 hours of unin-
terrupted shaking for the marble to escape. (The
enlarging of the hole of Bottle 1 required to make
the first bottle equal to the rest is not shown).

Using either equation (8) or its avatar
(5), valid for suitably long chains (say n >

Figure 3: A variant of C(3, 2) with one-way
tubes bringing directly the marble back into the
first bottle. The marble escapes after 39 hours
of enduring shake. (Additional tubes connect-
ing Bottle 1 to itself, in order to make it equal to
the rest, are not shown).

10), students can be encouraged to draw di-
agrams representing large time stretches, by
varying the number of retrograde connec-
tions (represented by arcs) and /or the num-
ber of bottles-or boxes in the chain assembly.
Some pictorial examples of such diagrams
have been reported by Pickover, who also
introduced – in order to facilitate the discus-
sion of the startling characteristics of these
chains – the symbol C(n, M) to represent a
generic chain assembly with n chambers and
M backward connectors between them [3].11

Each connector is represented by a line. Us-
ing Excel, you can easily map typical times
of “improbable” processes, as the escape of
a walker from such an intricate maze as that
of figure 4.

It was apparently Smoluchowski (cited
by Kac in [26]) who advanced the rule that
a process started in a state with long re-
currence time (that is - roughly speaking -

11Bear in mind that there is always one forward
connector per node.
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Figure 4: A C(15, 9) assembly, consisting of 15
boxes with 9 backward connectors each, repre-
sents about 6.6 billion years, far beyond the age
of the solar system.

the time to wait, on average, for the same
state to recur) will appear as irreversible.
On the other hand, a short mean recur-
rence time makes it meaningless to speak
about irreversibility. Other different no-
tions of (ir)reversibility and recurrence, and
of their interrelationships, have character-
ized the many different formulations of clas-
sical thermodynamics in the last two cen-
turies, leading to non-univocal meanings
and sometimes confusing expositions of the
same concepts [28]. Entering such subtle
distinctions, however, is beyond the scope
of this paper.

Marbles and Bottles-or Boxes models
described in this paper are suitable for illus-
trating “essentially” irreversible processes
because they are nothing more than absorb-
ing chains of finite size, and all absorbing

chains are actually not recurrent, being their
exit probability (i.e. the probability that
the walker eventually terminates at a par-
ticular node corresponding to an absorbing
state) equal to 1 [29]. Ultimately, this non-
recurring behavior has to be traced back
to the eventual removal of the walker as it
hits the absorbing barrier, so that the sys-
tem can not be longer considered insulated.
Differently, and perhaps surprisingly, infi-
nite non-absorbing chains can exhibit recur-
rence, transience or ergodicity under suffi-
cient conditions, while random walks on (fi-
nite) circular paths have the less restrictive
recurrence conditions [30, 31]. The Sisyphus
random walk considered in section 7 is re-
current and ergodic on an infinite chain, as
intuitively expected considering that the re-
set mechanism will prevent the walker from
being driven too far off from the origin. Ev-
ery point is reached infinitely often and the
mean recurrence time is given by:

m[n→n] =
(M + 1)n

M
(M + 1)m1 (12)

(Cfr., for a proof, eq. (27) and eq. (11)
in ref. [16]). Note that equation (12), valid
for an infinite chain, looks the same as the
asymptotic expression of equation (11) for
the absorption time of the finite chain. It
turns out, as intuitively expected, that the
average time to surpass position n and the
mean recurrence time of same position both
grow exponentially with the distance.

So, the emergence of irreversible behav-
ior in systems modeled by finite - yet very
large - absorbing chains is intended in a still
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stronger sense than the Smoluchowski's cri-
terion did, as the elapsed times involved
are so long, compared to any ordinary ex-
perience, that the guess of the irreversibility
(viz non recurrence) of the flow of marbles
through these chains can be fully trusted.
For example, a C(15, 9) assembly, that is an
assemblage of fifteen chambers connected
by one forward connector and nine back-
ward connectors (see diagram of figure 4),
represents a span of time of about 6.6 · 109

years – far beyond the age of the solar sys-
tem (about 4.5 · 109 years) – because the mar-
ble would spend that time to escape. With
the addition of a single retrograde path, we
realize a C(15, 10) assembly, which repre-
sents about 2.8 · 1010 years or twice the age
of the universe (about 1.4 · 1010 years).

10 Irreversibility Vs. Recurrence

To illustrate recurrence, the standard ped-
agogical approach contemplates urns con-
taining numbered objects that are forced
to change urn by some withdrawal mech-
anism. The relationship between the num-
ber N of marbles returning on average to
the zero-entropy state (the whole of the mar-
bles in urn0), the number M+1 of urns (2 in
the basic version of the experiment), and the
expected recurrence interval m[N→N] takes
the form m[N→N]/m1 = (M + 1)N, being
m1 the time slice spent to force a change of
urn and make an observation. Note that the
left-hand side of latter relation may be in-
terpreted as the average number of obser-

vations (or time steps) expected until a re-
currence incurs. This also means that for
a given number of observations, the mar-
bles ever-returning are limited on average to
N ≤ logM+1 [number of observations].

Unfortunately, a classroom activity on
this subject is workable only for trivial val-
ues of N. For example, assuming it would
take 5 seconds to carry out one observation
in the simplest two-urn experiment (extract-
ing, moving, counting, etc.), the work re-
quired to observe the return of 10 marbles
requires about 5,120 seconds, far beyond 1
hour. However, simple Excel simulations
conducted by other authors have shown
that all the main features of the Ehrenfest's
model can be tested in a few seconds [32].

Computer simulations suffer, however,
serious limitations as the number of mar-
bles begins to increase, due to the exponen-
tial growth of the computer's time steps re-
quired: if we start, for example, with N =

100 marbles in urn0, then the expected re-
turn time is 2100m1. Even if each simula-
tion step required a billionth of a second,
the entire run would take about 4 · 1013

years to complete, or roughly 3,000 times the
length of time that the Universe has existed
thus far! Simulation runs with N ∼= 100
(or higher) are therefore stopped at a very
early stage, but even a limited number of
run-steps will suffice to highlight the con-
vergence towards equilibrium, which is at-
tained rather quickly. For N values within
this order of magnitude, simulations give
evidence that the amplitude of the fluctua-
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tions decreases with N, so there is no hope
of incurring a return. For a workable com-
promise, it would need to drop to N ∼= 40
(or lower) to observe recurrence.

Despite the above limitations, the simu-
lations allow the following key points to be
highlighted:

• the equilibrium state is the state of max-
imum probability;

• the attractor character of the equilib-
rium state on systems far from it (A
far-from-equilibrium system tends to
evolve towards equilibrium);

• the inverse process (spontaneous sys-
tem transition from a more probable to
a less probable state) is always possible,
yet improbable.

Concrete classroom experiences conducted
in past years by other authors proved
that two-urns simulations can support the
appropriation of the concepts of statisti-
cal equilibrium, irreversibility, entropy, and
unidirectionality of time12 [33].

Although with some differences, urn
and random walk models have various sim-
ilarities and share important characteristics.
It was Kac, in 1947, who pointed out the
equivalence between the Ehrenfest's two-
urn problem and the discrete random walk

12Simulations of this type were carried out without
a computer directly with students: each student rep-
resents a particle in an initial state (urn0), the teacher
takes the name of a student at random and pushes
him to move. . . but these experiments are (obviously)
limited!

formulation of the Brownian motion of an
elastically bound particle, when the excess
over N/2 of marbles in urn0 is interpreted
as the displacement of the particle [26].13

With no doubt both models contain the
same main message: the emerging discrep-
ancy between irreversibility and recurrence
observed at the macroscopic level, when
the statistical behavior of the system takes
relevance. To realize it, it is worth com-
paring characteristic “diffusion” times of
the two models by running simple simula-
tions. Using Excel we have carried out a
sample mapping of elapsed times for ran-
dom walkers transiting across unidimen-
sional chains (typically non-recurrent) and
recurrence times in urn-like and Sisyphus
models. It turns out that all these character-
istic times tend to be comparable with each
other as the number N of marbles initially in
urn0 is interpreted as the distance n covered
by the walker, the random walk is increas-
ingly asymmetrical (viz M increasing) and
the marbles expand in M urns before return-
ing to urn0. Summary results of our simula-
tions are plotted in figures 5 and 6 (where
unit time steps are assumed).

11 A physical argument: effusion

of a low-pressure gas

Returning at last to the question at the bot-
tom of section 2, concerning the passage

13Kac himself attributed to Schrödinger and
Kohlrausch in 1926 the original insight about the con-
nection between the two models (see [26], p. 380).
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(a) Symmetric (M = 1) RW elapsed (blue) and RWR
recurrence (red) times compared with two-urn recur-
rence time (dotted line, secondary scales).

(b) The same as (a) for the asymmetric case (M > 1).
Data are plotted for M=2. The marbles expand in two
urns before returning to urn0.

Figure 5: Logarithmic plot of tran-
sit/recurrence time versus distance of
the walker from origin for different systems.

Figure 6: For the simple asymmetric random
walk (M > 1), the discrepancy from a pure expo-
nential growth (∆ = n − logM+1 [elapsed time],
vertical axis) is plotted versus the number of
backward connectors (M, horizontal axis) and of
the chain length (n, depth axis). The resulting
surface rises steeply for high n and flattens out
for high M.

from the experiment with marbles and bot-
tles to the microscopic scale, let us consider,
in place of marbles, particles of molecular
size in motion at thermal velocities in sealed
containers (imagine that there is a vacuum
outside the container). If a pinhole large
enough for particles to fit through is punc-
tured in a wall of the container, a “gas” leak-
age from the pinhole is observed, with a
characteristic effusion time.

Particle escape times from confined re-
gions have been evaluated by various meth-
ods, either numerically by means of classi-
cal mechanics (see [34] for an example) or
by direct random walk Monte Carlo simula-
tions of the effusive process [35]. A rough
idea of the typical time of a particle escape
process can be attained through a parallel
with low-pressure (say < 0.1 Torr) effusion
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experiments with gases [36]. The character-
istic effusion time for air in a 1 liter container
(in a vacuum) at room temperature (25 °C)
punctured by a 1 mm2 hole turns out to be
about 8.6 s.14

Even if one brings down the character-
istic time m1 to the time scale of seconds,
thereby consistently alleviating the particle
trapping effect in the relatively simple as-
semblies of figures from 1 to 3, yet for chains
of increasing length and complexity (like
that of figure 4) the escape time quickly
reaches values experimentally inaccessible.

12 Conclusions

The models discussed in this paper can be
a valuable educational tool, fostering a ba-
sic understanding of the statistical nature of
the irreversible behavior of macroscopic sys-
tems. Urn-like models are traditionally con-
sidered advantageous for acquainting stu-
dents with the concept of thermodynamic
equilibrium and with the statistical origin
of macroscopic irreversibility. On the other
hand, the escape of a random walker out
of a long chain of communicating compart-
ments - similar to the escape from a maze
- exemplifies in a more immediate sense

14The characteristic time of effusion (or “relaxation
time”) is given by τ = 4V/Av̄, where: V = Volume
of the container, A = Area of the pinhole, v̄ = Av-
erage speed of molecules (467 m⁄s for air at 25 °C),
provided that the pressure outside the pinhole is es-
sentially zero (in practice . 10−5 Torr); also v̄ =√

8RT/πM, where M = Molar mass (28.97 g for air)
[36].

an “improbable” process, possible in prin-
ciple but that would require an unreach-
able amount of time in order to be actually
experienced, close to - and in some sense
stronger than - the Smoluchowski's concep-
tion of irreversibility (irreversible process =
non-recurrent initial state in any conceivable
experiment).

Taken together, the two models give ev-
idence that macroscopic irreversibility does
not manifest itself at a fundamental level but
as a result of statistical nature embodied in
the macroscopic approach. Oppositely, the
reversible character of phenomena, when
examined at the microscopic level, appears
to be ineluctable.15

Another advantage of these models is
that both are very intuitive and do not re-
quire that students have any prior knowl-
edge of the subject. In addition, the number
of variables to be understood is extremely
limited: only one variable - the initial num-
ber N of marbles in urn0 (or box1 in the Mar-
ble Game) -, or two - the number n of chain
nodes and the number M of backward con-
nectors - for the chain assembly.

Finally, both models give an occasion
for rich disciplinary and interdisciplinary
insights on the meaning of time, irreversibil-
ity, time arrow and other advanced topics.
However, a dose of caution is needed. It
should be kept in mind that if the level of
subjects covered by these topics is very high,

15Be careful not to overemphasize reversibility at
the micro level: examples were given of extremely
simple, reversible, insulated systems that exhibit ir-
reversible statistical behavior [37].
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they cannot be developed in all types of
secondary schools and careful consideration
must be paid to the skill level and interest of
students.
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Abstract

In this article, we would like to discuss the im-

plications of bound state and scattering states

of δ function potential of non-relativistic quan-

tum mechanics in one dimension. The various

expectation values in this potential have been

illustrated to satisfy the virial theorem. The re-

sults of Kronig-Penny model for one dimensional

lattice can be nicely demonstrated via this po-

tential. Later on, some perturbation problems

in this system have been critically examined to

connect the completness relation. The results

obtained have been compared with the exact re-

sults.

Keywords: δ function potential, bound
states, scattering states, expectation values,
Kronig-Penny Model

1 Introduction

Historically, this distribution rather than the
function was introduced for the modelling

of the density of idealized point mass or
point charge. The Dirac delta-function
denoted as δ(x) is strictly speaking not a
function but a limit of sequence in which
it is zero everywhere except at x = 0. At
x = 0 it is infinite in such a way that the area
under the curve is equal to unity. Here it is
to be noted that during the integration the
point x = 0 is to be included. It is clear from
the above definition that no known real po-
tential does indeed satisfy the criteria set by
the delta function potential but can be used
judiciously as an approximation in many
real physical problems [1, 2, 3]. Besides
due to the identity

∫ ∞
−∞ δ(x) dx = 1 we can

conclude that δ(ax) = 1
|a|δ(x), δ(−x) = δ(x)

and the dimension of δ(x) is M0L−1T0.
One may also imagine the emergence of
delta function in the following way. If one
considers a finite potential well of strength
α existing between x = −a/2 to x = a/2.
Now, if we take the width a as a limiting
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process going to zero in the context of the
depth α tending to infinity in such a way
that the product aα = V0 remains constant.
In this limit, the potential turns out to be a
V(x) = −V0δ(x) = −δ(x/V0). Again, pure
dimensional analysis [4, 5] confirms that

the binding energy EB ∝ −mV2
0

h̄2 . The larger
the value of the strength of the potential
V0, the lower is the energy. If we change
the strength to double the present value,
then the binding energy becomes four times
the previous one. Therefore, the numerical
value of V0 essentially indicates how deeply
the particle is bound in a stationary state.

This being a one-dimensional problem,
there is no degeneracy associated with it.
Moreover, the upper limit of the number of
bound states N < 1 + 2m

h̄2

∫ ∞
−∞ |x| V−(x) dx

with V−(x) being the absolute value of V(x)
indicates there are indeed finite number of
bound states [6, 7, 8, 9, 10, 11] in contrast
to infinite number bound states observed
in particle in a box or harmonic oscillator
potential. A well-known theorem for one-
dimensional quantum mechanics based on
varational principle [6, 12] indicates that no
matter how small V0 is, the potential well
is able to support at least one bound state.
Besides, the Hamiltonian is invariant under
the transformation x → −x so that the Par-
ity operator commutes with Hamiltonian.
As a result, by the condition of the non-
degeneracy in one dimension, the eigen-
functions must be simultaneous eigenfunc-
tions of both Hamiltonian as well as Par-

ity operator. In other words, the energy
eigen functions must be even or odd. The
Schrödinger equation for this one dimen-
sional potential is given by

− h̄2

2m
∂2Ψ
∂x2 −V0δ(x)Ψ(x) = EΨ(x) (1)

Note that except at x = 0 where the
δ function fires, the Schrödinger equation
is simple ∂2Ψ

∂x2 = k2Ψ. As a result, one can
choose the wave function as exp(±kx) for
x → −∞ and +∞ respectively. The first
derivative of the wave function also pos-
sesses a discontinuity at the origin which
can be easily seen by integrating the equa-
tion (1) over an infinitesimal interval. In
this way the exact calculation demonstrates
[13, 14, 15, 16] that there is only one bound

state of magnitide EB = −mV2
0

2h̄2 and the

ground state Ψ0 =
√

mV0
h̄2 exp

(
−mV0

h̄2 |x|
)

like other quantum mechanical problem is
nodeless. A careful look into the problem
indicates that there is indeed a length scale
a0 = 1/K0 (K0 = mV0

h̄2 ) associated with the
problem. In terms of this length scale, the
ground state energy as well as the wave
function remarkably match with those of
hydrogen atom problem (V(r) = −V0

r ,

En = −mV2
0

2h̄2
1

n2 ; Ψ100 = 1√
πa3

0
e−r/a0).

For the positive energy case (E > 0),
the relevant wave function with free parti-
cle energy Ek = h̄2k2

2m with odd parity can be
chosen[17, 18, 19] as

Ψk(x) =
1√
π

sin(kx) (2)
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This form of the wave function originates
from the nomalization condition

lim
ε→0

A(k)A(k′)
∫

sin(kx) sin(k′x)e−ε|x| dx

= δ(k− k′) (3)

The pecularity associated with the above
wave function is that it is dimensionless.
Typically, in any one dimensional bound
state problem, the wave function must have
the dimensions of M0L−1/2T0. This is due
to the cancellation of Dirac-delta from both
sides of the above equation. This odd form
of the eigen function is important for non-
zero dipole matrix element between ground
state and continumm state. There also ex-
ists the even (parity) state positive energy
[17, 18, 19] solution given by

Ψk(x) =
1√

π(k2 + k2
0)

[K0 sin k|x| − k cos(kx)]

(4)
with K0 = mV0

h̄2 . The importance of these
states will be demonstrated later related to
perturbation problems.

Two-dimensional delta function poten-
tial has served one of the toy model in dif-
ferent branches of theoretical physics in-
cluding regularization and renormalization
methods in particle physics context [20, 21,
22, 23, 24]. The paper is organized as fol-
lows. In section 2, we briefly discuss the al-
ternative paths leading to bound state en-
ergy solutions. The famous Kronig-Penny
model in solid state physics is connected
with this potential in section 3. The vari-
ous expectation values connected with the

stationary bound state energy solutions are
demonstrated in section 4. In section 5, few
important results of three different pertur-
bating potentials are highlighted. The con-
clusions are noted in section 6.

2. Review of bound state and

scattering state results

We would like to approach the problem in
two ways - one by using Fourier transform
[1, 25, 26, 27, 28] and another one through
scattering matrix [29]. We can recast the
Schrödinger equation (1) as

∂2Ψ
∂x2 + λ0δ(x)Ψ(x) = B0Ψ(x) (5)

with λ0 is a dimensionless constant given by
2mV0

h̄2 while B0 = −2mE
h̄2 is indeed a constant

having dimensions. By defining the Fourier
transform of Ψ(x) as

Ψ(x) =
1√
2π

∫
e−ikxΦ(k) dk

Ψ(0) =
1√
2π

∫
Φ(k) dk (6)

we find the Fourier transform of the equa-
tion (5) as

− k2Φ(k) + λΨ0 = B0Φ(k) (7)

As a result, the Fourier transform Φ(k) can
be written as

Φ(k) =
λΨ0

k2 + B0
(8)

Integrating over k and throwing out the ir-
relevant term Ψ(0) from both sides, we ob-
tain

1
λ0

=
∫ dk

k2 + B0
=

m
B0h̄2 (9)
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Thus, the binding energy reduces E =

−mV2
0

2h̄2 . The normalized ground state wave
function can be obtained from the Fourier
transform as

Ψ0 =

√
mV0

h̄2 exp
(
−mV0

h̄2 |x|
)

(10)

We can also obtain the bound state from
the scattering matrix formulation as follows.
For x < 0, the wave function can be written
as

ΨI(x) = A1eikx + B1e−ikx (11)

while for x > 0

ΨI I(x) = A2 eikx + B2 e−ikx (12)

The continuity of the wave function at the
orgin x = 0 gives us the condition

A1 + B1 = A2 + B2 (13)

while the discontinuity of the first derivative
of the wave function restricts the coefficients
as

ik(A2− B2)− ik(A1− B1) =
2mV0

h̄2 (A1 + B1)

(14)
The above two equations can be rearranged
in a matrix form given by(

A1

B1

)
= D(V0, k)

(
A2

B2

)
(15)

with the transfer matrix D(V0, k) is given by

D =

(
1 + mV0

ih̄2k
mV0
ih̄2k

−mV0
ih̄2k

1− mV0
ih̄2k

)
(16)

It is interesting to note that det D(V0, k) =

1 = det D(−V0, k) which indicates the con-
servation of probabilities. Besides it is im-
portant to find that

D(V0, k)D(−V0, k) =

(
1 0
0 1

)
(17)

This equation (17) indicates that the delta
function spike and a delta function potential
at the same point will cancel each other as if

there is no potential (D(0, k) =

(
1 0
0 1

)
).

From, the transfer matrix, the reflectvity co-
efficient R can be read as

R =

mV2
0

2h̄2E

1 + mV2
0

2h̄2E

(18)

while the transmission coefficient T is re-
lated with the parameters of the model as

T = 1− R =
1

1 + mV2
0

2h̄2E

(19)

It is amazing to note that both R and T be-
come infinitely large at the binding energy

E = −mV2
0

2h̄2 . We also notice that the reflec-
tion and transmission coefficients are a func-
tion only of the square of V0, so that we ob-
tain the same result as for the potential well
too. In other words, the transmission and re-
flection coefficients are identical [29] with a
delta-function well or barrier.

3. Relation with Kronig-Penny

Model

As an application of the delta function po-
tential, we would like to investigate the sta-
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tionary energy eigenstates of electrons in
a one dimensional crystal. In such a lat-
tice electrons invariably observe a periodic
potential due to the presence of the atoms
through the well-known Coulomb potential
(shown in Fig 1). In the literature of the basic
solid state course, this model is nothing but
the Kronig-Penny model [29, 30]. Because of
the long range nature of Coulomb potential,
one can even simply take the above poten-
tial by some constant periodic potential as
is done in text book of solid state; here we
reduce the width of potential to zero to rep-
resent them as a series attractive delta func-
tions of same strength, each of them being
separated by the lattice constant a. There-
fore, simplified potential energy can be ex-
pressed as

V(x) = −V0

∞

∑
n=−∞

δ(x− na) (20)

Note that in this one-dimensional model, in-
teractions between electrons are neglected.
However, one important feature of this
model with the realistic solids is that the
electrons are moving in a periodic potential
given by V(x + a) = V(x). For a sample of
size L = Na, N being the number of atoms,
the periodicity can be verified if the periodic
delta function is defined as

δ(x) =
1

2π ∑
m

e2πimx/L (21)

In figure 1, these two potentials are com-
pared. As a result, the translational symme-
try remains intact only the form of the po-
tential is changed so that one can get the

Figure 1: Schematic diagram of periodic poten-
tial (top) and representative periodic delta func-
tion potential (bottom) in a one dimensional lat-
tice.

final solution easily. Due to this periodic
property of the potential, Bloch’s theorem
predicts that each energy eigenstate of the
Schrödinger equation must satisfy

Ψ(x + a) = eiKaΨ(x) (22)

for some value of K. In fact, it is this prop-
erty which remarkably simplifies the above
problem and helps to connect the eigen-
states to find out the allowed energy eigen
values of the problem. In region I, the free
particle wave function can be written as

ΨI(x) = Aeikx + Be−ikx, k2 =
2mE

h̄2 (23)

Now, using Bloch Theorem, we can write
down the wave function in region II as

ΨI I(x) = ΨI(x− a)eiKa

=
[

Aeik(x−a) + Be−ik(x−a)
]

eiKa

(24)
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Now, to find out the coefficients A and B,
we use the continuity of the wave functions
and discontinuity of the first derivatives of
the wave functions in the two regions. The
continuity requirement gives us

A(eiKa − eika) = B(e−ika − eiKa) (25)

Similarly, the discontinuity of the deriva-
tives of the wave functions is satisfied by an-
other equation given by

A
[

ikeiKa − ikeika − 2mV0

h̄2 eiKa
]

= B
[

ikeiKa − ike−ika +
2mV0

h̄2 eiKa
]

(26)

Using equation (25) and (26), we eliminate
the coefficients A and B to obtain the equa-
tion

cos(Ka) = cos(ka) +
2mV0a

h̄2
sin(ka)

ka
(27)

Interestingly, the combination 2mV0a
h̄2 = U0

is a dimensionless parameter of the model
that characterizes the strength of the peri-
odic potential. It is to be noted that the LHS
is bounded in the region [−1, 1]. This even-
tually puts on restriction on the allowed val-
ues of k. Thus, like constant periodic poten-
tial, this periodic potential also opens gaps
in the dispersion relation ( as shown in fig-
ure 2). Moreover, in the limit of V0 → 0 and
V0 → ∞, E = h̄2k2

2m and E = n2π2h̄2

2ma2 respec-
tively are recovered.

However, at this stage we would like to
play with the equation (27) to rediscover
some important features about electrons in

Figure 2: Graphical solution of Kronig-Penny
model with emergence of energy band gaps.

a periodic system. In the limit of very large
value of U0, one can expand the RHS of
equation (27) near zeroes of sin x

x function.
The first zero of this function occurs at x =

π, therefore we can choose ka = π − δ with
δ � 1. As a result to first order in δ, we can
approximate the RHS as

cos(Ka) = −1 +
U0

π
δ

k =
π

a

[
1− 1

U0
(1 + cos(Ka))

]
(28)
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Therefore, the allowed energy can be writ-
ten as

E =
π2h̄2

2ma2 −
π2h̄4

m2a3U0
[1 + cos(Ka)]

= E0 − 2J(1 + cos(Ka)) (29)

with E0 = π2h̄2

2ma2 and J = π2h̄4

2m2a3U0
. The equa-

tion (29) reminds us the energy solution of a
typical tight-binding Hamiltonian [30]

H = −t ∑
i
(c†

i+1ci + h.c.) + V ∑
i

c†
i ci (30)

in one dimension, with c†
i (ci) being the cre-

ation ( annihilation) operator of electron at
site i and V is a constant potential. The op-
erators do satisfy the following anticommu-
tations relations given as:

{ci, c†
j } = δij

{c†
i , c†

j } = 0

{ci, cj} = 0 (31)

These relations ensure that the number op-
erator ni = c†

i ci can take only 0 and 1 val-
ues satisfying Pauli exclusion principle. The
identification of the parameters yields that
t = J and V = E0 − 2J. Thus, in the limit
U0 � 1, we rediscover the free particle en-
ergy E0 � J. Besides, we can also rewrite
the above dispersion relation (29) as

E = E0 − 2J − 2J cos(Ka)

= E0 − 4J + 2J(1− cos(Ka)

= E′0 + 2J(1− cos(Ka)) (32)

Thus suitably redefining the zero of the en-
ergy at E′0, we can recover the famous tight
binding dispersion result in one dimension

E = 2J(1− cos(Ka)) (33)

with bandwidth ( the difference between the
maximum and minimum energy) of 4J. For
Dirac electrons, transmission and conduc-
tance properties have been studied through
delta function barriers [31].

4.Expectation values in δ function

potential

Before we verify the expectation values as-
sociated with the δ function potential, let
us discuss some generic feature in connec-
tion with stationary energy states of any po-
tential in quantum mechanics. First of all,
the expectation value of the momentum in
any energy eigenstates vanishes. This can be
easily visualized in the following way. We
know that

[H, x] =
[

p2

2m
+ V(x), x

]
= − ih̄

m
p (34)

Now, considering the expectation value of
the above expression from both sides, we
identify that

− ih̄
m
〈Ψn|p|Ψn〉 = (En − En) 〈Ψn|x|Ψn〉 = 0

(35)
Considering the bound ground state wave
function of the potential as depicted in the
introduction section, we note that

< Ψ0|x|Ψ0 >

=

(
mV0

h̄2

) ∫ ∞

−∞
xe−2mV0|x|/h̄ dx

= 0 (36)
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while

< Ψ0|x2|Ψ0 >

=

(
mV0

h̄2

) ∫ ∞

−∞
x2 e−

2mV0|x|
h̄2 dx

=
h̄4

2m2V2
0

(37)

In the same spirit, it is easily verified
that

< Ψ0|p|Ψ0 >= 0; < Ψ0|p2|Ψ0 >=
m2V2

0

h̄2

(38)
With these expectation values we can easily
verify the uncertainty relation:

∆x∆p =
h̄√
2

(39)

We can use Feynman-Hellmann (FH) theo-
rem [32] to calculate the expectaion values
of the kinetic energy and potential to verify
the Virial Theorem as follows. FH theorem
predicts that〈

Ψ0

∣∣∣∣ ∂H
∂V0

∣∣∣∣Ψ0

〉
= −mV0

h̄2〈
Ψ0

∣∣∣∣∂H
∂m

∣∣∣∣Ψ0

〉
= −

V2
0

2h̄2 (40)

A quick inspection reveals that

2 〈T〉+ 〈V〉 = 0 (41)

This kind of relation is valid for generic
Coulomb type potential. This relation also
can be verified directly with the help of the
bound ground state wave function explic-
itly.

In the same way, we note the quantum
mechanical covariance

[H, x2] = − ih̄
m

(xp + px) (42)

The similar approach of the expectation val-
ues in the energy eigen states yields:

〈Ψn|(xp + px)|Ψn〉 = 0 (43)

Let us explicitly verify the above identity for
the delta function potential. A direct calcu-
lation demonstrates that

< Ψ0|xp|Ψ0 >

=

(
mV0

h̄2

) ∫ ∞

−∞
xe−mV0|x|/h̄2

pe−mV0|x|/h̄2
dx

=
ih̄
2

(44)

and similarly

〈Ψ0|px|Ψ0〉 = −
ih̄
2

(45)

This immediately verifies the fundamen-
tal operator relation (43). This on the
other hand confirms the fundamental com-
mutation relation in quantum mechanics
〈Ψ0|xp− px|Ψ0〉 = ih̄. All these expec-
taion values are important and useful to ver-
ify the various sum rules involved in non-
relativistic quantum mechanics [33, 34].

5.Perturbation Results

Coupling delta function potential with some
exactly soluble potential can yield exact re-
sults. Besides, the strength of the delta func-
tion can be used as an expansion parame-
ter to yield the result of certain infinite series
[35].

We would like to discuss three cases of
perturbation on the delta function potential
in one dimension. The first one is trivial one.
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Suppose if we add a constant potential U
to this problem, then the exact calculation

yields E = U − m2V2
0

2h̄2 . If we treat this prob-
lem from time-independent non-degenerate
perturbation theory, then the first order cor-
rection gives us E0 =< 0|U|0 >= U in-
dicating that the total energy matches with
the exact calculation. Then, it remains to
show at least other higher order calculations
should vanish. Indeed, it can be shown that
matrix element

< 0|U|k >

=

√
mV3

0

πh̄2

∫ ∞

−∞
e−mV0|x|/h̄2

sin(kx)dx

= 0 (46)

Since, all the higher order energy correc-
tions including second order involve this
matrix elements, therefore all the higher
order energy corrections are identically zero.

Let us add a perturbation of the form
H′ = −gδ(2x) = − g

2 δ(x) to the orginal
delta function potential −V0δ(x). The rea-
son for choosing this particular Hamiltonian
is two fold. Firstly, this model Hamilto-
nian can be solved exactly so that we can
compare the success of the perturbation
results with it. Secondly, we would like to
illustrate the importance of positive energy
solution for the second order perturbation
calculations.

Interestingly, it turns out that this prob-

lem can be solved exactly as follows:

H =
p2

2m
−V0δ(x)− g

2
δ(x)

=
p2

2m
− (V0 + g/2)δ(x) (47)

Therefore, the bound state energy eigen-
value will be simply

EB = −m(V0 + g/2)2

2h̄2

= −
mV2

0

2h̄2 −
mgV0

2h̄2 −
mg2

8h̄2

= E(0)
0 + E(1)

0 + E(2)
0 (48)

Now let us review the results from the per-
spectives of perturbation theory. The first
order correction to the ground state will be

E(1)
0 =

〈
Ψ0|H′|Ψ0

〉
= −g

2
mV0

h̄2

∫ ∞

−∞
e−

2mV0
h̄2 |x| δ(x)dx

= −g
2

mV0

h̄2 (49)

Similarly, the second order correction to the
energy becomes

E(2)
0 = ∑

a,b

∫ ∞

−∞

|
〈

Ψ0|H′|Ψa,b
k

〉
|2 dk

E(0)
0 − E(0)

k
(50)

For non-vanishing matrix elements, we have
to use the positive energy even state eigen
function(4). The energy difference in the sec-
ond order correction to the energy can be
written as

Ek − E0 =
h̄2

2m
(k2 + K2

0) (51)
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By noting that

− g
2
〈
Ψ0|H′|Ψ+

k
〉
=

√
K0(gk)

2
√

π(K2
0 + k2)

(52)

we obtain the second order correction to the
ground state as

E(2)
0 = −mK0g2

2πh̄2

∫ ∞

0

k2dk
(K2

0 + k2)2

= −mg2

8h̄2 (53)

Therefore, the perturbation results upto
second order match with the exact results
shown in equation (48).

As a third example, we adopt another
Hamiltonian designed as

H =
p2

2m
−V0δ(x) +

λp
m

(54)

The above Hamiltonian can be recast as

H =
(p + λ)2

2m
−V0δ(x)− λ2

2m
(55)

with the binding energy EB = −mV2
0

2h̄2 − λ2

2m . It
is interesting to note that the first order cor-
rection to energy E(1)

0 = 〈Ψ0|H′|Ψ0〉 = 0 as
can be seen from the expectation value of the
momentum operator. The first order correc-
tion to the ground state wave function can
be obtained as

Ψ(1)
0 = ∑

k

〈Ψ0|H′|Ψk〉
E(0)

0 − E(0)
k

Ψ0

=

(
λ

m

)(
mV0

h̄2

)2( 4im
h̄
√

π

)
×e−

mV0|x|
h̄2

∫ ∞

0

kdk
(K2

0 + k2)2

=

(
2λi√
πh̄2

)
e−

mV0|x|
h̄2 (56)

Considering upto first order correction, the
wave function looks like

Ψ(x) = e−
mV0|x|

h̄2

[√
mV0

h̄2 +
2λi√
πh̄2

]
(57)

Thus, the condition for the validity of the
perturbation seems to be

λ2 � mπV0

4
(58)

To compute the second order correction
of energy, we have to take into account the
odd state positive energy solution (2) for the
requirement of the non-vanishing of the ma-
trix elements. The non-vanishing matrix el-
ement is given by

〈
0|p|Ψ−k

〉
= −(2kih̄)

√
mV0

πh̄2
mV0

h̄2
1

(K2
0 + k2)

(59)
Therefore, the second order correction

to the energy reduces to

E(2)
0 =

λ2

m2

∫ ∞

−∞

|
〈
Ψ0|p|Ψ−k

〉
|2 dk

E(0)
0 − E(0)

k

= − λ2

2m
(60)

The interested reader can try the Hamil-

tonian H = p2

2m − V0δ(x) + Λp2 for the per-
turbation calculation to compare with the

exact result EB = − mV2
0

2(1+2mΛ)h̄2 . For pertur-

bation proportional to x, the appropriate im-
portant integral would be

< 0|x|k >

=

√
mV0

πh̄2

∫ ∞

−∞
e−

mV0|x|
h̄2 x sin(kx) dx

= 4

√
K3

0
π

k
(K2

0 + k2)2
(61)
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Another important perturbation H′ =
b|x| (b ≥ 0) when it is applied to this delta
function potential, then the first order cor-
rection adds to the energy level to give

E = E(0)
0 +

bm
2V0h̄2 (62)

In literature, there exists also an exact calcu-
lation of a particle in a box with a delta func-
tion potential by the factorization method
[36, 37] and harmonic oscillator with a delta
function potential[38].

6.Conclusions

To conclude, we have discussed the various
features of delta function potentials and the
role of bound state and scattering states in
dealing with matrix elements related to per-
turbation theory.
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Abstract

We analyze the motion of a rod floating in

a weightless environment in space when a

force is applied at some point on the rod in

a direction perpendicular to its length. If the

force applied is at the centre of mass, then the

rod gets a linear motion perpendicular to its

length. However, if the same force is applied

at a point other than the centre of mass, say,

near one end of the rod, thereby giving rise to

a torque, then there will also be a rotation of

the rod about its centre of mass, in addition to

the motion of the centre of mass itself. If the

force applied is for a very short duration, but

imparting nevertheless a finite impulse, like in a

sudden (quick) hit at one end of the rod, then

the centre of mass will move with a constant

linear speed and superimposed on it will be a

rotation of the rod with constant angular speed

about the centre of mass. However, if force is

applied continuously, say by strapping a tiny

rocket at one end of the rod, then the rod will

spin faster and faster about the centre of mass,

with angular speed increasing linearly with time.

As the direction of the applied force, as seen by

an external (inertial) observer, will be changing

continuously with the rotation of the rod, the

acceleration of the centre of mass would also

be not in one fixed direction. However, it

turns out that the locus of the velocity vector

of the centre of mass will describe a Cornu

spiral, with the velocity vector reaching a final

constant value with time. The mean motion

of the centre of mass will be in a straight line,

with superposed initial oscillations that soon die

down.

1 Introduction

Consider a uniform rod of length l and mass
m, freely floating in space in a weightless
condition. Suppose a force f is applied at
some point on the rod, in a direction perpen-
dicular to the length of the rod. What will be
the motion of the rod? The question whether
any such rod in space, when pushed at say,
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one end of the rod, will have only a linear
motion or have only a rotation or possess
both, has been argued in various forums on
the web [1, 2, 3, 4]. This is a problem in-
volving linear momentum of the centre of
mass as well as moment of inertia, angular
momentum and rotation about the centre of
mass of the system. If the force is applied
at the centre of mass C of the rod, then from
the law of conservation of momentum, the
rod would gain a linear motion in the direc-
tion of the applied force. However, if the
same force is applied at a point other than
the centre of mass, then in addition to the
motion of the centre of mass as before, there
could also be a rotation of the rod about C,
due to a finite torque [5, 6, 7]. If the force
is applied continuously, then any rotation of
the rod would imply a continuous change in
the direction of the applied force and a con-
sequential change in the direction of acceler-
ation of the centre of mass. One expects the
combined motion to be quite complicated.

We could imagine the rod (as well as the
observer) to be freely floating in space, say,
in a weightless environment within a satel-
lite orbiting the Earth (and thus freely falling
in Earth’s gravitational field) which can then
be considered to be an inertial frame, pro-
vided any tidal effects over the system di-
mensions due to Earth’s gravitation field
could be ignored. We take the length of the
rod to be short enough so that we may not be
bothered about any light-travel time effects.
All movements are also assumed to be slow
enough so that no special relativistic effects

come into picture. Even the sound speed
within the rod, with which one part of the
rod material may communicate with other
parts, i.e., the speed with which any influ-
ence within the rod may travel, is taken to
be fast compared to any translational or ro-
tational speeds of the rod for whatever tem-
poral intervals we may be concerned with.
In order to provide a continuous force per-
pendicular to the length of the rod, we could
strap a tiny rocket to the rod at a point of
our choosing. We further suppose that the
rocket system, providing the thrust, makes
only an imperceptible, if any, change in the
mass of the rod. Further, we take the force,
acceleration etc., though perpendicular to
the rod, but to be always in the x-y plane, so
that the torque, angular momentum and an-
gular velocity vectors will all be along the z-
axis, therefore we need to consider only the
magnitudes of such vectors and as we shall
see, it does not give rise to any ambiguities.

2 An impulse given to one of a

pair of independent masses

In a composite system, comprising two or
more particles whose relative coordinates
may or may not be governed by any con-
straints between them, any net force which
is not passing through the centre of mass of
the composite system, will create torque and
thereby impart angular momentum to the
system about its centre of mass [6].

In order to demonstrate that a linear
motion of the centre of mass alone might not
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Figure 1: (a) Particle A, with mass m/2, is given an impulse p, so that it moves with a
constant velocity vA = 2p/m along the y direction. The centre of mass C then moves with
a linear velocity v = p/m in y direction. (b) With respect to C, A is moving with a speed
v along the y direction while B is moving with the same speed v in the opposite direction,
implying that the system comprising particles A and B possesses an angular momentum
mlv/2 about its centre of mass C.

suffice to describe the dynamics of a system
even in a weightless environment in space
(vacuum!) we first consider a case where
the mass of the system is in the form of two
independent, equal point masses. Let two
particles, A and B, each of mass m/2, lie ini-
tially a distance l apart, parallel to the x-axis.
Let us now give a push to A, say along the
y-axis, i.e., in a direction perpendicular to its
separation from B. For this we consider a
force f along y-axis, applied for a short (in-
finitesimal!) duration ∆t, nevertheless im-
parting a finite impulse p = f ∆t, like in a
sudden (quick) hit on particle A. As a con-
sequence of the impulse given, particle A
with mass m/2 gains a velocity vA = 2p/m
along y direction, having a kinetic energy
K = p2/m, which is the total kinetic energy

of the system, since B is stationary. From
the conservation of momentum, the centre
of mass C of the system moves with a veloc-
ity v = p/m parallel to the y-axis (Fig. 1a),
with a kinetic energy of translation

K1 = p2/2m. (1)

But this accounts for only half of the total
kinetic energy of the system, i.e., K1 = K/2.

Actually, the system possesses addi-
tional motion apart from the linear motion
of its centre of mass. This is because while
A has a velocity 2v along y direction, B is
stationary, and C has a velocity v along y di-
rection. Therefore with respect to C, A has
a speed v along y direction while B has a
speed v in the opposite direction (Fig. 1b)
and these two together constitute an angu-
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lar momentum

J = 2(m/2)(l/2)v = mlv/2 (2)

about C.
The kinetic energy associated with the

motion about C is

K2 = 2(m/2)v2/2 = p2/2m, (3)

which yields K1 + K2 = K.
Thus, when a system is given a push,

the liner motion of the centre of mass alone
may not describe the total dynamics of the
system, which might as well, in addition,
possess a motion about its centre of mass, ir-
respective of whether the system is on Earth
or in space.

3 A push given to a rod with a

uniform distribution of mass

3.1 Force applied for a short duration

A rod with a uniform distribution of mass m
and length l has a moment of inertia about
its centre of mass C as I = ml2/12 [5, 6, 7].
Let us suppose that the rod, to begin with, is
lying along the x-axis and we apply, at a dis-
tance δ from C, a force f along the y-axis, i.e.,
in a direction perpendicular to the length of
the rod, for a short duration ∆t, imparting a
finite impulse, p = f ∆t to the system, like in
a sudden (quick) hit at one end of the rod.
As a result, the centre of mass C of the sys-
tem moves with a velocity v = p/m along
y direction, with a kinetic energy of transla-
tion K1 = mv2/2 = p2/2m. But in addition

there is a torque N = f δ, about C, for time
∆t that gives rise to an angular momentum
J = Iω = ml2ω/12 = N∆t = pδ, about
C. From this we can readily see that the
rod would rotate around C with an angular
speed ω = 12pδ/ml2. The kinetic energy of
rotation about C would be K2 = Iω2/2 =

6p2δ2/ml2, with total kinetic energy of the
system being

K = K1 + K2 = (p2/2m)(1 + 12δ2/l2). (4)

If the force is applied at one end of the
rod, then δ = l/2 and ω = 6p/ml. The ki-
netic energy of rotation will then be three
times that of translation, with total kinetic
energy k = 2p2/m. The centre of mass C of
the rod will be moving along the direction
of the given impulse with a constant veloc-
ity v = p/m with the rod simultaneously
spinning about C with an angular frequency
ω = 6v/l (Fig. 2).

Of course, if the force is applied at the
centre of mass C, then δ = 0 and ω = 0,
i.e., the rod does not rotate and from Eq. (4)
the total kinetic energy of the system is K =

K1 = (p2/2m).

3.2 The force applied continuously

If a finite force f is applied continuously at
a distance δ from C, in a direction perpen-
dicular to the rod, then C gets accelerated
at a rate a = f /m, while due to the torque
N = f δ, there is an increasing angular mo-
mentum, J̇ = N or Iω̇ = f δ, implying an
angular acceleration, ω̇ = f δ/I, about C.
The rod will rotate about C with an angular
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Figure 2: After a force is applied for a short
duration at one end of the rod, the centre of
mass C of the rod moves with a constant lin-
ear velocity v along the y direction. In addi-
tion, the rod rotates with a constant angular
speed ω = 6v/l about C.

speed of rotation ω = t f δ/I and a rotation
angle, φ = t2 f δ/2I, assuming φ = 0 at t = 0.

With the rotation of the rod, the direc-
tion of force f , which is assumed to be al-
ways perpendicular to the rod, will change
continuously. Decomposing the force vector
along x and y directions [8, 9], motion of C
can then be obtained from

max = − f sin φ = − f sin(t2 f δ/2I), (5)

may = f cos φ = f cos(t2 f δ/2I). (6)

Integrating with time we get

vx = −( f /m)
∫ t

0
sin(t2 f δ/2I) dt, (7)

vy = ( f /m)
∫ t

0
cos(t2 f δ/2I) dt, (8)

where we have assumed the system to be at
rest (v=0) at t = 0. Writing k =

√
f δ/Iπ

and with a change of variable t = u/k, we
can write

vx =
− f
mk

s(u), (9)

vy =
f

mk
c(u), (10)

where s(u) and c(u) are the famous Fresnel’s
integrals encountered in Fresnel diffraction
in optics [10] or elsewhere [11]

s(u) =
∫ u

0
sin(πu2/2) du, (11)

c(u) =
∫ u

0
cos(πu2/2) du. (12)

For large t, Eqs. (9) and (10) yield a final con-
stant value of v

vx =
− f
2mk

=
− f
2m

√
Iπ

f δ
, (13)

vy =
f

2mk
=

f
2m

√
Iπ

f δ
. (14)

We can describe the behaviour of the
velocity vector in physical terms, following
[9]. With the rotation of the rod, the direc-
tion of the force (which is applied always
perpendicular to the rod) and hence that of
the acceleration, will change continuously
and go through cycles of 2π angle each.
However, during each cycle, the speed of ro-
tation will be slower at the beginning than at
the end. Initially, since the force is pointing
in the y direction, there is a bit more velocity
gained in y direction. But with the rotation
of the rod, as the direction of force turns to-
wards the −x direction, C picks up velocity
in that direction. These velocity gains will
be substantial in the very first cycle due to
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Figure 3: Velocity vector v of C, as a function of time, describes a Cornu spiral in the vx–
vy plane, converging to v0 = −0.5, 0.5 (in units of f /mk). The arrow indicates direction of
increasing time, t, with tick marks on the curve showing t (in units of 1/k).

the low rotation speed (Fig. 3). In later cy-
cles, as the rod rotates faster and faster, any
velocity gains during each cycle will be rel-
atively smaller and the velocity of C would
soon stabilize to a constant, v0, at the centre
of the Cornu spiral, as seen in Fig. 3.

As the centre of mass, C, of the rod will
be moving with a constant final linear ve-
locity v0, it means that the kinetic energy of
translation will stabilize to a terminal value
K1 = mv2

0/2 = π f l2/48δ. On the other hand
the kinetic energy of rotation, K2 = Iω2/2 =

6 f 2δ2t2/ml2, will be increasing indefinitely
with time, with the rod spinning faster and
faster about C.

Assuming the centre of mass C of the
rod to be at rest (i.e., v = 0) at the origin

(x = 0, y = 0) at t = 0, the position of C, as
a function of time, can be determined from
the generic formula

x(t) =
∫ t

0
v dt = v(t) t −

∫ t

0
a t dt. (15)

Again, with a change of variable t = u/k
in Eq. (15) and substituting a and v from
Eqs. (5), (6), (9) and (10), we arrive at

x =
− f
mk2

[
u s(u) +

1
π

cos
πu2

2
− 1

π

]
, (16)

y =
f

mk2

[
u c(u)− 1

π
sin

πu2

2

]
. (17)

From Eqs. (16) and (17), for large t, C will
follow a straight line path, with superposed
initial oscillations that soon die down, as
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Figure 4: Movement in x-y plane of the centre of mass C, assumed initially to be at (0, 0). It
starts along a curved path which asymptotically becomes y = −x + 1/π, shown as a dotted
line. The distance scales are in units of f /mk2. The arrow indicates direction of increasing
time, t, with tick marks on the curve showing t (in units of 1/k).

seen in Fig. 4.

x =
− f t
2mk

+
f

mk2π

= −
√

π f l2

48mδ
t +

l2

12δ
, (18)

y =
f t

2mk
=

√
π f l2

48mδ
t, (19)

and the trajectory in the x–y plane would be
y = −x + l2/12δ.

According to Ferris-Prabhu [8], the av-
erage motion of C is along y = −x (ac-
cording to the conventions adopted here). It
need to be pointed out that the equation (6)
of Ferris-Prabhu [8], giving the trajectory of
the centre of mass, is neither in agreement
with the figure (3) given there, nor is it con-
sistent with the initial condition that it starts

from origin (x = 0, y = 0) at t = 0. This is
because the last term on the right hand side
in Eq. (18), i.e., l2/12δ, is missing from the
equation (6) of Ferris-Prabhu [8].

Actually, the velocity vector at the be-
ginning points predominantly in the y di-
rection (Fig. 3), therefore motion of C will
also be initially along the y direction. How-
ever, as the velocity vector reaches its final
constant value v0, the curved path of C will
asymptotically coincide with a straight line,
y = −x + l2/12δ, with l2/12δ being mostly
the initial gain along the y direction (Fig. 4).

If the force applied is at one end of the
rod, i.e. δ = l/2, then the rod will rotate
about C with an increasing angular speed,
ω = 6 f t/ml. The motion of C will be still
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given by Eqs. (16) and (17) but with k =√
6 f /πml, and of course, u = kt. For large

t, the path of C will follow a straight line,
y = −x + l/6.

However, if the force is applied at the
centre of mass C, with δ = 0, then from
Eqs. (7), (8) vx = 0, vy = f t/m and from
Eqs. (16) and (17) x = 0, y = f t2/2m. Only
in such a case, the rod will then be moving
linearly along the y direction, albeit at an
ever increasing speed, but without any ac-
companying rotation.
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Abstract 
 

In this article, we have experimentally 

demonstrated an efficient, simple and cost 

effective method for generation and detection of 

optical vortices, phase singularities in the light 

field.  Optical vortices are light beams that carry 

orbital angular momentum. In order to achieve 

phase singularity at the center of the beam, we 

generate and analyze optical vortices using two 

methods - (i) a spiral phase plate (SPP) and (ii) a 

spatial light modulator (SLM). The topological 

charges of the generated optical vortices are 

verified by tilted-lens method. Also, optical 

vortices of different orders were generated 

numerically. The experimental results are in good 

agreement with the numerical results. 

 

1. Introduction 

In recent years, due to growing range of 

applications of optical vortices, there has been 

enormous amount of interest for studying helical 

wave-fronts in the optical wave field, which has 

an   undefined phase in a region of zero amplitude 

[1]. Optical vortices was observed and extensively 

studied by Nye and Berry, around three decades 

ago [2].  In an optical field their structures were 

systematically described in a subsequent book by 

Nye [3]. Optical vortices have a ring shaped 

(donut shaped) intensity profile and at the vortex 

center intensity of the light drops to zero. The  

 

phase of the wave is undefined at the point of 

singularity (also called branch point), hence the 

term phase singularity. It appears as a single dark 

spot against a bright ring. Wave-front changes by 

an integral multiple of 2 𝜋  at the phase 

singularity.At the vortex center, the wave-front 

increases from 0 to 2l𝜋, leading to a spiral phase 

structure, where l is an integer number referred as 

the topological charge of the optical vortex. The 

wave-front of the vortex beams spirals around the 

axis of propagation like a corkscrew as it 

propagates. The sign of the vortex can be positive 

or negative and it is defined by the phase rotation 

around the singularity. Both real and imaginary 

parts of the complex field amplitude are zero, 

because at the singular point phase is undefined 

[4]. 

 

In modern optical physics, phase singularity 

became a separate area of investigation. It is an 

important part of singular optics. The phase of any 

wave-front with a vortex will be discontinuous, 

about the point of singularity. Optical vortices are 

important in studying orbital angular momentum 

of light fields. Light beams carrying orbital 

angular momentum of lħ per photon possess an 

azimuthal phase term l𝜑, which describes a helical 

phase pattern (phase twist) of light beams [6]. The 

number of twists that the beam experiences in one 

wavelength of propagation is described as 

topological charge, l. Topological charge ‘l’ is 

intertwined helical phase distribution around the 

point of singularity and it is described by 
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exp( 𝑖݈𝜑 ).The sign of the topological charge 

determines  the handedness (clockwise or 

anticlockwise) of the vorticity. If the number of 

twists is higher, then light will revolve faster 

around the axis. 

 

Several techniques for generating optical vortices 

have been developed over years. A commonly 

used method for generating optical vortex is using 

spatial light modulator (SLM) or spiral phase plate 

(SPP). Detection of an optical vortex becomes 

most significant in the field of singular optics. 

Single and multiple topological charge vortices 

can be created with the help of computer 

generated hologram and spatial light modulator 

method. Optical vortices have found broad 

applications in many fields. It can be widely used 

in optical communication [7], optical tweezers [8], 

cooling and trapping of neutral atoms [9], singular 

optics [10], manipulating small microscopic 

particles [11], quantum entanglement of photons 

[12] and Bose-Einstein condensates [13]. These 

applications need high efficiency and good 

generation of optical vortex field. 

 

Allen and co-workers [6] recognized that paraxial 

Laguerre–Gauss (LG) laser beams carry an orbital 

angular momentum with a helical wave-front. 

Laguerre-Gaussian (LG𝑝𝑙 ) modes signify a beam 

with helical wave-fronts, whereas l indicates the 

number of intertwined helices and p as the number 

of radial nodes [14]. Intertwined helices execute a 

number of 2π cycles of phase in azimuthal 

direction. Orbital angular momentum rises from a 

beam with helical wave-front spiraling around the 

beam axis. In this paper we have generated optical 

vortices which are Laguerre-Gaussian LG𝑝𝑙 modes 

with a zero radial index. 

 

2. Numerical Study 
 

2.1 Generation of an optical vortex 

using𝐋𝐆𝒑𝒍 modes. 

In cylindrical coordinates the solution of the 

paraxial wave equation can be expressed in terms 

of the product of a Laguerre polynomial, which 

has radial index p and azimuthal index l, a 

Gaussian envelope and a phase term. Laguerre–
Gauss (LG) solution is generally known as an 

optical scalar vortex. In cylindrical coordinates, a 

Laguerre Gaussian ( LG𝑝𝑙 ) mode describes the 

OAM modes. The solution of the paraxial 

equation in cylindrical coordinates is given by [15, 

16], 

                                           L𝑝𝑙 ሺr, θ, zሻ =  Aωሺzሻ ሺ √2 𝑟ωሺzሻሻ𝑙L𝑝𝑙   ሺ 2r 2ωሺzሻ2ሻ  e−r2 ωሺzሻ2⁄ eikr2 [ଶRሺzሻ]⁄ ei𝑙φe−iξሺzሻ                         (1) 

where, 

      A    = Amplitude,  

R (z) = Radius of curvature; 

 ωሺzሻ  = Gaussian beam size;           Lp𝑙 (x)  = Associated Laguerre polynomials; 

l   = Topological charge; 

p   = Number of modes in radial direction;            ξሺzሻ=Arctan
zzR: Gouy phase shift; 

ZR=πω଴ଶ/λ: Rayleigh range; 
 

This solution has an important aspect that the 

amplitude of the wave depends only on the radial 

nodes. In this paper, numerically we have 

generated optical vortices with zero radial index 

using LG𝑝𝑙  modes. Laguerre Gaussian (LG) beam 

reduces to fundamental Gaussian beam when 

l=p=0. LG𝑝𝑙  modes possess a vortex phase term e𝑖𝑙∅   when the number of intertwined helices is 

nonzero. In cylindrical coordinates Laguerre 
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Gaussian (LG) beams are solutions to the wave equation. LG beam is the most fascinating families 

of Gaussian beam. A wave function is generally 

represented as a Gaussian, propagating in one 

dimension. A pure Gaussian is the zeroth order of 

the LG beam. The two main components of the 

Gaussian are its amplitude and phase. Amplitude 

of a Gaussian beam can be expressed by, 

                            A = exp[−(௫2+௬2)w2    ]                  (2)    

                                                                           

where, w is the width of the beam, also known as 

the beam’s spot size.  

 
Figure 1: (a) helical wave-front with the Poynting vector indicated 

by a curved line, (b) helical structure forLG଴−ଵ(c) helical structure 

for LG଴+ଵ. 
 

Figure 1 shows a helical phase pattern in the LG 

beam along with the Poynting vector, where the 

wave-front has a wave-vector which is spiral 

around the beam axis. As shown in figure 1(b & c) 

for LG଴−ଵ  it spirals in the anticlockwise direction 

and for LG଴+ଵit spirals in the clockwise direction 

around the singularity. A wave-front can be 

described as points of the beam having same phase 

when the wave propagates. The helical structure 

gives rise to OAM of the light beams. The 

amplitude of the wave becomes zero because of 

the destructive interference of phases [16]. 

 

 
Figure 2: Numerical Intensity distributions (a)LG଴ଵ(b) LG଴ଶand (c) LG଴ଷmode of vortex beams. 

 

 

 

 

 
Figure 3: Helical phase pattern (a)LG଴ଵ (b) LG଴ଶand (c)LG଴ଷmode of 

vortex beams. 

Figure 2, shows the intensity profile has a hollow 

center for LG𝑝𝑙  mode of vortex beams. Here, the 

radial index is zero. The beam contains an isolated 

ringed “donut” shape with zero radial index and 

nonzero azimuthal index. A singularity in the 

phase gives rise to donut shape intensity 

distribution at the center of an optical vortex. A 

phase jump occurs from 0 to 2 𝜋  about the 

singularity point for LG଴ଵ mode (l=1). Size of the 

dark hollow center increases, when the intertwined 

helices (l) increase in going towards the LG଴ଶ mode 

(l=2), and the phase changes from 0 to 4 𝜋 about 

the singular point [15]. As shown in figure 2(c) for 

l=3, which is LG଴ଷ mode, the diameter of the ring is 

sizeable compared to that for l=1, hence it 

confirms that the optical vortex diameter increases 

as the topological charge increases. For l=1 a 

helical surface is produced in a vortex. Similarly, 

for l=2, the vortex will see a double helix. 

Topological charge is described by the helical 

movement around the beam axis, where the 

change of phase through one revolution is 2l𝜋 . 

Therefore, when the intertwined helices (l) 

increase to 2 the topological charge is 2, while 

(during which) the change in phase is 2 𝜋 around 

the beam axis. Topological charge of an optical 

vortex is represented by the number of phase 

shifts. We have generated optical vortices of order 

1, 2, and 3 numerically for He-Ne laser 

(λ=632.8nm) and Verdi V 10, a solid state laser 

(λ=532nm) by using equation (1) in MATLAB 
software. MATLAB code for generating an optical 

vortex of Laguerre-Gaussian (LG𝑝𝑙 ) modes is same 

for both lasers, only difference is wavelength. We 

can generate optical vortices of all orders for other 

lasers also just by changing the wavelength in 
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MATLAB code corresponding to computer 

generated holograms (CGH).  

 

2.2 Holograms for generating an optical vortex. 

 

 
 

 
Figure 4: Fork pattern CGH with topological charge l=1, 2, and 3 

associated with their spiral phase. 

 

Figure (4) shows a forked hologram which we 

have generated numerically by using equation (3) 

in MATLAB software which is used in 

experiment for creating a reliable optical vortex. A 

computer generated hologram (CGH) is used in 

the experiments with spatial light modulator 

(SLM). We have taken a He-Ne laser 

(λ=632.8nm) for generating optical vortices of 

order 1, 2 and 3 by using a fork like CGH and 

SLM.  Hologram (“fork”) can also be called a 

computer-generated diffraction pattern, which is 

used in experiment to obtain a beam having a 

diffraction pattern in a required configuration 

(shape). Generally, the CGH is used for generating 

a monochromatic beam having particular 

amplitude and phase distribution. Computer 

generated hologram (linear diffraction grating 

structure) shows the superposition of plane wave 

and the spiral phase wave.  The equation of the 

CGH is, 

 R = |gଵ+gଶ|ଶ = | expሺ𝑖݇𝑥ሻ + expሺ−𝑖݈𝜑ሻ|ଶ       ሺ3ሻ 
 

where, g1 = exp(ikx) represents the plane wave and 

g2 = exp(-il𝜑) represents the spiral phase wave. A 

variation in the number of fringes can be observed 

from the central singularity between the upper and 

lower side of the CGH, which confirms the 

topological charge of an optical vortex. The 

charge of the vortex can be determined by the 

number of lines of the fork subtracted by one. 

 

3.Experimental Study 
Optical vortex beams can be created by 

introducing a helical phase distribution on an 

incident radiation. Optical vortex with a helical 

phase profile can be easily generated using spiral 

phase plate (SPP) and spatial light modulator 

(SLM). 

 

3.1 Generation of optical vortices using spiral 

phase plate. 

 

We demonstrate experimentally that a spiral phase 

plate (SPP) can convert a plane wave-front into a 

helical wave-front. A change in phase will be 

experienced by a fundamental mode beam, when it 

passes through the plate. The helical surface of 

SPP gives a helical character to the incident beam. 

SPP is a transparent plate and it functions by 

directly imposing an azimuthal phase shift on the 

incident light. SPP has a spiral phase, an optical 

element whose thickness increases linearly along 

the direction of the azimuthal angle. In the center 

of the plate SPP thickness increases proportional 

to the azimuthal angle [16]. It is capable to take 

high power of lasers because it is made of a glass 

material.  The propagation direction of the beam 

does not change as the SPP enables a direct 

conversion of Gaussian beam into a LG beam. 

 

Experimental Setup. 

Figure 5: Experimental set up for generation and detection of an 

optical vortex: M1, M2 mirror; SPP1, spiral phase plate of order 1; 

SPP2, spiral phase plate of order 2; L, plano convex lens; CCD, 

charge coupled device; PC, computer. 

l=1 l=2 l=3 
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Figure (5) shows the experimental setup to 

produce vortices with the help of spiral phase plate 

(SPP). In the setup, we have used two mirrors i.e. 

M1 and M2. Here, we have used a solid state laser 

whose wavelength is 532nm. First, we align the 

laser with the help of two mirrors. A highly 

monochromatic green laser beam falls on M1 

mirror. It reflects from M1 mirror and falls on M2 

mirror. From M2 mirror it reflects and falls on 

spiral phase plate of order 2. An order 2 vortex 

beam passes onto spiral phase plate of order 1.  

Afterwards, it passes through an imaging lens 

(f=30 cm) and falls on the screen. Thus, we 

generate an optical vortex of an order 3 and record 

it on a CCD camera. In the same way we have 

generated an optical vortex of order 2 by removing 

a spiral phase plate of order 1and keeping only 

SPP of order 2. Similarly, we have generated an 

optical vortex of order 1 by placing a spiral phase 

plate of order1 in the experimental set up. In the 

experiment a charge coupled device (CCD) 

camera was used for taking images of optical 

vortices of all orders. The image of an optical 

vortex can be seen in the computer (PC). As a 

consequence, a Gaussian input profile is converted 

into donut-shaped intensity distribution with zero 

intensity at the center. Furthermore, amplitude of 

the wave is zero around the beam axis because of 

the mode conversion. Thus, by using a spiral 

phase plate (SPP) we have generated an optical 

vortex of an order 1, 2, and 3(as shown in figure 

6). 

 

Figure 6: Experimental intensity distribution of an optical vortex 

with topological charge (a) l=1; (b) l=2; (c) l=3. 

3.2 Generation of optical vortices using spatial 

light modulator 

We demonstrate experimentally that a spatial light 

modulator (SLM) can convert a Gaussian beam 

into the Laguerre Gaussian beam. SLM is a 

pixelated device that “spatially modulates” a 

coherent beam of light. In the experimental study 

we have used a phase SLM that modulates the 

phase of the light beam. It is a common technique 

to generate an optical vortex. It is controlled by a 

computer. SLMs are expensive, but are quickly 

reconfigurable. The wave-front of an incident 

beam is changed by imposing an incident beam 

onto the SLM [16]. Here, a Gaussian beam is 

diffracted by the SLM to generate an optical 

vortex with topological charge (l) 1, 2, and 3. 

 

Experimental  Setup. 

 
Figure 7:  Experimental set up for generation and detection of an 

optical vortex: M1, M2 mirror; PBS, polarization beam splitter; 

HWP, half wave plate; SLM, spatial light modulator; L, plano 

convex lens; CCD, charge coupled device; PC1&PC2, computer. 

Figure (7) shows the experimental setup to 

produce vortices. The experimental study was 

carried out with the help of SLM and computer 

generated hologram (CGH). First, we have 

displayed the CGH (fork pattern) onto the SLM in 

real time with the help of computer (PC1). Here, 

we have used a He-Ne laser whose wavelength is 

632.8 nm. The red laser light passes through the 
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half wave plate and then it goes to polarization 

beam splitter. After passing from the beam splitter 

it is reflected by the mirror M1 and again by M2 

then falls on the SLM. The wave-front of light is 

modified by the SLM. Therefore, when an 

incident Gaussian beam is reflected from SLM, it 

is converted into the Laguerre Gaussian beam 

which passes through the aperture and falls on the 

plano convex lens (f=30 cm). After passing from 

the lens light goes to the CCD. The SLM changes 

the phase of the incident He-Ne laser beam by 

giving a helical phase to the incident light beam. If 

the incident He-Ne laser beam has a topological 

charge, its sign and order can be detected by 

loading a hologram (diffraction grating) on the 

SLM. In the experiment we have used a charge 

coupled device (CCD) camera which is used to 

take the image of optical vortices of all orders. We 

have generated optical vortices of order 1, 2, and 3 

(as shown in figure 8). The image of optical vortex 

captured by the CCD can be seen in the computer 

(PC2). 

 
Figure 8:Experimental Intensity distribution of an optical vortex 

with topological charge (a) l =1; (b) l =2; (c) l =3. 

4. Detection 
 

 
Figure 9: Intensity distribution of optical vorticesof order 1, 2, and 

3 after passing through a tilted plano convex lens with solid state 

laser at 532 nm.

Figure 10: Intensity distribution of optical vorticesof order 1, 2, 

and 3 after passing through a tilted plano convex lens with He-Ne 

laser (632.8 nm). 

The topological charge of an optical vortex beam 

shows a specific eigenstate of an orbital angular 

momentum (OAM). Every eigenstate is 

orthogonal to each other. Hence, every optical 

vortex beam with individual topological charge 

will be orthogonal to each other [21]. To find out 

the OAM state of light an accurate measurement 

of the topological charge is necessary. For this 

measurement we have used a tilted lens. After 

passing through a tilted lens, the vortex beam 

gives lobe structure that is characteristic of the 

topological charge carried by the beam. The 

obtained lobe structures by tilting a plano convex 

lens are shown in figures 9&10. For topological 

charge l we get l-1 lobes. Suppose l=2, then 

number of lobes will be 1. Using a tilted lens 

technique, we have measured the topological 

charge of the generated optical vortices of order 1, 

2 and 3. 
 

5. Conclusion 
In this article, optical vortex beams have been 

introduced and studied. Concepts and methods of 

generation and detection are briefly discussed. 

Using a solid state laser (λ=532nm) and a He-Ne 

laser (λ=632.8nm) we have generated optical 

vortices of orders 1, 2, and 3.Using tilted-lens 

technique we have measured the topological 

charge of the generated optical vortices produced 

by spatial light modulator and spiral phase plate. 

Optical vortex beam can be used as an information 

carrier because it carries discrete orbital angular 

momentum (OAM). The success of detecting 

topological charges of an optical vortex beam may 

find an important potential application in optical 

communications. Scalar vortex beams has been 
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proposed as an information channel for an optical 

communication. The experimentally obtained 

optical vortex shows a good agreement with the 

numerically obtained optical vortex.  

 

Acknowledgement 
G.P. expresses her deepest gratitude to the 

Atomic, Molecular and Optical Physics Divisions 

Physical Research Laboratory Ahmedabad, where 

work on this M.Sc. project was done under the 

guidance of R. P. Singh. I am grateful to Ali 

Anwar, P.R.L. 

 

References 
 

1. C. Jun, et al. "Generation of optical vortex 

using a spiral phase plate fabricated in quartz 

by direct laser writing and inductively coupled 

plasma etching." Chin. Phys. Lett. 26.1 (2009): 

014202. 
 

2. J. F. Nye, and M. V. Berry, "Dislocations in 

wave trains." Proc. R. Soc. A 336 (1974): 

1605.  
 

3.  J. F. Nye, “Natural focusing and fine structure 

of light: caustics and wave dislocations.” CRC 

Press (1999). 
 

4. D. P. Ghai, et al. "Detection of phase 

singularity using a lateral shear 

interferometer." Opt. Laser Eng. 46.6 (2008): 

419-423. 
 

5. K. Murphy, and C. Dainty, "Comparison of 

optical vortex detection methods for use with a 

Shack-Hartmann wavefront sensor." Opt. 

Express 20.5 (2012): 4988-5002. 
 

6. L. Allen, et al. "Orbital angular momentum of 

light and the transformation of Laguerre-

Gaussian laser modes." Phy. Rev. A 45.11 

(1992): 8185. 
 

 

7. G. Gibson, et al. "Free-space information 

transfer using light beams carrying orbital 

angular momentum." Opt. Express 12.22 

(2004): 5448-5456. 

8. D. G. Grier, "A revolution in optical 

manipulation." Nature 424.6950 (2003): 810. 
 

9.  S. Kuppens, et al. "Polarization-gradient 

cooling in a strong doughnut-mode dipole 

potential." Phy. Rev. A 58.4 (1998): 3068. 
 

10. M. S. Soskin, et al. "Topological charge and 

angular momentum of light beams carrying 

optical vortices." Phy. Rev. A 56.5 (1997): 

4064. 
 

11. H. He, et al. "Direct observation of transfer of 

angular momentum to absorptive particles 

from a laser beam with a phase singularity." 

Phy. Rev. Lett. 75.5 (1995): 826. 
 

12. A.Vaziri, et al. "Entanglement of the Angular 

Orbital Momentum States of the Photons." 

Nature 412.313 (2001). 
 

13.  E. M.Wright, et al. "Toroidal optical dipole 

traps for atomic Bose-Einstein condensates 

using Laguerre-Gaussian beams." Phy. Rev. A 

63.1 (2000): 013608. 
 

14. M. Padgett, and L.  Allen, "Light with a twist 

in its tail." Contemp. Phy. 41 (2000): 275-285. 

{http://people.physics.illinois.edu/Selvin/PRS/

498IBR/Twist.pdf} 
 

15. W. Cheng, “Optical vortex beams: Generation, 

propagation and applications”. University of 

Dayton(2013).{https://etd.ohiolink.edu/!etd.se

nd_file?accession=dayton1375370902&dispos

ition=inline} 
 

16. E. J.  Galvez, "Gaussian beams." Dept. of 

Physics and Astronomy, Colgate Univ. 

(2009).{http://www.colgate.edu/portaldata/ima

gegallerywww/98c178dc7e5b4a04b0a1a73abf

7f13d5/imagegallery/Gaussianbeams.pdf}, 

{http://cms.colgate.edu/portaldata/imagegaller

ywww/98c178dc7e5b4a04b0a1a73abf7f13d5/I

mageGallery/gaussian-beams-in-the-optics-

course.pdf} 
 

17. P. Vaity, et al. "Measuring the topological 

charge of an optical vortex by using a tilted 

convex lens." Phys. Lett. A 377.15 (2013): 

1154-1156. 



Physics Education Jan - Mar 2018

Work Done by Internal Forces on a Multibody

System with Constraints

Yukio Kobayashi

Department of Information Systems Science, Faculty of Science and Engineering,
Soka University, 1-236 Tangi-machi, Hachioji-shi, Tokyo 192-8577, Japan.

koba@t.soka.ac.jp

Submitted on 24-09-2017

Abstract

The work done by internal forces on a multibody

system is determined by the constrains which

limit the motion of the bodies in the system.

At college level, however, some instructors

and students do not recognise the distinction

between external forces exerted on the bodies

of a system and internal forces inherent to the

system. Therefore, the work done by internal

forces on a system is sometimes confused

with that exerted by external forces. Here,

the author illustrates by using three examples

an approach to the systematic study of the

relationship between the constraints imposed on

the motion of a multibody system and the work

done on the system by internal forces. Even if

the absence of external forces causes a constant

total momentum in the system, the mechanical

energy is not necessarily constant given the

work done by internal forces on the system.

This difference is explained from temporal and

spatial viewpoints of physical phenomena.

1 Introduction

In a two-year elementary college physics
course for students majoring in physics,
even those who have learned the concepts
of work and kinetic energy do not necessar-
ily understand the mechanism of the work
done by internal forces on a multibody sys-
tem with constraints [1]. Unlike the con-
cepts of work and kinetic energy applied to
single particles, some questions arise even
when considering a system composed of a
pair of particles:

1. Does the law of conservation of me-
chanical energy hold for two bodies show-
ing different displacements with respect to
the rest frame?

2. Does the law of conservation of
mechanical energy hold despite internal
forces such as normal reaction being non-
conservative?

3. Why is the total kinetic energy of a
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system not always constant even when the
law of conservation of total linear momen-
tum holds?

In this article, the author considers that
the change in total kinetic energy between
two bodies is restricted by a positional re-
lationship. Hence, it is necessary to con-
sider the constraints which limit the motion
of the bodies composing a system. Unex-
pectedly, the change in total kinetic energy
produced by internal forces has not been
thoroughly described in textbooks on ele-
mentary physics (e.g. the Berkeley Physics
Course [2]). Two key points must be consid-
ered in a multibody system with constraints:

1. The work done by internal forces de-
pends on the relative displacement between
bodies.

2. The relative displacement is re-
stricted by constraints imposed on the mo-
tion of the bodies.
The conservation of mechanical energy is
systematically explained for various exam-
ples on these two points throughout this ar-
ticle.

2. Constraints on motion of particles

The systematic study considering first the
motion on a plane and then the motion on
an inclined surface is essential to explain the
relationship between the work done by in-
ternal forces and motion constraints. In the
following three examples, internal forces are
not relevant to the total kinetic energy of the
systems, because the motion of the bodies
in the corresponding systems is restricted by
constraints.

Figure 1. Two bodies in contact.

Example 1
First, as a simple example of plane motion,
let us consider two bodies, namely A and
B, in contact on a horizontal smooth plane.
An external force is exerted on body B. The
internal forces in the system composed by
bodies A and B, and shown in Figure 1,
are the force exerted on B by A and that
exerted on A by B. These forces are equal
in magnitude and opposite in direction as
determined by the law of action–reaction.
The two bodies move under the constraint
that A and B are in contact, and thus the
position difference, xA − xB, between the
bodies is constant.

Work W done on A by the force exerted
on A by B, and work w done on B by the
force exerted on B by A are given by

W = FdxA,

w = (−F)dxB,

where F is the magnitude of the internal
forces, and xA and xB are the horizontal po-
sitions of representative points in bodies A
and B, respectively. Thus, in an infinitesimal
time interval dt,

W + w = F(dxA − dxB)

= 0 J.
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Hence, the internal forces do not contribute
to the change in total kinetic energy in this
system, which depends on the change in
the relative position between bodies A and
B, i.e. d(xA − xB). Internal forces F and
−F cancel each other by the law of action–
reaction. In contrast, work components
W an w cancel each other by constraint
dxA = dxB expressed by in the rest frame.
Thus, the work done on this system by
the internal forces is determined by the
constraint on motion.

Example 2
Next, let us consider a system consisting of
a body and an inclined surface on a smooth
plane, where friction forces can be ignored.

Figure 2. System composed by body and

inclined surface.

The relative position of the body with
respect to the inclined surface, −→r , is given
by −→r body − −→r surface, where −→r body and
−→r surface are the positions of representative
points in the body and the surface with
respect to the rest frame, respectively. When
moving, −→r changes by d−→r or equivalently
(dx, dy). The constraint on the body moving
along the inclined surface is expressed by
dy/dx = tan θ, where θ is the angle between

the inclined surface and the horizontal line.
This constraint can also be expressed by
dx = |d−→r | cos θ and dy = |d−→r | sin θ. When
the body moves along the inclined surface
toward the plane, the values of dx and dy
are negative.

The force exerted on the body by the
surface,

−→
N , and the that exerted on the sur-

face by the body, −−→N , compose an action–
reaction pair. Work W done on the body by
the force exerted on the body by the surface,
and work w done on the surface by the force
exerted on the surface by the body are given
by

W =
−→
N · d−→r body,

w = (−−→N ) · d−→r surface.

Thus,

W + w =
−→
N · (d−→r body − d−→r surface)

=
−→
N · d−→r .

In terms of components, we obtain

−→
N · d−→r = Nxdx + Nydy

= (−|−→N | sin θ)|d−→r | cos θ

+(|−→N | cos θ)|d−→r | sin θ

= 0 J,

which, as illustrated in Figure 2, indicates
that
−→
N · d−→r = 0 J, provided that the internal

force and the change in the relative position
satisfy

−→
N⊥d−→r . Hence, the internal force

does not exert work on the system, and is
thus irrelevant to the change in total kinetic
energy in the system, although the kinetic
energy of the system is changed by the work
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done on the body by gravity, which is an ex-
ternal force. Similar to Example 1, the work
done on the system by the internal forces is
determined by the constraint on motion.

In addition, we should consider the
constraint of the distance between any
two given points on the surface to remain
constant over time, regardless of external
forces exerted on it, because the surface is
modelled as a rigid body.

Example 3
Finally, for a similar problem to the motion
of a body on an inclined surface, let us
consider the swing of a pendulum attached
to the ceiling of a train in motion, as il-
lustrated in Figure 3. The problem is to
determine whether the force exerted on a
body by a rope does work on the body. To
understand this problem, it is essential to
note that the external and internal forces
exerted on the body depend on the system
constitution. For instance, if we consider
the body as a system, and the rope and train
as surroundings of the body, the tension
of the rope is an external force exerted on
the body. However, in a three-body system
composed by the body, the rope, and the
train, the action–reaction force pair exerted
on the body by the rope and on the rope by
the body correspond to internal forces.

Let us consider the change in the ki-
netic energy of the body. The tension ex-
erted on the body by the rope does work in
the rest frame, because the displacement of
the body, −→r Q, is not perpendicular to the

tension, as shown in Figure 3. Furthermore,
the displacement perpendicular to the ten-
sion corresponds to that of the body with re-
spect to the point of contact between the ceil
and the rope, at end P of the rope. The work
done on the body by the force exerted on
the body by the rope is comparable to W of
both the two-body system shown in Figure 1
and the system composed by a body and an
inclined surface shown in Figure 2. Hence,
the kinetic energy of the body changes by as
much as W.

Figure 3. Pendulum attached to the ceil of

train in motion. The pendulum moves from Q

to Q′ and one end of the rope from P to P′. The

angle between the vertical line and the rope is

denoted by θ.

Let us proceed to the three-body system
composed by the body, the rope, and the
train, and consider whether the work done
by the tension changes the total kinetic en-
ergy of this system to ignore the mass of the
rope. This system is an extended model of
the two-body system in Example 2 that is
composed by a body and an inclined sur-
face. Thus, internal forces do no work on
the considered three-body system. Both the
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work done on the rope by the force exerted
on the rope by the train and the work done
on the train by the force exerted on the train
by the rope cancel each other. Similarly, both
the work done on the rope by the force ex-
erted on the rope by the body and the work
done on the body by the force exerted on the
body by the rope cancel each other. There-
fore, these internal forces are irrelevant to
the total kinetic energy of the system. Fur-
thermore, the work done on the system by
internal forces is also determined by con-
straints on motion in this example.

3. Physical meaning of relative
displacement from the viewpoint of
frames of reference

There is another perspective for the work
done by internal forces in the two-body or
three-body systems. For the two-body sys-
tem shown in Figure 1, we can consider that
it consists of body A in the reference rest
frame at body B. Likewise, we can consider
the two-body system shown in Figure 2 as
consisting of one body in the reference rest
frame at the inclined surface. In the former
system, the relative velocity of A with re-
spect to B, −→v A − −→v B, can be regarded as
the velocity of A measured in the reference
rest frame at B. In the latter, the relative ve-
locity of the body with respect to the in-
clined surface, −→v body − −→v surface, can be re-
garded as the velocity of the body measured
in the reference rest frame at the inclined
surface. The examples presented in this ar-
ticle aim to highlight the fact that work is

a physical quantity independent from refer-
ence frames. Still, even if the motion of a
system is observed in the rest frame, some
instructors and students confuse W with
W + w in Examples 1 and 2 [3]. This confu-
sion arises from the failure to distinguish be-
tween the system and its surroundings, and
it might cause problems to understand ther-
modynamics concepts.

Let us consider again the three-body
system composed by the body, the rope, and
the train shown in Figure 3. In the refer-
ence rest frame at the train, the motion of
the body is circular around point P assum-
ing that the rope imposes a constant length
constraint. The tangential direction (i.e. the
direction of the displacement of the body) is
perpendicular to the radial direction (i.e. the
direction pointed by the rope). Suppose an
xy-coordinate system whose origin is P and
the positive x and y axes follow the horizon-
tal right and vertical upward directions, re-
spectively. The position of the body is rep-
resented by −→r = (x, y), and thus the con-
straint is |−→r |2 = x2 + y2 = `2, where `

is the length of the rope. Thus, we obtain
xdx + ydy = −→r · d−→r = 0, which implies
−→r ⊥d−→r . Tension

−→
T is parallel to the po-

sition of the body, −→r , which is denoted by
−→r ‖ −→T . Thus, the tension is also perpendic-
ular to the change in position of the body,
i.e.
−→
T ⊥d−→r . The tension does no work on

the body, which indicates that it is irrelevant
to the change in kinetic energy in the body,
although this energy is changed by the work
done on the body by gravity, which is an ex-
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ternal force.
The following discussion is important

from a pedagogical point of view. The con-
straint of constant rope length, `, restricts
the path of the body to an arc of radius `

centred at P. In the reference rest frame at the
train, the tangential component of the equa-
tion of motion of the body is

m
1
`

d
dt
(`2θ̇) = Fθ,

where m and Fθ are the mass of the body and
the tangential component of gravity, respec-
tively, and θ is the angle between the verti-
cal line and the rope. With slight rearrange-
ments, this equation becomes

d(m`2θ̇)

dt
= `Fθ,

which shows that the rate of change over
time of the angular momentum is equal to
the torque. In addition, by the constraint on
motion, the distance from the rotation axis
to the body remains constant when the body
moves.

4. Centre-of-mass motion and relative
motion of a multibody system

The change in the total kinetic energy of
a system depends on the relative displace-
ment between its bodies. In addition, we can
understand these mechanisms from the per-
spective of the centre-of-mass motion and
relative motion of the system.

Let us consider the system composed
by the body and the inclined surface shown
in Figure 2. The total kinetic energy of

this system can be determined by the sum
of the kinetic energies from the centre-of-
mass motion and relative motion. The ex-
ternal forces exerted on the system are grav-
ity (m + M)−→g and normal force

−→
N surface in

the vertical direction, where m and M are
the masses of the body and surface, respec-
tively, and −→g is the gravitational field. The
internal forces cancel each other by the law
of action–reaction. The change in kinetic en-
ergy caused by the centre-of-mass motion,
Kc, is given by

dKc = [(m + M)−→g +
−→
N surface] · d−→r c,

where d−→r c is the change in the position of
the centre of mass with respect to the rest
frame. The change in the kinetic energy
caused by the relative motion, Kr, is given
by

dKr =

(
−→
N − m

m + M
−→
N surface

)
· d−→r .

This relationship can be easily derived by

dKbody = (m−→g +
−→
N ) · d−→r body,

dKsurface = (M−→g −−→N +
−→
N surface) · d−→r surface,

where dKbody and dKsurface are the changes
of kinetic energy of the body and the sur-
face, respectively. From the definition of
centre of mass,

d−→r c =
m

m + M
d−→r body +

M
m + M

d−→r surface,

and thus we obtain

(m−→g · d−→r body + M−→g · d−→r surface)

−(m + M)d−→r c

= 0 J
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and

d−→r surface − d−→r c = −
m

m + M
d−→r ,

where d−→r = d−→r body − d−→r surface. By using
these equations, we obtain

(dKbody + dKsurface)− dKc

=

(
−→
N − m

m + M
−→
N surface

)
· d−→r .

Note that
−→
N surface · d−→r c −

m
m + M

−→
N surface · d−→r

=
−→
N surface · d−→r surface

= 0 J

because
−→
N surface⊥d−→r surface. Therefore, the

work done on the system by the internal
forces,

−→
N · d−→r , contributes to the change in

the kinetic energy from relative motion, dKr,
although this work is actually zero.

5. Concluding remarks

The difference between linear momentum
conservation and mechanical energy conser-
vation is an important aspect from a peda-
gogical point of view in elementary physics.
Plenty of practice problems to be solved by
applying the laws of conservation of both
momentum and mechanical energy can be
found in textbooks on mechanics at college
level. The total mechanical energy is not al-
ways constant, although the total linear mo-
mentum is conserved, provided that there
are no external forces. In most textbooks,
the mechanisms for the conservation of lin-
ear momentum are explained in detail: im-
pulses of internal forces cancel each other by

the law of action–reaction. Likewise, in the
examples presented in this article, the work
done by internal forces on a system is zero.
However, the work done on a system by in-
ternal forces is not always zero, despite the
law of action–reaction. Still, the underlying
reason of this fact is not usually explained
in detail. For example, in the system shown
in Figure 2, the work done on the system by
the internal force is not zero, provided that
the internal force is not perpendicular to the
surface given friction. In this case, the work
done by the internal force contributes to the
change in the total kinetic energy in the sys-
tem.

We can consider a variation of the ex-
ample shown in Figure 1 as a more ad-
vanced problem. A person moves horizon-
tally on a plate placed over a smooth floor.
Initially, she and the plate are at rest with
respect to the rest frame. The force exerted
on her by the plate, and that exerted on the
plate by her have the same magnitude by the
law of action–reaction. However, the work
pair exerted on her and the plate by these
internal forces does not cancel out, because
the displacement of a body with a large
mass is smaller than that of a light body
in the rest frame. If the mass of the plate
is larger than her mass, the acceleration of
the plate is smaller than her acceleration.
Thus, the velocity of the plate is smaller than
her velocity with respect to the rest frame.
Consequently, the displacement of the plate,
dxplate, is smaller than her displacement,
dxperson, which implies that the change in
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the relative position, d(xperson − xplate), is
not zero. However, impulses (−F)dt and
Fdt cancel each other, where F is the mag-
nitude of the internal forces. Thus, the law
of linear momentum conservation holds, be-
cause time is absolute for her and the plate.

The same physical phenomena are ex-
plained from both temporal and spatial
viewpoints [4]. Moreover, it is essential to
understand physical phenomena consider-
ing both viewpoints. There are different
characteristics for displacement and time. In
fact, displacement with respect to the rest
frame is different for the bodies, whereas
time does not depend on them. In addition,
displacement is a vector quantity, whereas
time is a scalar quantity. Thus, the sign
of work depends on the displacement and
force exerted on the bodies. Whether the im-
pulses of internal forces cancel each other,
and work is done by internal forces, is re-
lated to the different characteristics of the
impulse and work done by force.

The laws of conservation of linear mo-
mentum, mechanical energy, and angular
momentum have been found from empiri-
cal observations. In addition, the laws of
motion are structured to be consistent with
the laws of conservation. Hence, conser-
vation laws can be derived from equations
of motion. To understand the underlying
physical meaning when solving problems
by the laws of conservation of linear mo-
mentum and mechanical energy, however,
we can consider the following construction
based on three propositions instead of the

equations of motion. These propositions can
serve as starting point for elucidating me-
chanical phenomena [5]. From the tempo-
ral and spatial viewpoints of physical phe-
nomena, the three propositions, which rep-
resent fundamental principles, consider: (1)
the change in linear momentum of a particle
caused by impulse, (2) the change in kinetic
energy of a particle caused by the work done
on the particle by an applied force, and (3)
the change in the angular momentum of a
particle caused by torque. The equations of
motion are established by providing the rep-
resentation of force that satisfies these three
propositions simultaneously. Only phenom-
ena restricted to temporal and spatial condi-
tions can occur, and thus problems can be
solved by equations considering the laws of
linear momentum and mechanical energy.
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Abstract 

 

In this paper, I want to summarize the lecture 

notes prepared for my students of "De Luca" 

High School. One century is passed by the 

publication of General Relativity and this theory 

is considered by many physicists, mathematicians 

and philosophers the greatest triumph of human 

reason. Indeed, thanks to Einstein field 

equations, cosmology has been enclosed in the 

physical disciplines. Despite this, cosmology has 

still many unsolved problems. A cosmology 

without Einstein gravitational theory based on 

the Poincaré group of Special Relativity or based 

on an extension of relativistic group was 

developed in the twentieth century with two 

different approaches.It would be rather 

anachronistic to expect a similar approach to 

cosmology but, despite this, these theories are 

interesting from a historical point of view and 

they have become a source of new ideas in the 

context of modern physics. We want briefly to 

retrace the history from the beginning until 

today hoping to stimulate the curiosity of 

students and teachers. I hope that this 

manuscript can be a starting point to explore this 

topic. 

 

1. Introduction 

Edward Arthur Milne was an English 
astrophysicist and mathematician. He was born on 
February 14, 1896 in Hull, Yorkshire, England. 
He was educated at the National School at 
Hessleand then at Hymers College, Hull, and at 
Trinity College, Cambridge. From 1932 he 
studied the problem of the expanding Universe 
and in 1935, published his theory called 
Kinematic Relativity. This new theory still has the 
Poincaré group as space-time structure and it 
wants to be an alternative to General Relativity 
theory (GR) [1].This model of the Universe is 
based on a flat, infinite Euclidean space and, with 
simple kinematic considerations, Milne deduced 
the laws of cosmic physics. Kinematic Relativity 
required only two postulates and that is the 
costancy of speed of light and the validity of 
cosmological principle and that is the Universe 
is homogeneous and isotropic. Even though his 
theory met with considerable opposition, it has 
been widely studied by the scientific community 
and it is quite cited in historical papers. Another, 
less well known, original approach to cosmology 
was that of Fantappiè by using group theory. Luigi 
Fantappiè was born in the town of Viterbo in 
1901. He was an Italian scientist, great 
mathematical analysis researcher and founder of 
analytic functionals. He studied at the Scuola 
Normale Superiore in Pisa and became a friend of 
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Enrico Fermi. Fantappiè graduated with Professor 
Luigi Bianchi in 1922 with a dissertation "Le 
formedecomponibili coordinate alleclassi di 
idealineicorpialgebrici". Four years after 
graduation, he worked at the University of 
Florence and, a year later, he moved to the 
University of Palermo. His first papers were 
concerning the Riemann zeta function and 
analytic functionals introduced by Vito Volterra. 
For the work on analytic functionals he obtained a 
number of awards and in this area he has become 
known in scientific world [2]. In the last years of 
his young life (  In fact, he died July 28, 1956 ) he 
worked on his less known theory and that is the 
idea of realizing what he himself calls "an 
Erlangen program for physics", a classification of 
possible physical theories through their group of 
symmetries [3]. Fantappié started studying the 
group structure of Newtonian and relativistic 
spacetime. In classical physics we have the 
Galileo`s group of order 10 and it expresses, from 
physical point of view, the Galileo relativity 
principle. If, instead, we consider Special 
Relativity (SR), we have the so called Lorentz's 
proper group represented, joining spatial rotations 
and inertial movements, by the rotations of an 
Euclidean space with 6 parameters. By 
considering the reflections and the translations of 
space-time, we obtain the Poincaré's group of 10 
parameters. It is well known that Poincaré's group 
expresses, from physical point of view, Einstein's 
relativity principle.In the limit case of� � ∞, the 
geometry of relativistic space-time becomes the 
geometry of classical physics and Poincaré's 
group reduces to Galileo's group. Fantappié 
thought that, for mathematical physics reasons, 
this was the right direction and he posed the 
following question: can Poincaré's group be a 
subgroup of a more general group as well as the 
Galileo group is a subgroup of Poincarè group? 
He found a new group which had as limit 
Poincaré's space time transformations and the 
main result was his demonstration that the new 
group cannot be the subgroup of any continuous 
group of 10 parameters. That is, if we consider 
groups of 10 parameters and 4-dimensional 

spaces, the sequence Galileo ⊂Poincarè⊂Fantappiècan not be extended [4]. 
This is the reason why he called it the final group. 
The main feature of this "final group" is the 
presence of a new constant and that is the radius 
of space-time. In this way, with an algebraic 
reasoning, it is possible to find an Universe 
endowed with a perfect symmetry: de Sitter's 
Universe [5].The first scientist who used the term 
"de Sitter Relativity" was Freeman Dyson in a 
well known paper [6], in which the author 
assumes that physical laws may be invariant with 
respect to the de Sitter group, rather than the 
Poincaré group. He also emphasizes that this 
hypothesis has never been deepened and it is 
unknown to many physicists. For this reason 
Dyson says that de Sitter Relativity is one of the 
missed opportunities of theoretical physics. A link 
between Kinematic Relativity and group approach 
concerns the flow of time. Indeed we will see the 
existence of two types of time. This paper wishes 
to present a summary and a historical path of these 
scientific ideas that are comprehensible to a wider 
public and can lead on to more specialized studies 
by teachers interested in the subject. The 
mathematical formalism of these theories can be 
found in the original texts. 
 

2.Erlangen program for physics 

Mathematical thinking was deeply influenced by 
the speech made in 1872 by Felix Klein when he 
became full professor at the University of 
Erlangen. In fact, he illustrated his research 
program, now called the "Erlangen program 
"showing that a geometry is based on what is 
invariant when a transformation is applied. 
Fantappié, in a similar way, hypothesized an 
Erlangen program for physics, since the Universe 
is individuated by a symmetry group which let its 
physical laws invariant. We must only follow the 
path identified by classical and relativistic physics 
observing the passage from the group of Galileo 
to that of Poincarè. As we said above, Fantappié 
showed that the Poincaré group can be seen as a 
subgroup of a wider group �  depending with 
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continuity on �  and another parameter �. 
Furthermore, the most important demonstration is 
that this group cannot be furtherly extended. For 
this reason we have the following, uniquely 
determined, sequence �⊂	⊂� 
where �  , 	  and �  are respectively the Galileo, 
Poincaré and Fantappié (that is, de Sitter) group; 
when � � ∞, � group becomes the 	 group and, 
when � � ∞ , 	  group becomes the �  group. 
Fantappiè showed that such sequence is univocal. 
The �  group represents the five-dimensional 
rotations of a maximally symmetric space time 
with a constant curvature. This space time is 
called de Sitter space time and it is a solution of 
Einsten gravitational field equations. Fantappiè, 
instead, obtains it without considering the 
gravitational field but only with an algebraic 
reasoning. After finding the new symmetry group 
of physics, it was necessary to find more general 
coordinate transformations than those of Lorentz-
Poincaré, constructing the kinematics, dynamics, 
electromagnetism and thermodynamics of the new 
relativity. This work was done by the Fantappié's 
main disciple, Giuseppe Arcidiacono. His main 
papers were published in Italian language and, 
moreover, being often mathematical journals, they 
were not read by physicists. Arcidiacono made the 
following reasoning.: de Sitter space time is 
curved and we must consider its projection on a 4-
dimensional hyperplane tangent to it at the 
observation point-event [7]. We must study the 
new relativity on this flat tangent space time and, 
for this reason, it is correct to call the new theory 
Projective Special Relativity (PSR) [8-10]. For 
historical accuracy we want to note that the plane 
representation of de Sitter space-time, called 
"Castelnuovo space-time", had been used by this 
author as far back as the early `30s [11]. The 
complex mathematical formalism is beyond the 
scope of this hystorical note and, for this reason, 
we do not write the Arcidiacono transformations. 
We only want to emphasize that in PSR there is a 
difference between the projected relative space 
time��, ��  that each observer can see, and the 
absolute de Sitter coordinates ��, �). The projected 

space time coordinates are regulated by 
Arcidiacono transformations. The relations that 
link projected and de Sitter coordinates are the 
following 

�� � ����� ���� � ��� ��
� 

and 

�� � ��2 ��� �� � ��� � �� � ������ ��
� 

with �� � 13.7 · 19$ %&�� and � � ���. 
We can observe that time � , is slower than de 
Sitter time � , noting that we must consider 
intervals of many thousands years so that the two 
temporal scales differ only for a second. Instead 
when relative time comes near to the beginning of 
time��� , de Sitter time extends into the infinite 
past. Therefore the absolute Universe is infinitely 
old. Instead de Sitter space is smaller than the 
projected one. In conclusion in the Arcidiacono 
PSR we have an absolute Universe with finite 
space and infinite time and a projected Universe 
with finite time and infinite space. For historical 
accuracy we want to emphasize that the first to 
hypothesize existence of more time gauges were 
Milne and Dirac and perhaps Arcidiacono was 
greatly influenced by the Kinematic Relativity of 
Milne. Indeed Dirac speaks of this idea only in 
some conferences held in Trieste [12], instead  
Edward Arthur Milne proposed a theory, different 
from GR [13]. In Milne theory the Universe is 
supposed a flat, infinite Euclidean space and he 
claimed to have transformed gravitational force 
from the status of an empirical law to that of a 
mathematical result. In fact, in his theory, each 
physical law must be deduced from a very few 
principles and he believes that the expansion of 
the Universe could easily be explained without 
GR. He required only two postulates, the 
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constancy of the velocity of light and the 
cosmological principle. The Kinematic Relativity 
is based on the Poincarè group and there is a 
difference between the kinematic time � 
associated with atomic processes and with light 
frequencies and the dynamic time '  associated 
with gravitational phenomena. The dynamic time 
is connected with kinematic time by the rule ' � �( � �(��� ��( 

A curious consequence of Arcidiacono 
transformations is that the relative age of the 
Universe is constant. In fact the temporal 
translation is equal in form to relativistic law of 
the composition of velocities. Therefore, as well 
as the speed of light is the same for each observer 
and despite being finite, cannot be exceeded, in 
the same way the relative age of the Universe is 
the same for each observer, whichever its space 
time position. Every observer will see the same 
Universe, not only from every point of space, but 
also in any era. He obtains the perfect 
cosmological principle postulated by the authors 
of the stationary model, who however, had to 
hypothesize the creation of new matter from 
nothing in order to verify it. Furthermore 
Arcidiacono showed that, differentiating temporal 
translations, it is possible to discover that every 
observer will see an expanding Universe with 
escape velocity proportional to the distance and he 
became convinced that the Hubble's law was only 
a geometrical effect [14]. PSR and ordinary SR 
coincide in the space time neighbourhood of the 
observer while we have totally different results on 
processes remote from observer and that is if �/� 

and 
*+/,are not negligible.Later Arcidiacono tried 

to find a theory that includes PSR as its empty 
solution, just as ordinary GR comprises SR as the 
"empty" limiting case. Finally, in 1964, he 
formulated the so called Projective General 

Relativity (PGR). The Arcidiacono theory is very 
interesting also regarding the link with Hartle-
Hawking proposal of "no-boundary" condition but 
the author very often used phrases that recall more 
metaphysics that physics. Indeed Arcidiacono 
stated that the hyper-spherical Universe is like a 
book written with seven seals (Apocalypse, 6-11), 
and consequently two operations are necessary to 
investigate its physics: 1) inverse Wick rotation 
and 2) Castelnuovo representation. That's the way 
we can completely define a relativity in de Sitter. 
Perhaps this way of writing contributed to the 
little interest shown by scientists in his papers. 

 

3.Revival of interest in de Sitter 

invariant theories 

The first and important developments were due to 
Jean-Marc Lévy-Leblond, Henri Bacry and Fock 
[15-16]. Before these authors, with the sole 
exception of Fantappié' and Arcidiacono, de Sitter 
space had always been conceived as an empty and 
therefore unphysical solution to the Einstein 
equations with a cosmological constant. We can 
say that Arcidiacono continued in his projective 
approach in the total scientific isolation until three 
Italian researchers has tried to carry out his ideas 
[17-21]. These authors have sought, above all, to 
implement Arcidiacono approach as part of the 
standard physics and cosmology. The fundamental 
dynamics equations of material point, perfect 
incompressible fluid and electromagnetism have 
been derived by Leonardo Chiatti. Furthermore, 
some mistakes of Arcidiacono have been 
corrected or eliminated [22]. Licata and Chiatti 
have examined the cosmological problem within 
PGR context and they observe that it requires 
additional specifications with respect to Fridman's 
ordinary cosmology within GR context. The two 
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points that distinguish the cosmological problem 
in modern PGR version from that in the GR 
version are the presence of a generalized de Sitter 
horizon and the ensuing fact that a part of the 
recessional motion of galaxies from the observer 
is not the result of spatial expansion but of the 
kinematics connected with the existence of this 
horizon. The recent discovery of the accelerating 
expansion of the universe has led to a revival of 
interest in de Sitter invariant theories and there is 
also a web page dedicated to the possible 
relativity in the context of de Sitter space time 
[23]. In the modern papers it is postulated that the 
empty space has de Sitter symmetry as a 
fundamental law of nature. This means that space 
time is slightly curved even in the absence of 
matter or energy and the acceleration of the 
expansion of the universe is not all due to vacuum 
energy, but at least partly due to the kinematics of 
the de Sitter group. The main difference compared 
to the Arcidiacono approach is that the physics is 
not studied on the projective 
Castelnuovochronotope but it is studied on the 
space time that Arcidiacono called absolute space 
time. The principal studies in this regard are made 
by a Chinese group [24] and a Brazilian group 
[25].In a recent work, three scientists apply de 
Sitter symmetry to solve the problem of galaxy 
rotation curves [26]. In recent years there are also 
two doctoral theses [27-28].We also can interpret 
de Sitter relativity as an example of Doubly 
Special Relativity introduced recently by 
Amelino-Camelia, in the context of quantum 
gravity[29].In conclusion we can say that the  
founders of modern de Sitter Relativity and 
Doubly Special Relativity theories were Fantappiè 
and his student Arcidiacono. Honestly speaking, it 
is evident that there are some mistakes in the 
original approach; no mathematical errors but 
from the interpretation point of view. Nevertheless 

we must be equally honest acknowledging that 
Fantappiè and Arcidiacono were, from the 
hystorical point of view, the first to try to extend 
the Poincare group through de Sitter symmetry as 
well as many modern theories are doing. 
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Abstract

According to a student of Zollman and Spears

(Kansas State University) he / she did not learn

anything because the teacher always answered

his / her questions [1]. This comment has

made profound and ever-lasting impact on my

way of teaching starting from 1975 and on

work in global problems in learning Newton’s

laws of motion at the SSC / HSC level. The

most influential paper on my work was of

John Warren in 1971 as I had to discuss

related issues in six letters in Physics Education,

UK over a span between 1984 and 2012. I

regard John Warren’s report of 1971 as the

greatest discovery of 20th century in Newtonian

mechanics. He expired on 02 December 2016

at age 93 and therefore I am describing his

discovery in this article and dedicate the same

to his memory with great respect.

1 Introduction

Dr. John W. Warren was born on 01 July
1923. His schooling was affected due to ill
health at age 7 but this and other setbacks
inculcated the habit of self-study which
helped him throughout in his career as
a physics educationist. He inherited the
precision and rigor in teaching from his
father David, who became a technical
teacher after the world war. On leaving
school at 16, John became a lab assistant in
Illford and also completed the external B.Sc.
in physics. In 1947 Prof. James Chadwisk
( famous for the discovery of neutron)
appointed John as demonstrator in the
physics department and so John moved
to Liverpool. But the health of a senior
colleague caused concern that time and
hence John had to take up lecturing in the
university. This became a boon for him as
he realized difficulties of students and the
origin of those difficulties in the teaching
of concepts. He also noticed that even very
capable students had serious problems
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which were beyond the inherent difficulties
of the subject. Therefore his scrutiny of
textbooks and exam papers became truly
unique. This is how he became not only
physics teacher but an educationist also.
In 1951, he got PhD for research in mass
spectrometry and eventually moved back to
London in 1953 as a lecturer in physics in
the Acton Technical College. Subsequently,
ATC became the Brunel university at
Uxbridge. He remained there till his
retirement in 1985.
In this university, he carried out students’
comprehension and retention of the
knowledge of circular motion in late
1970s, reported in 1971 [2].

2 Questionnaire on the uniform

circular motion of a car

The task was very simple, based on the
uniform circular motion of a car on a plane
level ground with negligible resistance of
air. Students were asked just one question:
draw an arrow showing the resultant force
acting on the car. He was surprised on
seeing

1. Only about 10 percent students giving
the expected answer that is centripetal
force.

2. About 50 percent students giving a
common and unexpected answer that is
forward force of engine as the resultant
force.

3. Rest of the answers were inclusive
answers.

Hence John Warren was unhappy because
of poor understanding of circular motion
by the students who have passed the
entrance exam with excellent marks.
Subsequently, many other investigators
repeated investigations on this line and
made the same observation, thereby
establishing the global feature of the poor
understanding on circular motion. So let us
first see what could have motivated John
Warren to use the circular motion of a car.

3 Motivation for John Warren

In textbooks and exam papers, we teachers
commonly use natural motions like the
planetary motion or electron’s motion
around the hydrogen nucleus in Bohr’s
theory of hydrogen atom. But what about
artificial motion? In fact, it is reasonable to
say that Newton did realize the negligence
of artificial motion in mechanics and
therefore wanted to work on that when he
was in mid-sixties, nearly 20 years after
putting forth his laws of motion. Therefore
I do not think that Newton forgot his
own laws of motion as Anthony French
said [3] - but I think that Newton made
the greatest and exceptional introspection
and realized some logical lacunae in his
mechanics. This information could have
been passed on from one generation to
the next because E.E. Witmer and A.V.
Bushkovitch wrote a note, title: “On the
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Lack of Logic in the Literature of Physics”
[4]. Even Dennis W. Sciama states in
the preface of his famous book ‘Physical
foundation of the General Relativity’
(1969) says that logical incompleteness of
Newton’s laws of motion leads us step by
step to the General Relativity. More, over,
earlier I have shown that incompleteness
itself has not understood as yet and teachers
still have crucial difficulties especially
in teaching uniform circular motion [5].
Therefore, I think, John Warren decided
to use the circular motion of car the case
of artificial motion for studying students’
comprehension of the subject. And the
fact that nearly half of students gave one
particular wrong answer proves there is
a globally neglected problem in teaching
circular motion. I pointed out in 1984
[6] that nearly half of these students can
counter teacher’s stand by questioning the
need of engine in the motion of car.

4 Resemblance of students’

wrong answer with angel

beating wings

In the pre-Newtonian era, there was a
popular idea that a planet moves forward on
the orbit because of an angel keeps beating
wings behind that planet, even Kepler also
used this idea. This idea is seldom discussed
in textbooks, except Richard Feynmann’s
celebrated book. So engineering students’
answer is a compelling evidence that they
can imagine a pre-Newtonian idea which

is generally not taught. So teachers have
to find out the reason for questions (i)
Why students give contrasting answers,
depending upon the mode of evaluation
and (ii) How and Why students can imagine
a pre-Newtonian idea, even though it is
not taught to them, as the correct answer.
Also the necessity of focusing attention
and refining the present teaching is evident
in following evidences gathered after John
Warren’s investigation.
Richard Gunstone carried out a similar
investigation on circular motion in 1984 [7].
One Australian girl did not respond to the
questionnaire because she found learning of
this and related concepts meaningless. My
own experience with graduates gained in
a symposium in Wadia College, Pune, in
January 1993 is an eye-opener [8]. A British
girl, Josie, reacted to physics after studying
for one year and then giving up like the
Australian girl noted above. Therefore I
guessed what could have made her to make
a bitter comment on physics in 2007 [9].
Most recently, exo-planets have entered our
physics and some of them have retrograde
orbits reviving an old challenge in O level
mechanics [10].
In view of the above discussion, I consider
John Warren’s investigation as the greatest
discovery in physics education in the 20th

century, giving an experimental support to
Newton’s exceptional introspection when
he was in mid-sixties. Therefore, this letter
dedicated in his memory, with great respect,
on the occasion of his first death anniversary
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on 02 December 2017.
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