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EDITORIAL 

 

  

 The Draft of New Education Policy was 

submitted to the government by the end of May 

2019. Quite expectedly, it has kicked off a bigger 

debate on various issues related to primary, middle 

and higher education levels. 

 

 As far as higher education and research is 

concerned, the policy document makes new 

recommendations. For instance, it proposes that 

higher education institutions can be permitted 

through a new body called the National Higher 

Education Regulation Authority. It also 

recommends that all new institutions permitted by 

this authority must be accredited by NAAC within 

five years. In the core area of education, the policy 

also makes a strong case for liberal education, 

which will have a judicious combination of core 

areas and one or two specialization. There is also a 

dire need to increase the quantum of funding for 

education. The draft policy seeks to double the 

investment in education. 
 

 In order to streamline research funding, the 

policy document recommends establishing a 

National Research Foundation “for funding, 

mentoring and building the capacity for quality 

research in India”. It is hoped that this prescription 

would enhance the research base in the country. 
 

 The draft policy is certain to be debated and 

discussed in the coming months. As the debate 

progresses and as we see how the policy translates 

in to practice, we will have an opportunity to revisit 

the salient action points of the draft policy. In 

particular, its effect on science education both at the 

school and college level is of particular interest to 

us. As this moves on, we will also publish expert 

opinions on our webspecials. 
  

    

 

 

M. S. Santhanam 

Chief Editor 

Physics Education    

           

 

_______________________________________________________________________________________________   
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Abstract 
A He-Ne laser has several longitudinal modes in 

the stationary waves establishing between the two 

mirrors constituting its optical cavity. These 

different wavelengths are inside the ‘natural’ 

width of the red spectroscopic line of Ne. This 

paper discusses three different experiments 

(suitable as demonstration experiments) in order 

to give simple analysis of the photocurrent 

revealed by a fast photodiode. 

 

1. Introduction 
The diffusion of low-cost and low-power He-Ne 

laser in high school laboratory as a versatile light 

source with high spatial and temporal coherence 

makes necessary an intuitive and elementary 

treatment of the stimulated emission process as 

elementarily described in the J. R. Meyer-Arendt 

textbook [1]. It should be pedagogically useful to 

observe that in acronym of the word laser (Light 

Amplification by Stimulated Emission of 

Radiation) emphasis is put on the amplification 

process by stimulated emission that happens to 

Neon atoms in a metastable state [1]. However, the 

acronym loser were would been equivalent, 
because a stationary 'wave of light' (having nodes 

of electric field E at the mirror surfaces) is 

establishing in an optical cavity. As elementary 

condition of a stationary wave in everywhere closed 

cavity, the condition of an integer number of half 

wavelengths having nodes at the extreme of the 

cavity must be satisfied. So, if a cavity has 

 length L, (distance between the two parallel 

mirrors) the condition: 

 𝑚
𝜆

2
= 𝐿     or      𝑓 =  

𝑚𝑐

2𝐿
                     (1) 

 

must be fulfilled and where m is an integer, λ is the 

wavelength, L is the length of the resonant cavity, c 

is the speed of the light in empty space and f  its 

frequency. For an optical cavity (the two laser’s 

mirrors giving a Fabry-Perot cavity). 

 

2. Elementary theory of the light’s 

stationary wave in a cavity. 
Eq. (1) holds approximately because refraction 

index of He-Ne mixture is assumed constant in time 

and unity.  One of the two laser’s plane mirror has 

a limited reflectivity because it must permit the exit 

of the light beam. Therefore it is possible to coexist 

mailto:museodellascienza.s.ganci@gmail.com
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beyond the condition Eq. (1) also very slightly 

shorter and upper wavelengths ±λ1±λ2…still 

fulfilling Eq. (1). These wavelengths represent the 

longitudinal modes of the electric field E into the 

cavity up to the oscillation threshold condition [2] 

into the intensity function representing the width of 

the spontaneous Ne ‘red’ emission. Fabry-Perot 

cavity of the laser discriminates different 

wavelengths existing inside the ‘natural’ width of 

the spectroscopic red line of excited Ne.  Therefore, 

these wavelengths can superposing pair by pair 

between them [2, 3] giving a superposition 

modulated like a beat. Because the beat is a wave 

of the same spectrum of the two superposing waves 

it is possible that the superposition can be out the 

width of the optical radiation and enters the domain 

of ‘radio’ waves. An acoustical analogy can be 

pedagogically useful. Two ultrasounds 40 kHz and 

41 kHz emitted from two excited ordinary 

transducers are singly not heard by the student but 

its superposition give a (faint but well perceptible) 

1 kHz whistle. Ears do not perceive each acoustical 

perturbation but the superposed signal enters the 

width of human hearing perception. So, the electric 

fields E1(t) and E2(t) of each single light wavefield 

is undetected by a fast photodiode [4] even its 

superposition  E(t) = E1(t) + E2(t) enters the domain 

of frequencies perceived by the photodiode itself. 

 Elementary theory can be developed as 

below: let us consider two stationary waves of 

frequencies f8 and f2 into the optical cavity and 

having two nodes of the electric field at the two 

mirrors. The beat frequency fB that our 

photodiode is engaged to detect is: 

 

           fB=|f1- f2 |                                         (2) 

 

That, for ordinary low power laser used in Lab’s 

School enters the domain of UHF ‘radio’ waves. 

 

3. The various feasible experimental 

solutions in a high school Lab. 

There are almost four experimental simple setups 

for showing (and measuring) the beats between 

longitudinal modes: 

a)  Using an oscilloscope and a high-

frequency generator tuned as a local oscillator 

mixing it with signal coming from a fast photodiode 

detector; [5]  

b) Using an old analogic TV; [8, 9] 

c) Using a H. F. spectrum analyzer; [10, 12] 

d) Using a DVB-TDAB+FM+SDR USB 

dongle with HDSDR spectrum analyzer software 

working under Windows 7 or Windows 8 or 8.1. At 

the present, we do not found drivers/software 

working under Windows 10. [11-12]. 

b) Because the method a) appears 

pedagogically hard in a high school, the simplest 

experimental setup uses a photometric circuit (Fig. 

1 a) Photometric detector circuit is shown in Fig. 1 

b). The output of the photometric circuit is directly 

connected to the antenna socket of an old analogic 

TV. The laser beam is centered with care on the fast 

photodiode. The signal from the reverse-biased 

photodiode is applied to the TV antenna through a 

little value capacitor cutting continuous 

components into the socket antenna of a little 

analogic bw TV [6, 7]. Silicon fast photodiodes 

Hamamatsu S5972-01 and Hamamatsu S9073-02 

are low-cost and well suited to the experiment. If 

the analogic tuning scans the entire UHF width and 

meantime the fingers runs periodically through the 

LASER beam, it happens a suddenly modulation of 

the light (and in the audio noise) in the screen 

similar to that shown in Fig. 2. Because it happens 

on a well-defined frequency, we can know 
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approximately the transmitting channel and 

therefore the frequency of the beat.  

c) If your School Lab has a high frequency 

spectrum analyzer the measurement of the beat 

frequency is more simplified.  We tried an old 

spectrum analyzer (Unahom EP738A) with a 

frequency width from 47 MHz to 800 MHz. The 

photometric circuit in Fig. 1 b) is connected to the 

BNC input and the search of tune is very simple. A 

well-defined peak as shown in Fig. 3 gives, for our 

laser (LSW 10),  a  beat frequency fB = 610 MHz 

with an uncertainty of about ±10 MHz estimated in 

the peak’s width around its base. 

d) Finally, we repeat the experiment using a 

Terratek DVB-TDAB+FM+SDR USB 2.0 dongle 

with HDSDR spectrum analyzer software well 

working under Windows 7 / Windows 8 or 8.1 [10]. 

This device is very inexpensive, it needs the driver 

“Zadig” [11] and HDSDR software is easily 

downloadable from [13].  A screenshot of the beat 

signal is shown in Fig. 4. It shows in the upper 

“waterfall” width a little aleatory sliding in time of 

the beat frequency and a definite peak in the lower 

width, where the frequency scale is drawn. The 

trace slow slides in time and, sometimes, jumps as 

shown in waterfall width; so still give an 

uncertainty of the frequency around ±10 MHz in 

spite the frequency scale has a so high resolution. 

As shown in the Literature quoted [8, 9] the 

analysis of laser modes is not at all so simple as our 

experiments seems suggest. 

4. Conclusions. 

The first (b) and the second experiments (c) were 

almost simple and convincing when used in the 

classroom as demonstration experiments. Even 

today, the student is best experienced with the use 

of PC used as instrument tool through a suitable 

software, the use of HDSDR device has vice-versa 

induced a bit of confusion and questions of not easy 

treatment out the context of a simple pedagogic 

lesson. Probably this third experiment and /or the 

analysis of the photocurrent, particularly for longer 

cavity lasers, is out a simple treatment and would 

be more suitable in an undergraduate course of 

Optoelectronics. 

Acknowlegements. 
Sincere thanks to Mrs. Karen Rossi for her valuable 
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spectrum analyzer. 
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Figures and captions. 

 
Fig. 1. Experimental setup to detect optical beats. 

 
Fig. 1. a) Photometric circuit P. We tried ‘fast’ photodiode Motorola MFOD100, Hamamatsu S5972 and 
Hamamatsu S9055 Si photodiodes having respectively over 500 MHz and 1.5 GHz for electric field variations in 
time. In addition, one of the two junctions of a planar epitaxial high frequency transistor, to which the container 
head has been removed, can work if the school has low budget. 
 
b) Experimental setup. L: He-Ne LASER; P: photometric circuit connected to the socket of TV antenna 

(syntonizer on VHF for cavity length between 0.22m and 0.3 m.  
 
 

 

http://www.digisat.to.it/
https://www.rtl-sdr.com/tag/zadig/
http://www.hdsdr.de/
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Fig. 2. Typical modulation of the TV screen’s light when the tuning is accordingly with beat frequency and the 
fingers pass periodically through the LASER beam. 
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Fig. 3.The peak given by photometric circuit in Fig. 2b when spectrum analyzer is in tune with the beat frequency. 
For our JXSL Tech. LSW10 He-Ne 1.5 mW, randomly polarized LASER, the beat frequency is estimated in 610 
MHz ± 10 MHz. The uncertainty is estimated by the width of the peak near its basis.  
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Fig. 4.The peak of the beat caused by two longitudinal modes in our LSW 10 LASER. The 
“waterfall” windows shows as the peak of the frequency (about 609 MHz) aleatory in time changes 
in time. The main peak in the upper width shows the tune of the beat frequency. It slides, or better 
jumps, among contiguous frequencies in time. 
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Abstract  

Introduction of some very fundamental concepts 
in Physics to students is often a challenge for the 
teacher, particularly, in situations where direct 
demonstration or experimentation is not feasible 
inside the classroom. Interference of waves is one 
such concept. One of the aims of the proposed 
work is to show how the concept of interference 
of waves can be introduced using simulations. The 
other aim is to illustrate how SCILAB can be used 
to enable technology based teaching of Physics. In 
the first part of the work, the phenomenon of 
interference of waves coming from two point 
sources is simulated using SCILAB. The later part of 
the work simulates the interference pattern 
obtained in Young’s Double Slit Experiment using 
two point sources. 

 

I. INTRODUCTION  

SCILAB is a free and open-source, numerical 

computational package, an alternative to 

MATLAB, which is a proprietary programming 

language. In the recent syllabi revision of various 

undergraduate programs offered by some Indian 

Universities under the Choice Based Credit System 

(CBCS), programming in SCILAB has been 

introduced.  

The analytical solutions to various problems in 

physics often have their own limitations and the 

teacher finds it challenging to explain the practical 

aspects of these problems to students. Such 

situations can however be overcome by using 

computational physics techniques. SCILAB 

provides a very powerful and effective platform for 

the same.   

The present work seeks to highlight how SCILAB 

can be used for a more effective teaching-learning 

process, through a simple illustration of how the 

concept of ‘Interference of Waves’ can be 

explained rather concretely. 

When two sets of waves are made to cross each 

other, interesting and complicated effects are 

observed. These effects are explained and 

understood in terms of the phenomenon of 

interference which is characteristic of any kind of 

wave motion. This makes “interference of waves” 

as one of the fundamental concepts in physics. 

The first part of the work illustrates the use of 

simulations in introducing the concept of 

interference of waves in classroom at the secondary 

school or introductory undergraduate level. 

The later part of the work simulates the interference 

pattern obtained in Young’s double slit experiment, 

which is the very first experiment introduced to 

students on “interference of light”. A very in-depth 

discussion of the interference pattern is done that is 

often missing in textbooks. 

II. SUPERPOSITION OF WAVES 

It is a matter of common experience that two trains 

of ripples on the surface of water cross each other 

and proceed onward in their directions undisturbed. 

In the regions of crossing there are places where the 

disturbance is practically zero and others where it 

is greater than that given by either wave alone. The 
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effects are explained by the principle of 

“superposition of waves”. This principle states that 

when a medium is disturbed simultaneously by 

any number of waves, the instantaneous 

resultant displacement of the media at every 

point at every instant is the algebraic sum of the 

displacement of the medium due to individual 

waves in the absence of the others.  
Suppose due to a single wave train, the 

displacement of the medium at a certain point at 

any instant is y1 in a given direction and that due to 

another wave train in the absence of the first, the 

displacement is y2. By the principle of 

superposition, the instantaneous resultant 

displacement R of the medium at that point due to 

the two waves acting together is  

R=y1+y2; if y1 and y2 are in the same direction 

   =y1-y2; if y1 and y2 are in opposite directions and 

y1>y2 

   =y2-y1; if y1 and y2 are in opposite directions and 

y2>y1 

This is shown in Figure 1 below. 

 
Figure (1): Illustration of Principle of 

Superposition of waves 

       
The validity of this principle is established when it 

is observed that after the waves have passed out of 

the region of crossing, they appear to have been 

entirely uninfluenced by the other set of waves. 

Amplitude, frequency, and all other characteristics 

are just as if they had crossed an undisturbed space.  

III. THE INTERFERENCE PHENOMENON  

The interference of waves causes the medium to 

take on a shape that results from the net effect of 

the two individual waves upon the particles of the 

medium. At any location along the medium where 

the two superimposing waves have a path 

difference equal to an integral multiple of 

wavelength, constructive interference of waves is 

said to take place. So,  

 

Path difference = n λ                                                               (1) 
 
where n is an integer, is the  condition for 

Constructive Interference. 

 

At any location along the medium where the two 

superimposing waves have a path difference equal 

to half integral multiple of wavelength, the waves 

are set to interfere destructively. So, 

 

Path difference = (𝑛 +
1

2
) λ                                   (2) 

 
is the condition for destructive interference. 

 

For observing interference, it is essential that the 

two superimposing waves have the same 

wavelength, frequency, velocity and a constant 

phase relationship.  

 

IV. SIMULATING INTERFERENCE 

EFFECTS 

The interference effects can be demonstrated in the 

laboratory with ripples on the surface of water. 

Two pins are attached to the same prong of an 

electrically maintained tuning fork and adjusted so 

that the pins just touch the surface of water placed 

underneath, while the prongs are capable of 

vibrating in a vertical plane. The periodic vibratory 

motion of the prongs is taken up by the attached 

pins, which are, therefore always in equal phase. 

This periodic vibratory up and down motion of the 

pins, on the surface of water generates two waves 

or ripples systems of equal amplitude, equal 

wavelength and equal velocity. The ripples spread 

out with their centers at the points of action of two 

pins. In the present work, the above experimental 

setup has been simulated using SCILAB. 
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Figure (2): Schematic representation of spreading 

of ripples on the surface of water  

 

 

The separation between the two pins is taken to be 

d. Each of the two pins act as a point source giving 

out circular wave fronts propagating in all 

directions. Thus, we get two sets of concentric 

circles, one centered at each of the two point 

sources. To simulate interference, the intersections 

of one set of concentric circles with a circle of 

given radius from the other set are found as 

follows: 

 

Let 𝑆1 𝑎𝑛𝑑 𝑆2 be the two point sources. With 𝑆1 as 

centre, a circle of radius r is chosen. If the plane 

containing 𝑆1 𝑎𝑛𝑑 𝑆2 ,i.e., the surface of water on 

which ripples are formed is taken to be the XY-

plane with origin at 𝑆1 , then the equation of the 

circle is  

 

𝑥2 + 𝑦2 = 𝑟2  .                         (3) 

 

If Y-axis is along the line joining 𝑆1 𝑎𝑛𝑑 𝑆2, then 

the coordinates of 𝑆2 are (0,-d). If P is an arbitrarily 

chosen point on the circle, then (𝑆2𝑃 − 𝑆1𝑃) can be 

taken to be the path difference between the two 

waves originating at the same instant from 

𝑆2 𝑎𝑛𝑑 𝑆1 respectively on reaching the point P. If 

                           ∣ 𝑆2𝑃 − 𝑆1𝑃 ∣ = 𝑛𝜆 ,                   (4) 

                                                                           

 the two waves interfere constructively, and if 

 

                   ∣ 𝑆2𝑃 − 𝑆1𝑃 ∣ =
(2𝑛+1)𝜆

2
  ,                     (5)                                                    

 the interference is destructive. 

It can be easily seen that 

                             S1𝑃 = 𝑟 and                                  (6) 

                                                                                                                              

                   𝑆2𝑃 = √𝑥2 + (𝑦 + 𝑑)2                        (7)                                                                             

 

This gives us, for constructive interference,  

∣ 𝑆2𝑃 − 𝑆1𝑃 ∣= ∣ √𝑥2 + (𝑦 + 𝑑)2 − 𝑟 ∣ = 𝑛𝜆    (8)                             

 

And for destructive interference,  

∣ 𝑆2𝑃 − 𝑆1𝑃 ∣= ∣ √𝑥2 + (𝑦 + 𝑑)2 − 𝑟 ∣ =
(2𝑛+1)𝜆

2
       

                                                                            (9)                       

 

Rewriting equations (8) and (9) as, 

√𝑥2 + (𝑦 + 𝑑)2 = ±𝑛𝜆 + 𝑟                                   (10)                                                                  

 

 

√𝑥2 + (𝑦 + 𝑑)2 = ±
(2𝑛+1)𝜆

2
+ 𝑟                           (11)                                   

 

Squaring both sides of equations (10) and (11), we 

get, 

𝑥2 + (𝑦 + 𝑑)2 = (±𝑛𝜆 + 𝑟)2                                   (12)                                                          

 

𝑥2 + (𝑦 + 𝑑)2 = (±
(2𝑛+1)𝜆

2
+ 𝑟)

2

                       (13)                                                  

 

It is to be noted that equations (12) and (13) 

represent sets of concentric circles centered at 𝑆2 

having radii determined by the value of n, the order 

of interference maxima and minima. Thus, we 

simulate the locations of constructive and 

destructive interference of waves by the points of 

intersection of these concentric circles with the 

circle of radius r centered at 𝑆1. 

 

         V.     SCILAB SIMULATIONS 

In the following simulations we consider the values 

of variables to be as follows: 

 

Distance between point sources (d) = 3cm 

Radius of the circular wavefront (r) = 5cm 

Wavelength of the waves (λ) = 1cm 

 

We check the position of points of maxima and 

minima for different orders using simulations .The 

blue dot in Figure (3) represents the point source S1 
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and the red dot represents the point source S2. The 

blue circle is the loci of all points at a definite 

radius (r=5cm in this simulation) from the point 

source S1. 

 
Figure (3): Two point sources and a circle having 

source S1 as its center. 

 

The red and the black circles correspond to 

equations (12) and (13) representing loci of all 

points where maxima and minima occur 

respectively. In all the simulations, the intersection 

of the red circle with the blue circle gives the 

positions of maxima and the points of intersection 

of the black circle with blue circle gives the 

position of minima on the wave front of radius r 

that originated from the point source S1. 

 The positions for different order maxima and 

minima are depicted in the following figures: 

 

 

               Case (i):  n = 0  

  
Figure (4): Two points of maxima and four points 

of minima for n = 0. 

 

 

Case (ii):  n = 1  

 

 
Figure (5): Four points of maxima and four points 

of minima for n = 1. 

 

 

Case (iii):  n = 2  

 
Figure (6): Four points of maxima and four points 

of minima   for n = 2. 

 

 

Case (iv): n = 3  

 
Figure (7): Two points of maxima and no minima 

for n=3 
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                   Case (v): n = 4  

 
Figure (8): No points of maxima and minima for 

n = 4. 

 

All the cases discussed above are clubbed in Figure 

9.  

 
Figure (9): All the possible points of maxima and 

minima for a wave front from source S1 having 

radius r. 

 

It depicts the points of maxima and minima of all 

the possible orders that can be observed together 

for a circle of definite radius. 

 

In the following Figure 10, different wave fronts 

originating from S1 are represented by blue 

concentric circles of varying radii. The intersection 

of these circles, with red and black circles 

corresponding to wave fronts originating from the 

source S2 give the locations of maxima and minima 

respectively. The black dots represent the points of 

minima and the red dots represent points of 

maxima.  

 

 

 

 

 

 

 
 Figure (10): Representation of points of maxima 

and minima on wavefronts of different radii. 

 

   

 

  VI .  OBSERVATIONS AND DEDUCTIONS 

 

From the above simulations using SCILAB, 

following observations and deductions can be 

made: 

1. The maximum order of maxima and minima 

that can be observed depends on the ratio of 

distance (d) between the sources and the 

wavelength (λ) of the waves. If d/ λ = k, then 

the maximum possible order of maxima would 

be an integer less than or equal to k and for 

minima, maximum possible order would be 

one less. The highest order of interference 

maxima and minima is independent of the radii 

of superimposing wave fronts.   
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2. In the present case, irrespective of the radius of 

the circle, there are four points on the circle 

corresponding to a given order (with zeroth 

and the highest order being exceptions) of 

maxima and minima, one in each quadrant. For 

the zeroth order case, there are two points of 

maxima and four points of minima. For the 

highest order (n =3 in the present simulation), 

there are two maxima and no minima. 

3. The points of maxima and minima can be 

joined with opposite points lying on the other 

side of y-axis for the same value of ordinate by 

a chord parallel to x-axis (Figure 11). The 

maxima and minima for the same order do not 

necessarily lie diametrically opposite to each 

other (last case is an exception). 
 

 
Figure (11): The chords joining the points of 

maxima and minima respectively on opposite side 

of y-axis 
 

4. From Figure (10), it can be seen that the points 

of maxima and minima are not equally spaced 

on a given wave front. However, the points of 

maxima and minima of a given order in each 

quadrant lie along a straight line. 

 
 

VII .     YOUNG’S DOUBLE SLIT EXPERIMENT 

 

Different observers can view at the same instant 

different objects through the same narrow aperture 

with perfect clarity, the beams of light having 

crossed at the aperture in reaching the observers. 

This establishes the validity of the superposition 

principle for light and hence, the principle can be 

used in investigating the disturbance in regions 

where two or more light waves are superimposed. 

Historically, the phenomenon of ‘Interference of 

light’ was first discovered by Thomas Young in 

1801. He performed an experiment exhibiting 

interference pattern due to the superposition of two 

beams of light, thus establishing the wave nature of 

light. This experiment is known to us as the famous 

Young’s Double Slit Experiment. 

Figure (12): Schematic representation of Young’s 

Double Slit experiment. 

 

 

In the original experimental set-up, Young allowed 

the sun light to pass through a pin hole S and then 

at some distance through two sufficiently close pin 

holes 𝑆1 and 𝑆2 in an opaque screen. Finally, the 

light was received on a screen on which he 

observed an uneven distribution of light intensity. 

The illumination on the screen consisted of many 

alternate bright and dark spots. In accordance with 

the modern Laboratory technique narrow parallel 

slits replace pin-holes and the slit S is illuminated 

with monochromatic light of wavelength𝜆. Light is 

received on a screen placed at a certain distance 

from the plane containing the parallel slits 𝑆1 

and 𝑆2.  

A schematic representation of the experimental set-

up is given in the Figure 12. 

The two slits 𝑆1 and 𝑆2are taken be along the z-axis 

having coordinates (0, 0, d/2) and (0, 0,-d/2) 

respectively. If P is the point of observation having 

coordinates (x, y, z), then the path difference 

between the superimposing waves from 𝑆1 and  𝑆2 

, on reaching P is given by 

∆= 𝑆2𝑃 − 𝑆1𝑃                                                              (14)                                                                   

∆= √𝑥2 + 𝑦2 + (𝑧 +
𝑑

2
)

2

−

                                          √𝑥2 + 𝑦2 + (𝑧 −
𝑑

2
)

2

  (15) 
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Equation (15) on simplification by squaring both 

sides gives 

 
𝑧2

∆2

4

−
𝑥2

𝑑2−∆2

4

− 
𝑦2

𝑑2−∆2

4

= 1                                          (16)                                                     

 

which is the equation of a hyperboloid for a given 

value of ∆ . 

An interference maxima occurs when ∆= 𝑛𝜆 and 

for minima  ∆=
(2𝑛+1)𝜆

2
 .  

Hence, the shape of an interference fringe is given 

by the loci of points of constant  ∆ , the path 

difference between the superimposing waves. In 

three dimensional space, this is a hyperboloid 

surface given by equation (16). 

In our experimental set-up, we generally obtain 

interference pattern on a screen placed at a desired 

location with respect to the screen containing the 

pin holes 𝑆1 and  𝑆2 . The observation screen is 

simulated by a plane having the desired orientation. 

The intersection of this plane with the hyperboloid 

surface would give the shape of interference fringe 

on the screen. Simulations corresponding to screen 

oriented at angle 𝜃=0, 30, 45 and 90 Degrees to the 

line joining the slits are discussed in the following 

section.   

 

 

              VIII.      SHAPE OF FRINGES 
  

The screen containing 𝑆1 and 𝑆2 is simulated by the 

XZ- plane in the present analysis. 

 

Case (i): 𝜽 = 𝟎° 

 

The observation screen is parallel to the screen 

containing 𝑆1 and 𝑆2. Let it be represented by the 

plane y=D, where D is an arbitrarily chosen 

constant. Substituting y=D in the equation of 

hyperboloid (equation 16), we get, 

 
𝑧2

∆2

4

−
𝑥2

𝑑2−∆2

4

= 1 +  
𝐷2

𝑑2−∆2

4

                                   (17)                                                    

 

which is the equation of a hyperbola in the y=D 

plane. Thus a hyperbolic fringe is obtained when 

the observation screen is placed parallel to the 

plane of the slits. This is shown in figure (13) 

below. 

 
Figure (13): The observation screen is placed 

parallel to the plane of the slits 

 

 

The green, blue and red axis denotes x, y, and z axis 

respectively. Yellow coloured shapes are the 

hyperboloids. The red axis is also the line joining 

the two slits. The blue plane is the screen which is 

placed at distance D from the plane of the slits.  

Figure (14) shows the view of the above from a 

different angle. 

 

 

 

Figure (14): When viewed from a different angle 
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Case (ii): 𝜽 = 𝟗𝟎° 

 

The observation screen is perpendicular to the line 

joining the two slits, i.e., the z-axis. Let it be 

represented by the plane z=D. Substituting this in 

the equation of hyperboloid (equation (16)) and 

rearranging the terms, we get, 

 

 

𝑥2 + 𝑦2 =
4

(𝑑2−∆2) 
(

𝐷2

∆2

4

− 1)                            (18)                                          

 

 

which is the equation of a circle in the XY-plane. 

Thus, the fringes are circular when obtained on a 

screen kept perpendicular to the line joining the 

two slits. These are shown in the figure (15) below. 

The observation screen is simulated the plane z=D. 

 
 

Figure (15): The observation screen is placed 

perpendicular to the line joining the two slits. 

 

 

Cases (iii) and (iv): 𝜽 = 30° and 45° 

 

Figures (16) and (17) below simulate the 

hyperbolic fringes formed on screens oriented at 

angles 30° and 45° respectively with the line 

joining the slits, i.e., the z-axis. 

 
 

       Figure (16): The screen is placed at 30° to 

the line joining the slits. 

 
 

Figure (17): The screen is placed at 45° to the 

line joining the slits 

 

 

IX.    DISCUSSION 
 

In each of the cases discussed so far, Δ has been 

assigned one value giving a single hyperboloid 

surface, whose intersection with differently 

oriented planes is either a hyperbola or a circle. 

Physically, these represent hyperbolic or a circular 

interference fringe of a given order of maxima or 
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minima, corresponding to Δ= nλ or Δ= (2n+1) λ/2 

respectively, obtained on the screen. By assigning 

different integral values to n, the order of 

interference fringe, a series of hyperbolae or 

concentric circles are formed on the plane 

intersecting the multiple hyperboloid surfaces, 

corresponding to different values of Δ as given by 

equation (16).  

 

This is shown in Figures 18 and 19 for two different 

angles of view, when the plane is oriented parallel 

to the plane of the slits at a distance D from it. This 

simulates the interference pattern obtained on a 

screen kept parallel to the plane of the slits at a 

distance D in the physical experimental set-up. 

 

 

 

 
 

 

Figure (18): Multiple Hyperboloid surfaces 

corresponding to different values of Δ. Intersection 

of these surfaces with a plane (y=D) parallel to the 

plane of S1 and S2 (the XZ plane) giving a series of 

hyperbolae. In this simulation, D = 2cm, d = 3mm 

and λ = 0.5mm is taken. 

  

Furthermore, the projections of the slits S1 and S2 

on a screen (simulated by y=D plane) will have 

coordinates (0, D, d/2) and (0, D,-d/2) respectively. 

These are the foci of the hyperbolic fringes formed 

on the screen. For observation points on the screen, 

we can put D=0 in equation (17) and re-write the 

equation of hyperbola as, 

 

      
𝑧2

∆2

4

−
𝑥2

𝑑2−∆2

4

= 1                                                      (19)                                                              

The eccentricities of these hyperbolae 

corresponding to different values of Δ are given by 

 

𝑒 = √
𝛥2

4
+

𝑑2−𝛥2

4
÷

∆

2
=

𝑑

∆
                                         (20)                    

In physical experimental set-ups for observing 

interference of light, the path difference Δ 

corresponding to the condition of constructive or 

destructive interference is of the order of 10-8 cm 

and d is of the order of 10-2cm. From equation (20) 

it can be seen that the eccentricities of the optical 

hyperbolic fringes is very large. As a consequence, 

these hyperbolic fringes are practically straight 

lines. This is perhaps the reason behind many of the 

text books describing the interference fringes 

formed in Young’s Double Slit Experiment as 

straight fringes perpendicular to the line joining the 

two slits. 

 
Figure (19): View from a different angle of the 

multiple Hyperboloid surfaces corresponding to 

different values of Δ. Intersection of these surfaces 

with a plane parallel to the plane of S1 and S2 giving 

a series of hyperbolae.   

 

 

X. CONCLUSION 

 

The step by step simulation of the phenomenon of 

interference of waves done in the present work is 

expected to aid the understanding of this very 

fundamental concept in physics by the students. 

More importantly, the exact hyperbolic shape of 

interference fringes formed in Young’s Double Slit 

Experiment on interference of waves from two 

point sources or slits, which is never observed in 

any physical experimental set-up for observing 

interference of light, is however, simulated in the 

present work. This would ensure that the students 

know the actual shape of interference fringes and 
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why they observe only straight fringes in an optical 

experimental set up. 
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Abstract

Various experiments on determination of

Young’s modulus are part of undergraduate

physics laboratory curriculum. Wind chimes,

a musical instrument, can also be used to

determine the Young’s modulus [1]. In this

paper we use an app on android device to

capture and analyse the frequency of the note

produced by the wind chimes.

1 Introduction

Figure 1:
Wind
Chimes

Wind chimes is a type of per-
cussion instrument constructed
from suspended tubes, rods,
bells or other objects that are of-
ten made of metal or wood (fig-
ure 1). The tubes are suspended
along with some type of weight
or surface to which the tubes
can strike when they are blown
by the natural movement of air
outside. You must have seen
them hung at some residence.

Since the percussion instruments are struck
according to the random effects of the wind
blowing the chimes, wind chimes have been
considered as an example of chance-based
music. In this experiment, we determine the
Youngs modulus of the material of the pipe
used in wind chimes. The Youngs modu-
lus depends on the frequency of the note
produced. In order to capture and analyse
this frequency, Forinash et. al. used a mi-
crophone with amplifying circuit in which
voltages from the microphone were digi-
tized using an analog-to-digital conversion
board [1]. In this paper we have used a
simpler method in which an android device
app ”Pano Tuner” (also available for iOS de-
vices) detects the sound and displays its fre-
quency.

2 Apparatus

6 aluminum pipes of different lengths, a
black metal strip (with a magnet) attached
to the retort stand, an allen key, a thread for
hanging pipes, an acrylic pipe (for striking
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the aluminum pipes), a vernier calipers, a
30.0 cm plastic scale, A digital weighing bal-
ance (least count = 0.1 g), a tablet with a soft-
ware Pano Tuner.

3 Description of Apparatus

1. Aluminum pipes: Six Aluminum
pipes of different lengths 12.0cm,
14.0cm,16.0cm, 18.0cm, 20.0cm, 22.0cm
are used. The center of each pipe is
marked(figure 2).

Figure 2: Six aluminum pipes with centers
marked

The graph in figure 3 gives the first four
modes in a vibrating cantilever beam.
In this experiments we have considered
the fundamental mode of vibration. In
this mode the antinode is at the centre
and the node is at a distance 0.224L[2],
where L is the length of the pipe. The
pipe is, therefore, hung at the position
of node (figure 4) and struck at the cen-
tre.

2. Black metal strip support: The black
metal strip is provided to hang pipes of
different length. One end of the thread
can be held to the support using a mag-
net. The other end is to be tied to the
pipe at a distance x (figure 4).

Figure 3: First four modes of vibrating free
beam[3]

Figure 4: Pipe hanging at distance x

3. Acrylic pipe: The acrylic pipe (figure
5) is provided to strike the aluminum
pipe. Gently hit the aluminum pipe at
center with this acrylic pipe to produce
sound.

Figure 5: Acrylic pipe

4. Tablet: We used an android tablet. The
Pano Tuner app (figure 6) is installed
on the tablet. The app is a chromatic
tuner and catches the note produced
through its microphone and displays its
frequency.

5. Producing sound: You are given
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Figure 6: Pano tuner app

an acrylic pipe. Gently strike the
aluminum pipe by the acrylic pipe.
The aluminum pipe should always be
struck at the center. Hold the micro-
phone end of the tablet nearer to the
pipe to pick up the note produced (fig-
ure 7).

Figure 7: Producing sound

4 Theory

The speed of sound in aluminum is vAl, ex-
pressed as

vAl =
8 f

9πKLn

where, f is the frequency of sound produced
by pipe when struck, L is the length of the
pipe, K is the radius of gyration for a pipe
(1

2

√
a2 + b2), a and b are the inner and outer

radii of the pipe, n is an integer. Further the

speed of sound in a metal is also expressed
in terms of the Youngs modulus Y and the
density of the metal ρ as

v =

√
Y
ρ

5 Experiment

1. Determine n by plotting a suitable
graph and rewrite the expression of vAl

on substituting n.

2. Determine the speed of sound in alu-
minum by plotting a suitable graph.
Calculate standard uncertainty in the
speed of sound in aluminum.

3. Determine the density of aluminum by
plotting a suitable graph. Calculate the
standard uncertainty in the density.

4. Determine the Youngs modulus of alu-
minum, Y with standard uncertainty in
Y.

6 Observations and Calculations

In this section we present the data collected
using the wind chimes assembly described
above. We begin with the measurement of
inner and outer radii. Then the frequency of
the note produced by each pipe is captured
using the Pano Tuner app. Mass (m) of each
aluminum pipe was measured using digital
weighing pan (with its least count equal to
0.1 g) and then the density of each pipe is
calculated.
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Determination of inner and outer radius:

Pipe length = 22.0 cm
2a1/cm 2a2/cm 2a3/cm Mean a/cm ∆a /cm

0.782 0.780 0.778 0.390 0.001
2b1/cm 2b2/cm 2b3/cm Mean b/cm ∆b /cm/cm

0.900 0.896 0.902 0.450 0.002

Pipe length = 20.0 cm
2a1/cm 2a2/cm 2a3/cm Mean a/cm ∆a /cm

0.774 0.768 0.766 0.385 0.002
2b1/cm 2b2/cm 2b3/cm Mean b/cm ∆b /cm/cm

0.898 0.898 0.894 0.448 0.001

Pipe length = 18.0 cm
2a1/cm 2a2/cm 2a3/cm Mean a/cm ∆a /cm

0.768 0.772 0.772 0.385 0.001
2b1/cm 2b2/cm 2b3/cm Mean b/cm ∆b /cm/cm

0.892 0.892 0.892 0.446 0.001

Pipe length = 16.0 cm
2a1/cm 2a2/cm 2a3/cm Mean a/cm ∆a /cm

0.780 0.778 0.778 0.390 0.001
2b1/cm 2b2/cm 2b3/cm Mean b/cm ∆b /cm/cm

0.902 0.898 0.900 0.450 0.001

Pipe length = 14.0 cm
2a1/cm 2a2/cm 2a3/cm Mean a/cm ∆a /cm

0.768 0.774 0.774 0.386 0.002
2b1/cm 2b2/cm 2b3/cm Mean b/cm ∆b /cm/cm

0.898 0.900 0.900 0.450 0.001

Pipe length = 12.0 cm
2a1/cm 2a2/cm 2a3/cm Mean a/cm ∆a /cm

0.770 0.774 0.774 0.386 0.001
2b1/cm 2b2/cm 2b3/cm Mean b/cm ∆b /cm/cm

0.894 0.894 0.892 0.447 0.001
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a± ∆a = 0.387± 0.004 cm
b± ∆b = 0.449± 0.003 cm

No. L /cm x /cm
1 22.0 4.9
2 20.0 4.5
3 18.0 4.0
4 16.0 3.6
5 14.0 3.1
6 12.0 2.7

Frequency detected using Pano Tuner app:

No. L /cm f1/Hz f2/Hz f3 /Hz f4 /Hz f5 /Hz Mean f /Hz
1 22.0 1107.0 1108.1 1107.2 1108.2 1108.3 1107.8
2 20.0 1316.0 1320.2 1317.9 1320.0 1316.8 1318.2
3 18.0 1628.2 1627.9 1629.3 1627.2 1629.2 1628.4
4 16.0 2032.8 2038.0 2032.4 2035.0 2033.2 2034.3
5 14.0 2667.2 2661.9 2659.8 2666.5 2681.2 2667.3
6 12.0 3587.3 3592.2 3594.4 3595.1 3592.2 3592.2

Determination of n:

No. L /cm f /Hz ln(L) ln(f )
1 22.0 1107.8 3.091 7.010
2 20.0 1318.2 2.996 7.184
3 18.0 1628.4 2.890 7.395
4 16.0 2034.3 2.773 7.618
5 14.0 2667.3 2.639 7.889
6 12.0 3592.2 2.485 8.187

Slope of the graph = -1.95
∴ n = −2

Therefore the expression for vAl is:

vAl =
8 f L2

9πK

Figure 8: Graph of ln( f ) against ln(L)
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Determination of vAl:

No. L /cm 1/L2/m−2 f /Hz
1 22.0 20.66 1107.8
2 20.0 25.00 1318.2
3 18.0 30.86 1628.4
4 16.0 39.06 2034.3
5 14.0 51.02 2667.3
6 12.0 69.44 3592.2

Figure 9: Graph of f against 1/L2

Slope of the graph = 51.11 Hz.m2

vAl =
8 f L2

9πK
=

16×51.11
9π

√
(0.3872) + (0.4492)

Thus the value of speed of sound in alu-
minum is

vAl = 4881± 18m/s.

Determination of density:

No. L /cm m /g
1 22.0 8.8
2 20.0 8.1
3 18.0 7.3
4 16.0 6.5
5 14.0 5.7
6 12.0 4.8

Figure 10: Graph of mass against length

Slope of the graph = 0.4 g/cm
Density of aluminum:

Density =
m
V

=
m

π(b2 − a2)L
=

Slope
π(b2 − a2)

Density = 2.46±0.04 g.cm−3.
Determination Young’s modulus:

v =
√

Y
ρ =

√
Y

2458 = 4881 m/s
Y = 59±1 GPa

Young’s modulus of other metals:
The experiment was also carried out for cop-
per and brass pipes of different dimensions
and their Youngs Modulus was determined.

Copper Brass
a /cm 0.527± 0.002 0.533± 0.002
b /cm 0.738± 0.002 0.713± 0.002
L /cm 25.4± 0.1 25.6± 0.1
m /g 178.1± 0.1 139.6± 0.1
f /Hz 914± 1 899± 1
v m/s 3686± 24 3748± 23

ρ g/cm3 8.37× 103 7.74× 103

Y GPa 114± 4 109± 2
Y GPa [4] 117 102 - 125
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The literature values for the Young’s modu-
lus of these metals are given in the last row
which matches with the values obtained
from the experiment.

7 Conclusion

In this paper we have used a simple method
to determine the Youngs modulus of mate-
rial of different metals. The android device
with the app Pano Tuner gives consistent
values of frequency od the note produced by
the wind chime. The apparatus required in
this experiment is commonly available. Very
simple measurements lead to fairly accurate
values of Young’s modulus. All these resons
make this experiment suitable at the under-
graduate level.
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Abstract

The Ising model which was introduced to explain

ferromagnetism in physics provides a general

background to build realistic models of social

interactions. Here we use the thermodynamic

study of a financial market using Ising model in

which agents have three opinions (buy, sell or

hold).

Key words: Econophysics, Thermodynam-

ics, Ising model

1 Introduction

Econophysics studies economic phenom-
ena by using models and concepts im-
ported from condensed matter and statisti-
cal physics. This new branch of economics
represents a new template which aims to
reinvent modern financial economic theory

[1, 2]. Among the various statistical mod-
els proposed, the Ising model and its vari-
ants [3, 4] played an important role in un-
derstanding the origin of the so-called styl-
ized facts in real financial markets. A large
set of economic models can be mapped onto
various versions of the Ising model to ac-
count for social influence in individual de-
cisions. Any marketplace that allows agents
or traders to buy or sell financial goods such
as bonds, currencies, stocks etc, is called a
financial market. Financial markets are well
defined complex systems, which are contin-
uously monitored. Virtually every economic
transaction is recorded, and the recorded
economic data are becoming accessible to
interested researchers. Facts such as these
make financial markets extremely attractive
for researchers interested in developing a
deeper understanding of modeling of com-
plex systems. In this paper we study the de-
pendence of economic disorder in a financial
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market on the average money per agent and
the interaction among the agents by mak-
ing use of the concept of entropy and tem-
perature and assuming that the system as
a closed one. We use the three state Ising
model to obtain the expression for money in
this closed economic system. The economic
quantities like average value of money and
economic capacity are studied analogous to
internal energy and heat capacity. A com-
parison is made using two state model [5]
without external influence also.

2 Ising model

The Ising model, introduced initially as a
mathematical model of ferro magnetism in
statistical mechanics, is now part of the com-
mon culture of physics as the simplest rep-
resentation of interacting elements with a fi-
nite number of possible states. The model
consists of a large number of magnetic mo-
ments (or spins) connected by links within a
graph, network or grid. Each spin interacts
with its direct neighbors, tending to align
together in a common direction, while the
temperature tends to make the spin orienta-
tions random [3].

Ising model in Physics

In one dimensional Ising model we consider
N lattice sites arranged as a ring. Associ-
ated with each lattice there is a spin vari-
able σi(i = 1, 2, 3, ......, N) which can take ei-
ther ±1 or 0. In order to avoid end effects,
the periodic boundary condition is assumed

σN+1 = σ1 [6].
The Hamiltonian in the absence of ex-

ternal field is given by

E(σi) = −J
N

∑
i=1

σiσi+1 (1)

where J is the coupling coefficient. From E
we get partition function

QN = ∑
overallstates

e−βE(σi) (2)

Free energy is defined as

F = −kBT ln QN (3)

where kB is Boltzmann constant and T,
the temperature. The internal energy U is
related to free energy as

F = U − TS (4)

where S is the entropy. The thermodynamic
quantities like entropy and specific heat ca-
pacity can be obtained [6] from the free en-
ergy using the expressions

S = −
(

∂F
∂T

)
N,V

(5)

C = T
(

∂S
∂T

)
N,V

(6)

A phase transition is always associated
with discontinuities in the thermodynamic
variables or its derivatives. The heat capac-
ity can be used to show the existence of sec-
ond order phase transition. In statistical me-
chanics a phase transition occurs in the limit
T → Tc, where the heat capacity diverges.
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3 Ising model in Economics

Let us think of an economic activity to
be composed of a large number of pair-
wise exchanges between agents. The eco-
nomic agents may be individuals or corpo-
rations. In any such asset exchange, one
receives some goods or service from each
other. If we concentrate only on the cash
exchanged, every trade is asset conserving
[7]. The conservation law of money reflects
its fundamental property that, unlike mate-
rial wealth, money is not allowed to be man-
ufactured by regular economic agents, but
can be transferred between agents [8]. In
a closed economic system, the total amount
of money M is conserved. In real economic
systems, the total number of agents is very
large so that for many applications N → ∞
is appropriate like statistical systems. The
amount of money m that an agent can earn
depends on several additional parameters
λ1, λ2, λ3, ......λl called microeconomic pa-
rameters [8]. In order to have m(λ), it is re-
quired to know the very specific conditions
and relationships within an economic sys-
tem. First we have to identify the conserved
quantity, money, in terms of microeconomic
parameters that influences capacity of an in-
dividual agent, then represent this relation
mathematically so that m becomes a well de-
fined function of λ. In this work we used en-
ergy equivalent expression for money from
Ising model and hence from m(λ) we calcu-
late the partition function Q(T) [8, 9] .

In our model, we consider N agents
placed on a one dimensional lattice with pe-

riodic boundary conditions same as used in
Ising model. This geometry is taken in or-
der to have simple and specific way of deter-
mining who is interacting with whom. The
amount of money M can be written as

M = −C′0 ∑
i,j

λiλj

We take money per agent as

m = −C0 ∑
i,j

λiλj (7)

here C′0/N is the factor determining the
interaction between agents. If we use two
types of interaction buy or sell then the pa-
rameters λi, λj can take two states +1 (buy
state) and −1 (sell state) and if we use three
types of interaction buy, sell and hold ( or
do nothing) then the parameters λi, λj can
take three states +1 (buy state), −1 (sell
state) and 0 (hold or do nothing). Then we
have the partition function,

QN = ∑
overallstates

e−m(λ)/T (8)

where T is the economic temperature
which is the average amount of money
per agent. Different countries have differ-
ent economic temperatures. The difference
of money temperatures between different
countries allows one to extract profit in in-
ternational trade. In this process, money
(the analog of energy) flows from the high-
temperature to the low-temperature coun-
try, in agreement with the second law of
thermodynamics [9]. The partition func-
tion can be obtained using transfer matrix

35/2/4 3 www.physedu.in



Physics Education April - June 2019

method. A new quantity ’free money’ simi-
lar to free energy is defined as [8]

F = −T ln Q(T) (9)

Similar to internal energy average value
of money is defined as

< m >= F + TS

Hence the economic entropy which is a
measure of disorder in the market is,

S = −
(

∂F
∂T

)
N

(10)

The economic capacity can be defined as

C = T
(

∂S
∂T

)
N

(11)

At a particular economic temperature the di-
vergence of c indicates the phase transition
where the mean value of the money raises
and the economic system undergoes a dras-
tic change with agents possessing more and
more money. However, this must end at
some stage because of the fact that the total
amount of money in the system is fixed and
finite.

3.1 Market analysis using three state

model

If we use three options in the interaction
buy, sell and hold ( or do nothing) then
the parameters λi, λj can take three states +1
(buy state), −1 (sell state) and 0 (hold or do
nothing). Then we get partition function us-
ing Eq. 7. as,

QN = ∑
overallstates

e
C0 ∑i,j λiλj

T

= ∑
overallstates

e
C0λ1λ2

T e
C0λ2λ3

T .......e
C0λN λ1

T

= Tr(PN)

where P is the transfer matrix which is given
by

P =



e
(

C0
T

)
1 e

(
−C0

T

)

1 1 1

e
(
−C0

T

)
1 e

(
C0
T

)


If x1, x2 and x3 represent the eigen values,
then

QN = xN
1 + xN

2 + xN
3

The eigen values can be obtained by taking
|P− xI| = 0. and solving,

x1 = 2 sinh
C0

T
(12)

x2 =
1
2
[1 + 2 cosh(C0/T) + X] (13)

x3 =
1
2
[1 + 2 cosh(C0/T)1− X] (14)

where

X =
√

8 + (2 cosh(C0/T)− 1)2 (15)

From the eigen values it is found that

x2 > x1 > x3
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Then,

QN = xN
2 =

[
1
2
[1 + 2 cosh(C0/T) + X]

]N

(16)
The free money per agent ( f = F/N) is

given by,

f = −T ln
[

1
2
[1 + 2 cosh(C0/T) + X]

]
(17)

From f entropy is obtained as,

S = ln
[

1
2
[1 + 2 cosh(C0/T) + X

]
− T(4 sinh(C0/T)

1 + 2 cosh(C0/T) + X
+

[4((2 cosh(C0/T)− 1) sinh(C0/T))]
T2X(1 + 2 cosh(C0/T) + X)

The variation of economic entropy with
economic temperature and interaction is
shown in Figure 1. The average value of
money is obtained as

< m >= T2 (4 sinh(C0/T)
1 + 2 cosh(C0/T) + X

+

[4((2 cosh(C0/T)− 1) sinh(C0/T))]
X(1 + 2 cosh(C0/T) + X)

(18)

3.2 Thermodynamics of money in two

state model

For a comparison we use two states of the
agents as either buy or sell, without external
influence λi = +1 for buy state and λi = −1
for sell state. The partition function without
external field [5] is obtained as,

QN = 2 cosh
(

C0

T

)
(19)

The free money, entropy, average value of
money and capacity are given below.

f = −T ln
[

2 cosh
(

C0

T

)]
(20)

S =
C0

T
tanh

(
C0

T

)
+ ln

[
2 cosh

(
C0

T

)]
(21)

< m >=
C0

T
tanh(C0/T) (22)

The graphs showing entropy, average value
of money and economic capacity for three
state and two state models with economic
temperature and interaction are shown in
Figures 1, 2, 3, 4 and 5.

4 Discussions

Variation of entropy with economic temper-
ature and interaction among the agents for
three state and two state models are simi-
lar. It is seen that for low economic tem-
peratures there is minimum entropy but as
the temperature increases it increases and
attains steady value. If the money per agent
is more there will be more disorder in the
market which indicates active state in the
market. If the agents decide to hold or do
nothing, the change will be gradual, but
once it starts to decrease it is similar to the
two state model. The entropy in financial
systems depends on the states of interac-
tions among agents, as interaction increases
the entropy decreases. Here also three state
model shows a slow variation with respect
to the two state model.It is found that the
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Figure 1: Three State model
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Figure 2: Two State model
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Figure 3: Three state model
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Figure 4: Two state model

average value of money remains constant
for low economic temperatures and found to
decrease as temperature increases, This in-

dicate that as the money per agent increases
there is a chance of inflation which decreases
the average value of money. When there
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Figure 5: Capacity Vs interaction (Three and Two State model)

is maximum interaction between the agents
the effect on the average value of money
similar for the two models (Fig. 3 and
4). In Fig. 5, economic capacity shows a
discontinuity at an economic temperature
near zero which is an indication of transi-
tion which brings about a drastic change in
the economic system. The capacity value
was negative before this transition which
is an indication of unstable state and then
after transition changes to a positive value
which shows that it is a stable state. If the
agents decide to hold, the situation is more
complex.. Such decisions create an unpre-
dictable situation in the market in which the
capacity of the market is not known. From
this comparison we infer that the three state
model of market is more close to the real na-
ture of the market.

5 Conclusion

Here we use the thermodynamic equiva-
lence of economic system. We consider Ising
model as an economic model and study

the properties like entropy, average value of
money, economic capacity against tempera-
ture and interaction strength. We found that
economic temperature is a measure of sound
economic systems. Using the plots we tried
to predict the nature of the economic sys-
tem by taking into account the interaction
among the different economic agents. The
phase transition nature is shown as a dis-
continuity in economic capacity. We suggest
that certain models are needed for the real
economic systems, so that one can study the
properties of markets. This can be extended
by considering next nearest agent interac-
tion also. Here we have used Ising Hamil-
tonian without external field so if we con-
sider the external field we can incorporate
the effect of external influences and hence
study the phase transition similar to mag-
netic transitions which will be discussed in
our future work. This method provides flex-
ibility which enhances the adaptation to real
systems.
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Abstract

We consider the usefulness of the law of

energy conservation in describing the non-linear

oscillations. We show how to apply this

fundamental law for finding and constructing

amplitude, period, and phase portrait in the

case of asymmetric non-linear oscillations. Two

illustrative examples from electrostatics and

molecular physics are analysed. These findings

will be useful to the students, who study the

oscillation phenomena.

1 Introduction

The idea of non-linearity is one of the key
ideas of modern physics [1]. The non-linear
approach to the analysis of physical the-
ory is determined by its consistency, which
most deeply and fully finds its theoretical
reflection in the dialectics of the contradic-
tory nature of things (the dialectics of the
”linear” and ”non-linear” nature of physical
laws). The development of science, based on

the study of the phenomena of a new class
of complexity , i.e. the non-linear systems
and processes, leads to the development of
deeper methods of scientific analysis and ac-
tually causes the emergence of a new vision
of the World. The ”non-linear thinking” is
confirmed. The development of this kind
of thinking should be continued throughout
life, starting at the student level.

One of the broadest classes of the non-
linear phenomena in physics is the non-
linear oscillations [2]. The analysis of such
oscillations is rather complicated and in
principle requires knowledge of exact solu-
tions of the equation of motion. However,
some characteristics of these oscillations can
be determined without finding the exact so-
lutions by using only the law of conserva-
tion of energy.

Let us consider, as an example, the case
of one-dimensional asymmetric non-linear
oscillations, i.e. case of an asymmetric po-
tential well V(x). The minimum of this well
corresponds to the stable equilibrium posi-
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tion (x = 0) of the system. The law of energy
conservation has form:

mẋ2

2
+ V(x) = const. (1)

Let A+ > 0 and A− > 0 be the amplitudes
of the oscillation for x > 0 and x < 0 respec-
tively. If we know the value of A+, then us-
ing Eq. (1) we can write the following equa-
tion for finding the value of A−:

V(−A−) = V(+A+). (2)

Since ẋ = dx/dt, we derive from Eq.
(1):

T± = 2
√

m
2

∫ A±

0

dx√
V(±A±)−V(±x)

. (3)

Here T+ and T− are the total time of motion
within the one oscillation period T for x > 0
and x < 0 respectively. Naturally

T = T+ + T−. (4)

Using Eq. (1) we can also construct a
phase portrait of oscillations, which is the
set of curves in the plane (x, ẋ) for each of
them the mechanical energy remains con-
stant. The phase portraits are an invaluable
tool in studying dynamical systems. In this
paper we consider two illustrative examples
of using Eqs. (2-4) in the analysis of non-
linear oscillations.

2 The oscillations of a charged

particle in the electrostatic field

The point particle with mass m and charge
q can move along the line connecting two

fixed point charges q− and q+, wherein all
three charges have the same sign: sgn(q) =
sgn(q−) = sgn(q+) [3]. Using Coulomb’s
law we obtain the relation for distances l− >

0 and l+ > 0 (see Fig. 1) which define the
equilibrium position of q:

Figure 1: Geometry of problem.

l− =
l+√

n
, n =

q+
q−

. (5)

If we choose the origin of the Ox-axis at
the equilibrium position of q and take into
account Eq. (5), then its potential energy in
the electrostatic field of a system of charges
q− and q+ will be as follows:

V(x̃) = ke
qq+
l+

f (x̃)√
n

, (6)

where ke is Coulomb’s constant; x̃ = x/l+ is
the dimensionless coordinate;

f (x̃) =
1

1 +
√

nx̃
+

√
n

1− x̃
. (7)

Using Eqs. (6), (7) and solving Eq. (2) we
get:

Ã− =
Ã+

1 + (
√

n− 1)Ã+
, (8)

where Ã± = A±/l+ (Ã+ < 1) are the di-
mensionless amplitudes of the oscillations
in this case. In Fig. 2 we plot the depen-
dence Ã−(Ã+) for three different values of
n. We see that in all cases for small values of
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Figure 2: Dependence Ã−(Ã+) according
to Eq. (8). (1) n = 0.2; (2) n = 1; (3) n = 5.

Ã+ the asymmetry of the oscillations is neg-
ligible, i.e. Ã− ≈ Ã+. If Ã+ increases then
Ã− becomes smaller than Ã+ for n > 1 and
vice versa.

Using Eqs. (3), (6) and applying the
method for obtaining the period of small os-
cillations T0 described in [3] we derive:

T±
T0

=

√
n +
√

n
π

∫ Ã±

0

dx̃√
f (±Ã±)− f (±x̃)

.

(9)
where

T0 = 2π

√
nml3

+

2n(1 +
√

n)keqq+
(10)

(It should be noted that there is the error in
work [3]. The numerical coefficient in the
right hand side of Eq. (2) and below should
be 4 instead of 2). In Fig. 3 we plot depen-
dences T±(Ã+) and T(Ã+) calculated nu-
merically using Eqs. (4), (8), (9) for different
values of n. All these functions tend to zero
as Ã+ approaches to 1. For small values of

Figure 3: Dependences T+(Ã+) (a),
T−(Ã+) (b) and T(Ã+) (c), according to Eqs.
(4), (8), (9).

Ã+ function T+(Ã+) linearly increases (lin-
early decreases) with the increase of Ã+ if
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n > 1 (n < 1). For function T−(Ã+), the
situation is exactly the opposite. The result-
ing oscillation period T (4) does not depend
on Ã+ for Ã+ � 1 (see Fig. 3 (c)), that is
for the small amplitudes of oscillation the
isochronous property takes place.

Using Eq. (6) we can rewrite Eq. (1) in
the following form:

u2
x +

f (x̃)√
n

= C, (11)

where ux = ẋ
√
(ml+)/(2keqq+) is the

dimensionless velocity projection; C >

f (0)/
√

n is the dimensionless constant. Eq.
(11) allows one constructing the phase por-
trait of oscillations (Fig. 4).

3 The Lennard-Jones potential

The Lennard-Jones potential approximates
the interaction between a pair of neutral
atoms or molecules and has the following
form [4]:

V(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (12)

where r is the distance between the particles,
ε > 0 is the depth of the potential well, σ is
the finite distance at which the inter-particle
potential is zero. According to Ref. [4] the
stable equilibrium position r0 = 21/6σ ≈
1.122σ.

Let us introduce the dimensionless co-
ordinate ρ = (r/σ) − ρ0, where ρ0 = 21/6.
Then Eq. (11) takes form:

V(ρ) = 4εg(ρ), (13)

where

g(ρ) =
(

1
ρ0 + ρ

)12

−
(

1
ρ0 + ρ

)6

. (14)

It follows from Eqs. (12), (13) that the poten-
tial well exists in the interval 1− ρ0 < ρ <

∞. Using Eq. (2) we can find numerically
Ã+ in terms of Ã−, where Ã± = A±/σ > 0
(Ã− < ρ0 − 1) are the dimensionless am-
plitudes of the oscillations in this case. The
results of such calculations are presented in
Fig. 5. The value of Ã+ tends to infinity as
Ã− approaches to ρ0− 1. For small values of
Ã− the asymmetry of the oscillations is neg-
ligible, i.e. Ã− ≈ Ã+.

Using Eqs. (3), (12) and applying the
method for obtaining the period of small os-
cillations T0 described in [4] we derive:

T±
T0

=
3

πρ0

∫ Ã±

0

dρ√
g(±Ã±)− g(±ρ)

. (15)

where

T0 =
πρ0σ

3

√
m
2ε

. (16)

In Fig. 6 we plot dependences T±(Ã−) and
T(Ã−) calculated numerically using Eqs.
(14), (15). The values of T+ and T tend to
infinity as Ã− approaches to ρ0− 1, whereas
T− remains finite. For small values of Ã−
function T+(Ã−) linearly increases (T−(Ã−)
linearly decreases) with the increase of Ã−.
The resulting oscillation period T (4) does
not depend on Ã− for Ã− � ρ0 − 1 (see
Fig. 6 (c)), that is for the small amplitudes
of oscillation the isochronous property takes
place.
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Figure 4: The phase portrait of oscillations according to Eq. (11). (a) n = 1; (b) n = 5 .

Figure 5: Dependence Ã+(Ã−) according
to Eqs. (2), (14).

Using Eq. (13) we can rewrite Eq. (1) in
the following form:

u2
ρ + g(ρ) = C, (17)

where uρ = ρ̇
√

m/8ε is the dimensionless
velocity projection; C > g(0) is the dimen-
sionless constant. Eq. (17) allows one con-
structing the phase portrait of oscillations
(Fig. 7). Due to the finite depth of the po-

tential well (13) there is the separatrix C = 0
that separates the phase plane into two dis-
tinct areas containing finite (oscillating) and
infinite phase trajectories of the particle. The
interesting property of this curve is that it
approaches asymptotically to ρ axis as uρ

tends to zero.

4 Conclusions

In this article we consider usefulness of the
law of energy conservation in describing the
non-linear oscillations. We show how to ap-
ply this fundamental law for finding and
constructing amplitude, period, and phase
portrait in the case of asymmetric non-linear
oscillations. Next, we describe two illustra-
tive examples from electrostatics and molec-
ular physics. These findings will be useful to
the students, who study the oscillation phe-
nomena.
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Figure 6: Dependences T+(Ã+) (a),
T−(Ã+) (b) and T(Ã+) (c), according to Eqs.
(4), (14), (15).

Figure 7: The phase portrait of oscillations
according to Eq. (17).
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Abstract 
A simple extension in the graphical technique of 
drawing Lissajous Figures is proposed in this 
paper. It is shown how by making a simple 
modification in the way Lissajous figures are 
drawn, one can address the requirement of adding 
two Simple Harmonic Motions which are inclined 
at an arbitrary angle and are not necessarily 
perpendicular to each other. It is further added 
that such a discussion will not only generalize the 
understanding of superposition of SHMs within 
the undergraduate classroom teaching but also 
help the students in developing a clear 
understanding about the distinction between the 
‘phase difference’ and ‘angle of inclination’ 
between two SHMs that is often encountered in 
the undergraduate students. As an invaluable 
extension, a condition is also derived in this paper 
to get a circular motion even when the two SHMs 
are not perpendicular. 
 

1. Introduction 
Study of superposition of two Simple 

Harmonic Motions (SHM) [1],[2],[3] finds a very 

wide application in physics. It is widely used at 

many places spreading over several topics in 

physics. The concept is so important [4],[5] that a 

poor understanding of the phenomenon would 

hinder in developing a proper clarity of many 

explanations offered while studying physics. To 

start with, generally, students have a confusion 

between - the phase difference between the two 

SHM and - that of the angle of inclination between 

the two motions. The confusion gets unattended as 

this superposition is generally discussed under the 

two specific conditions in most of the standard 

texts [6],[7],[8] viz. when the two motions are 

collinear and when they are perpendicular to each 

other. I prefer emphasizing the point again and 

again in the undergraduate classroom by saying it 

in clear words that “the phase difference between 

the two motions is completely unrelated to the 

angle between the directions of the two SHMs.  

Technically, any SHM can be considered as 

a superposition of two mutually orthogonal SHMs 

having no phase difference. In fact, using this 

understanding one can analyze superposition of 

any two SHMs that are inclined at an arbitrary 

angle between them. It would be done in three 

steps. Firstly, components of one of the two SHMs 

will be taken parallel and perpendicular to the 

other SHM. Secondly, the component parallel to 

the other SHM will be added first to get a resultant 

SHM in the same direction. Thirdly, the resultant 

SHM will be added to the other component of the 

first SHM.  
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As discussed above, in standard undergraduate 

texts, addition of two SHMs is discussed under the 

following two conditions.  

1. When the two SHMs are collinear and are 

represented as follows 

 

𝑥1 = 𝐴 sin(𝜔1𝑡 + 𝜙) 

 

𝑥2 = 𝐵 sin(𝜔2𝑡 + 𝜙 + 𝛿) 

Here both the motions are along the x-axis. The 

resultant of these motions is shown to be always 

along the same direction and generally another 

SHM. Normally, the conditions under which the 

superposition is discussed in standard texts are 

when 𝜔1 = 𝜔2and when |𝛿|is equal to 0, 45, 90 

and 180. Simple mathematical analysis is given in 

all standard texts to give the resultant motion in all 

possible cases.   

2. When the two SHMs are perpendicular to 

each other and are represented as  

𝑥 = 𝐴 sin(𝜔1𝑡 + 𝜙) 

𝑦 = 𝐵 sin(𝜔2𝑡 + 𝜙 + 𝛿) 

Here the two SHMs are perpendicular as one is 

along the x-axis but the other is along the y-axis. 

The conditions, under which this addition is 

studied, are when 𝜔1/𝜔2 = 𝑛 (an integer like 

1,2....). In this scenario, the resultant motions are 

generally two dimensional elliptical motions but 

under some specific conditions the motion also 

becomes circular or yet another linear SHM. 

Again, cases that are normally covered in standard 

texts are when |𝛿|is equal to 0, 45, 90 and 180. An 

analytical solution for the resultant motion is 

extremely complex for general values of |𝛿| and 𝑛. 

Thankfully, ‘Lissajous Figures’ provides a very 

effective and very fast graphical technique to solve 

the problem of adding two perpendicular SHM for 

any arbitrary value of 𝐴, 𝐵, |𝛿| and 𝑛. 

 

 

 

2. Addition of two SHMs inclined at 

an arbitrary angle 

Superposition of two general SHM motions A1 

and A2 inclined at an arbitrary angle can be 

analyzed by making use of the results obtained in 

the above two cases. In such cases, one can always 

take components of one of the SHMs such as A1 in 

the direction of another SHM i.e. A2 and 

perpendicular to it. The problem will then be 

solved in two steps. Firstly, the two collinear 

SHMs A12 and A2 will be added to get a resultant 

SHM A3 in the same direction. And then, this 

resultant SHM A3 is added to the other component 

of the first SHM A11 that is perpendicular to it to 

get the final resultant. 

 Superposition of two SHMs in arbitrary 

directions can be represented by the following two 

equations. 

𝐸1
⃗⃗⃗⃗ = (𝐴𝑖̂) sin(𝜔1𝑡 + 𝜙)                                     (1) 

𝐸2
⃗⃗⃗⃗ = (𝐵 cos(𝜃) 𝑖̂ + 𝐵 sin(𝜃) 𝑗̂) sin(𝜔2𝑡 + 𝜙 + 𝛿) 

(2) 

Here the ‘angle of inclination’ between the two 

motion is 𝜃  and the ‘phase difference’ between 

them is 𝛿 . Such a representation would provide 

another chance to reiterate before the 

undergraduate students that the phase difference 𝛿 

and the angle of inclination 𝜃  between the two 

SHMs are completely independent.  

To use the analysis done in the two cases as 

discussed above, one will be advised first to add 

the following two SHMs in the direction of the x-

axis  

𝐸1𝑥 = 𝐴 sin(𝜔1𝑡 + 𝜙)                                         (3) 
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𝐸2𝑥 = 𝐵 cos(𝜃) sin(𝜔2𝑡 + 𝜙 + 𝛿)            (4) 

to get the resultant 𝐸𝑥 as 

𝐸𝑥 = 𝐴 sin(𝜔1𝑡 + 𝜙) + 𝐵 cos(𝜃) sin(𝜔2𝑡 + 𝜙 +

𝛿)           (5) 

And then by adding 𝐸𝑥 with 

𝐸2𝑦 = 𝐵 sin(𝜃) sin(𝜔2𝑡 + 𝜙 + 𝛿)                      (6) 

one can get the resultant motion. As per the above 

discussion done above, only in the last step one 

will be able to use the graphical technique of 

Lissajous Figures as the two SHMs in this case are 

perpendicular to each other. 

3. Generalized Lissajous Figures 

 

In this paper, I propose a generalization of the 

Lissajous Figures to include addition of two 

arbitrary SHMs of same frequencies which are not 

necessarily perpendicular to each other as required 

normally while using the technique of Lissajous 

Figure. A simple modification in the idea of 

drawing Lissajous Figures will help us achieve this 

generalization.  

 

Generalized self-explanatory diagrams Fig 1, Fig 

2, Fig 3 & Fig 4 shown here display addition of 

two arbitrary SHMs all having a specific angle of 

inclination‘𝜃’ but four different values of 𝛿 as 0, 

45, 90 and 180 degrees. In a single step one can get 

to the resultant motion wherein one will generally 

get a tilted elliptical motion.  

 

Figure 1: Generalized Lissajous Figure for an arbitrary 

angle 𝜃and 𝛿 = 0 𝑑𝑒𝑔𝑟𝑒𝑒. The time period of both the 

oscillations have been taken as 8 units of time and the 

positions are marked with numbers 0,1,2….,8 

accordingly in the figure. 

 

Figure 2: Generalized Lissajous Figure for an arbitrary 

angle 𝜃and 𝛿 = 45 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. The time period of both 

the oscillations have been taken as 8 units of time and 

the positions are marked with numbers 0,1,2….,8 

accordingly in the figure. 

 

Figure 3: Generalized Lissajous Figure for an arbitrary 

angle 𝜃and 𝛿 = 90 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. The time period of both 
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the oscillations have been taken as 8 units of time and 

the positions are marked with numbers 0,1,2….,8 

accordingly in the figure. 

 

Figure 4: Generalized Lissajous Figure for an arbitrary 

angle 𝜃and 𝛿 = 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. The time period of both 

the oscillations have been taken as 8 units of time and 

the positions are marked with numbers 0,1,2….,8 

accordingly in the figure. 

We are aware of the fact that when 𝜃 is equal to 90 

one gets a circular motion when 𝛿 is also equal to 

90 degrees. From the diagrams it appears that for 

‘non-orthogonal’ values of 𝜃 it would be difficult 

to get a resultant circular motion. It would be 

interesting to find out the condition under which 

one would get circular motion even when 𝜃 is not 

an integral multiple of  
𝜋

2
 . 

To find the condition to get a resultant circular 

motion let us start with two simplifications in the 

generalized problem that is defined with equations 

1 and 2. We take 𝜔1 = 𝜔2 = 𝜔 and 𝐵 = 𝐴. With 

these simplifications 𝐸𝑥 & 𝐸2𝑦 would be written as, 

𝐸𝑥 =  𝐴 cos(𝜃) sin(𝜔𝑡 + 𝜙)

+ 𝐴 sin(𝜃) sin(𝜔𝑡 + 𝜙 + 𝛿) 

𝐸𝑥 = (𝐴 + 𝐴 cos(𝜃) cos(𝛿)) sin(𝜔𝑡 + 𝜙)

+ 𝐴 cos(𝜃) sin(𝛿) sin(𝜔𝑡 + 𝜙) 

𝐸𝑥 =  𝐶 sin(𝜔𝑡 + 𝜙 + 𝛼) 

(7) 

 

where 

(𝐴 + 𝐴 cos(𝜃) cos(𝛿)) = 𝐶 cos(𝛼) 

(8a) 

𝐴 cos(𝜃) sin(𝛿) = 𝐶sin(𝛼) 

(8b) 

Also  

𝐸2𝑦 = 𝐴sin (𝜃) sin(𝜔𝑡 + 𝜙 + 𝛿) 

𝐸2𝑦 = 𝐴sin(𝜃) cos(𝛿) sin(𝜔𝑡 + 𝜙)

+ 𝐴sin(𝜃) sin(𝛿) cos(𝜔𝑡 + 𝜙) 

𝐸2𝑦 = 𝐷 sin(𝜔𝑡 + 𝜙 + 𝛽) 

(9) 

where   

𝐴sin(𝜃) cos(𝛿) = 𝐷 cos(𝛽) 

(10a) 

𝐴sin(𝜃) sin(𝛿) = 𝐷sin(𝛽) 

(10b) 

The resultant will be circular motion if 𝐸𝑥
2 + 𝐸2𝑦

2 

is independent of time. But from eq (7) and (9) 

𝐸𝑥
2 + 𝐸2𝑦

2 = 𝐶2𝑠𝑖𝑛2(𝜔𝑡 + 𝜙 + 𝛼)

+ 𝐷2𝑠𝑖𝑛2(𝜔𝑡 + 𝜙 + 𝛽) 

(11) 

However from eq. (10a) and (10b) we get, 

𝐷2 = 𝐴2𝑠𝑖𝑛2(𝜃) 

(12) 

and 
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tan(𝛿) = 𝑡𝑎𝑛(𝛽) 

 i.e.  

𝛿 = 𝛽 

(13) 

Eq. (8a) and (8b) give, 

𝐶2 = 𝐴2 + 𝐴2𝑐𝑜𝑠2(𝜃)𝑐𝑜𝑠2(𝛿)

+ 2𝐴2 cos(𝜃) cos(𝛿)

+ 𝐴2𝑐𝑜𝑠2(𝜃)𝑠𝑖𝑛2(𝛿) 

𝐶2 = 𝐴2 + 𝐴2𝑐𝑜𝑠2(𝜃) + 2𝐴2 cos(𝜃) cos(𝛿) 

Now if  

cos(𝛿) = −cos(𝜃) 

i.e. if, 

𝛿 = 𝜋 − 𝜃 

(14) 

then 

𝐶2 = 𝐷2 = 𝐴2𝑠𝑖𝑛2(𝜃) 

(15) 

Further 𝛿 = 𝜋 − 𝜃 also simplifies eq. (8a) and (8b) 

and gives, 

cos(𝜃) sin(𝛿)/(1 + cos(𝜃) cos(𝛿)) = tan(𝛼) 

cot(𝜃) = tan(𝛼) 

i.e. 

𝛼 = (
𝜋

2
) − 𝜃 

(16) 

Using Eq. (13), (15) & (16) in Eq. (11) gives, 

𝐸𝑥
2 + 𝐸2𝑦

2 = 𝐴2𝑠𝑖𝑛2(𝜃) 

(17) 

Which is independent of time and hence represents 

a circular motion of radius𝐴 sin(𝜃). 

4. Generalised Circular Motion 

The derivation given in the above section clearly 

establishes that when 𝜃 =
𝜋

2
 (The case of 

traditional Lissajous Figures) then to get a circular 

motion we must have 𝛿 =
𝜋

2
 (from Eq. (14)) with 

its radius as the amplitudes of either of the two 

SHMs.  

However, the derivation also predicts that if the 

two SHMs with equal amplitudes are inclined at an 

arbitrary angle 𝜃  degrees, then to get a circular 

motion the phase difference between the two 

SHMs of equal amplitudes must be equal to 𝜋 − 𝜃 

degrees. A program was written on SCILAB and 

was run for angles 20, 50 and 70 degrees and the 

results confirmed the same. 

 

Figure 5: Generalized Lissajous Figure for an angle 

𝜃 = 20 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 and 𝛿 = 180 − 20 = 160 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 . 

The resultant is shown to be a circular motion. 
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Figure 6: Generalized Lissajous Figure for an angle 

𝜃 = 50 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 and 𝛿 = 180 − 50 = 130 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 . 

The resultant is shown to be a circular motion. 

 

The program (SCINOTE): 

clear 

clf 

z=input("value for angle (in degrees) between the two 

SHMs:  "); 

y=%pi*z/180 

a=10 

x=-a:.01:a 

plot2d(a*sin(x)*sin(y),a*sin(x+%pi-

y)+a*sin(x)*cos(y),style=1); 

x=-a:.01:a 

plot2d(x,x*sin(%pi),style=2); 

x=-a:.01:a 

plot2d(x,x*tan(y),style=5); 

legends(["First SHM"],[2]) 

legends(["Second SHM"],[5]) 

title("Program to add two SHMs inclined at an angle -

A- differing in phase by -180-A") 

 

In fact except for the case when 𝜃 = 0  all other 

cases can be analyzed using the Generalized 

Lissajous Figures and by drawing the diagram for a 

very small value of 𝜃 one can actually estimate the 

case for 𝜃 = 0 quite confidently. 
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