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Abstract

The Standard Cosmology states that ours is

a flat Universe of about 5% baryonic matter,

25% dark matter and 70% dark energy and

is presently accelerating. But the analysis

of the data released last year of the Planck

satellite mission requires a reconsidering of these

more or less established matters. Space-time

could be positively curved and it may not be

accelerating presently as it was five billion years

back or so owing to dark matter. If that is the

case, we need a new scale factor to explicate

the fundamental features of the Universe

and this paper suggests a simple scale factor

for the Universe which is closed and having

accelerated expansion for a definite period in

the past consistent with the Friedman equations.

Keywords: Standard model of cosmol-
ogy; Flat Universe; Baryonic matter; Dark
matter; Dark energy; Planck satellite mis-
sion; Space time; Scale factor; Friedman

equations.

1.Introduction

If the Universe is isotropic and homoge-
neous on a large scale and space-time tra-
jectories of the building blocks of the Uni-
verse are non-intersecting and orthogonal to
a set of space-like surfaces of constant time,
then Robertson-Lemaitre-Walker metric can
be assumed for space-time and Einstein’s
gravitational field equations reduce to the
Friedmann equations [1] which are the fun-
damental equations of standard cosmology:

(
dR
dt
R
)2 +

kc2

R2 −
8πGρ

3
= 0 (1)

(
dR
dt
R
)2 +

kc2

R2 +
8πGP

c2 + 2(
d2R
dt2

R
) = 0 (2)

where R is the scale factor of the Universe,
dR
dt
R = H is the Hubble number and k is

the curvature parameter which can take
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any of the three values: +1, 0, −1. Curva-
ture parameter is +1 for closed Universe
or positively curved Universe, 0 for flat
Universe and −1 for open Universe or
negatively curved Universe. Also, G is the
Newton’s constant of gravitation, c is the
speed of light in vacuum, P is the uniform
pressure and ρ the uniform mass density
of the Universe which includes the density
ρr of radiation, ρm of matter (baryonic plus
dark) and ρd of dark energy of the cosmic
fluid which are respectively 0%, 30% & 70%
approximately in the present Universe [2].

Equations (1) and (2) together give,

(
d2R
dt2

R
) = −4πGρ

3
(1 + 3W) (3)

where W = P
ρc2 is the equation of state pa-

rameter.
Universe has decelerated expansion when
W > −1

3 and accelerated expansion when
W < −1

3 . The acceleration rate of expansion
of the universe is quantified using the decel-
eration parameter q;

q = −
d2R
dt2

H2R
(4)

where positive and negative q refers to de-
celeration and acceleration in the expansion
of the universe. According to General Rela-
tivity, the source of gravity is S:

S = 3P + ρc2 (5)

When S > 0, gravity sucks and when
S < 0, instead of sucking gravity blows. In

other words, positive S has the tendency 
of stopping the Universe and making it 
contract while negative S, of forcing it to 
expand with acceleration [3].

The brightest microwave background 
fluctuations m easured b y t he Wilkinson 
Microwave Anisotropy Probe (WMAP) to the 
accuracy of 0.004 are about one degree 
across [4] and it points to k = 0. The results 
of Supernova Cosmology Project (SCP) show 
that Universe is presently accelerating when 
measured accurately the redshifts produced 
by the standard candles that lie at a distance 
around 5 billion light years [5, 6]. Also, 
the present Hubble number as obtained by 
WMAP is near 71 km/s/ Mpc [7].

The paper is organized as follows. 
Section 2 discusses the new model, section 
3 describes the results we obtained and 
finally section 4 the conclusions.

2 The model

Based on the Cosmic Microwave Background 
Radiation Gravitational Lensing Data collected 
by the Planck satellite of the European Space 
Agency, Universe cannot be flat a s WMAP 
declared. According to an international 
team of astronomers led by Eleonora Dt 
Valentino this calls for a rethinking of the 
Standard model of Cosmology. Planck
collaboration call this anomaly Alens, a 
parameter which rescales the amplitude of
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the lensing potential to smooth the power
spectrum and a possible explanation for
it could be the positive curvature of the
Universe [8, 9, 10, 11, 12].

If k is +1, Universe has to stop at some
stage in future and start contracting as in
the Friedmann model of closed Universe
[13]. This paper presents the simplest closed
model of a Universe that has acceleration
as required by SCP around the time of
8.7 billion years from Big Bang, which is
believed to have occurred 13.7 billion years
back and consistent with the other proven
features of the Universe.

Let the scale factor is

R ≈ B sin2 Θ, Θ = ωt (6)

for sufficiently large t with ω as a constant.
This is the simplest periodic function that
grows from zero when t rises from zero hav-
ing second derivative positive in the early
phase.
Then, Hubble number

H =
2ω

tan Θ
(7)

Acceleration

d2R
dt2 = 2ω2B cos 2Θ (8)

Pressure by equation (2)

P = −( c2

8πGB2 sin4 Θ
)(c2 + 4ω2B2 sin2 Θ cos 2Θ + 4ω2B2 sin2 Θ cos2 Θ) (9)

Density by equation (1)

ρ = (
3

8πGB2 sin4 Θ
)(c2 + 4ω2B2 sin2 Θ cos2 Θ) (10)

From the ratio between equation (9) and equation (10), the equation of state parameter

W = −
(1

3)(c
2 + 4ω2B2 sin2 Θ cos 2Θ + 4ω2B2 sin2 Θ cos2 Θ)

(c2 + 4ω2B2 sin2 Θ cos2 Θ)
(11)

Equation (4) provides the deceleration parameter

q = − cos 2Θ
2 cos2 Θ

(12)

And the source of gravity by equation (5) is

S = −3ω2c2 cos 2Θ
2πG sin2 Θ

(13)
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π
2

3 Discussion and Results

The most important aspect of the model is 
that it fits i nto t he s tandard e quations of 
cosmology without any friction.

Solving equation (7) numerically using t = 
13.7 billion years = 4.32 × 1017s and H = 
71km/s/Mpc = 2.302 × 10−18/s, we get the 
frequency as ω = 2.705 × 10−18/s
Since presently, the Galaxies have redshift, it 
needs the current value of ωt to lie between 
0 and and it is so according to the model;

presently ωt is 1.169 which is less than π
2 .

R has an accelerated evolution in [0, π
4 ]

of Θ and universe has expanded with
acceleration for 9.202 billion years from Big
Bang or it was accelerating around 5 billion
years in the past from now (4.499 billion
years exactly and let us call it T ). Since
the SCP measurements were around the
past 5 billion years, the model agrees with it.

Note that W = −1
3 at Θ = π

4 , W < −1
3 for

Θ < π
4 and W > −1

3 when Θ > π
4 to have

consistency between equations (3) and (11).

Θ W
π/6 [(-1/3)(c2 + (5ω2B2/4))]/[c2 + (3ω2B2/4)]
π/4 -1/3

- -
π/2 [(-1/3)(c2 − 4ω2B2)]/c2

Table 1: W(Θ)

Time to the fully grown universe,
T
′

= (1.570 − 1.169)/ω = 4.7 billion
years.
Time between Big Bang and Big Crunch,
τ = (13.7 + 4.7) ∗ 2 = 36.8 billion years.

The present value of R = 0.847B, 84.7% of
the maximum size of the universe and the
order of size of the present universe [14]
which is 1026 is same as the order of B to
give c2

B2 ≈ 4ω2 ≈ 10−35.

So, B ≈ c
2ω

There must be a reason for this equality and
is clear from equation (2) that B = c

2ω needs
P = 0 at Θ = π

2 .

( 2
B )(−2ω2B) + 0 + 8πGP

c2 + kc2

B2 = 0 at Θ = π
2

When P = 0,

kc2

B2 = 4ω2orB =
c

2ω
(14)
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Note also that the equation implies k = +1
since ω cannot be 0 or imaginary.
So using c and the well-fixed ω,
B = 5.545× 1025 m.

As Universe expands, magnitude of the
negative pressure of dark energy may possi-
bly be decreasing while that of dark matter,
increasing or only one of them changing so
that an equilibrium is achieved between the
two when the size of the Universe rises to B.

Parameters of the present Universe as per
the model:
Scale factor = 4.697× 1025 m
Hubble number = +2.302× 10−18/s
Pressure = −1.187× 10−9 Pa
Density = 8.255× 10−26 kg/m3

Equation of state parameter = −0.016
Density parameter = 8.701 (critical density
is 9.487× 10−27 kg/m3)

Deceleration parameter = +2.269
Source of gravity = +3.869× 10−9 Pa

Θ R ∗ 1025m H ∗ 10−18/s ρ ∗ 10−26kg/m3 P ∗ 10−9Pa S ∗ 10−10Pa q m/s2

π/12 0.372 20.190 1240.150 −392.580 −608.050 −0.464
π/6 1.386 9.370 99.514 −75.460 −94.200 −0.330
π/4 2.773 5.410 26.188 −7.864 0 0
π/3 4.159 3.124 11.057 −2.278 +31.400 +1.000

5π/12 5.174 1.450 6.393 −0.461 +43.703 +6.464
π/2 5.545 0 5.237 0 +47.100 ∞

Table 2: Evolution of cosmological parameters

Universe, according to the model, is now
slowing down by the high density of mat-
ter which is currently about 9 times the
critical density, the reason for the large
curvature of the universe. This is indicated
by the positive value of the source of gravity.

The modelling can be done using
higher even powers of sine also. Time T to
the accelerating phase from now decreases
with the power of sine, a desired result
in the light of SCP measurements to have

acceleration for some more time after 8.7
billion years.

So generally, let

R = B sinn Θ (15)

Finding d2R
dt2 and equating it to zero, tan Θ =√

n− 1
Therefore,

T = 4.32× 1017 − (
1
ω
) tan−1

√
n− 1 (16)
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where ω is to be obtained from 2.302 ×
10−18 tan (4.32× 1017ω)− nω = 0.
Also,

T
′
=

1.57
ω
− 4.32× 1017 (17)

τ

2
=

1.57
ω

(18)

ω =
c

B
√

2n
(19)

n ω(/s) T
′
(by) τ/2(by) T(by)

2 2.705× 10−18 4.700 18.400 4.499
4 3.226× 10−18 1.730 15.430 3.412
6 3.373× 10−18 1.062 14.762 2.890
8 3.445× 10−18 0.755 14.455 2.572
− − − − −
Table 3: Different even powered sine models

Going to higher powers but reduces B as shown below; it would not be good to com-
promise B much.

n B ∗ 1025m
2 5.545
4 3.288
6 2.568
8 2.177
− −
Table 4: B(n)

4 Conclusions

When Alexander Friedmann proposed his 
models, he was worried about only matter 
as it was shown that the effect of radiation 
on the dynamics of the universe lasted only 
for a small time, about 50, 000 years from

Big Bang. He called the present time the
matter era that followed the radiation era.
He put W = 0 in the equations so that in his
models [15], the Universe can have only a
decelerated expansion by equation (3) since
Wρ = Wrρr + Wmρm with Wm ≈ 0, Wr = 1

3 ,
the equation of state parameter for radiation
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and Wm, that for matter which he assumed
0. In 1998, when Perlmutter et.al announced
the accelerated expansion of the universe,
the present time became the dark era, under
control of dark energy [4, 5].

But the recent studies on the Planck
data which inspired this article make us re-
think about the role of dark matter which
might have a strong command over the evo-
lution of W:

Wρ = Wrρr + Wmnρmn + Wmdρmd + Wdρd, ρr ≈ 0, Wmd 6= 0 (20)

where Wmn is the equation of state
parameter for normal matter, Wmd that for
dark matter and Wd for dark energy.

If we assume the simplest form of dark
energy, the cosmological constant (of equa-
tion of state parameter−1) as introduced by
Einstein in 1917 to counterbalance the effects
of gravity to achieve a static universe [16],

Wρ ≈Wmdρmd − ρd (21)

This gives the current value +2.736 for
Wmd from the current value of −0.016 of
the equation of state parameter W and the
current amounts of dark matter and dark
energy in the Universe. This high value of
the dark matter equation of state parameter
could be an indicator of the positive curva-
ture of the Universe.

The proposed model might be an over
simplified one for a positively curved Uni-
verse. But since the underlying science of
the Universe must be simple and a cyclic
universe would be a permanent solution to

the problem of the Creation, the model with
modifications could be considered to study
the evolution of the universe. A model
using the evolution of dark matter equation
of state parameter is another possible way
of doing it and it will be attempted in our
next paper. We suspect that the key role is
played by dark matter and not dark energy
in the dynamics of the Universe.
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Abstract 
Collisions between objects moving translationally is 
a topic covered in typical introductory physics 
courses.  When one of the objects has a rolling 
motion, the outcomes depend on the ratio of the 
impact parameter to the radius of rotation.  The 
decrease in the translational object’s energy 
depends on the degrees of freedom associated with 
the rolling object’s energy.  The scattered 
translational object’s energy change can be used to 
characterize a collision outcome.  The classical 
collision outcomes would resemble the possible 
outcomes in high-energy scattering experiments.  
For the case of an observer moving at an angle 
relative to the lab frame, the √Energy description of 
a lab frame 1-Dim collision in matrix notation has 
semblance with the Weinberg angle description of 
the electroweak interaction.  Numerical matrix 
examples are presented for flexible 
implementation of exercise in introductory physics 
courses.   

 

1. Introduction 
The physics of collisions in a college introductory 

course usually would cover elastic collisions with 

translational energy conservation and inelastic 

collisions with energy loss to the environment.  The 

sound generated during a collision has been an 

intuitive explanation often given for the energy loss 

to the environment, while an explanation of the 

material deformation of the objects would include 

the reference to a restitution coefficient.  This paper 

discusses the momentum transfer or generation of 

internal impulses in a collision using numerical 

simulations.  The numerical results showed that the 

energy loss to the environment in a collision of 

objects moving translationally would approach zero 

as the magnitude of the generated impulse pair 

reached a maximum.   

When the target object has a rotational degree of 

freedom, the energy transfer process would mimic 

an energy loss to the environment when the collision 

is modelled with the target moving only in 

translation.  The impacting object’s energy would 

decrease and depend on the rolling constraints.  

Similarly, the impacting electron’s energy loss in a 

deep inelastic scattering experiment would depend 

on the quark’s constraints inside a hadron [1].  The 

association of the classical case with the high-

energy case would help to initiate an interest in 

high-energy physics for first semester physics 

students.     

 

2. Simulation  
The simulation of a collision was performed with 

the following classroom problem.  A 4-kg mass at 

17 m/s acting as an impacting object collides with a 

2-kg stationary target mass in a laboratory frame.    

The initial linear momentum equals 68 kg m/s and 

the initial total translational energy equals 578 
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Joules.  The zero-momentum frame of reference 

would be a 4-kg impacting object moving 5.67 m/s 

rightward and a 2-kg target moving 11.33 m/s 

leftward.  After the collision, the 4-kg mass would 

recoil at 5.67 m/s leftward and the 2-kg target at 

11.33 m/s rightward in the zero-momentum frame. 

The transformation to the lab frame would give the 

target a rightward speed of 22.67 m/s and the 

scattered impactor 5.67 m/s rightward.  These are 

calculations that students can perform easily 

without solving the quadratic energy and linear 

momentum equations containing velocity variable. 

 

Using the energy conservation concept, students can 

construct a circle with diameter equal to the value of 

the square root of the total translational system 

energy of 578 Joules for the 1-D elastic collision. 

The diameter has a magnitude of about 24 in the unit 

of √Joules, which is carried by the impactor mass 

before the collision and shared between the 

impactor mass and target mass after the collision.   

The diameter would correspond to the hypotenuse 

of a 90-degree triangle with √Energy variables or 

states as the other two sides of the triangle, shown 

in Figure 1.  The 90-degree angle has a unique 

vertex that can be visualized with angle with 

respect to the diameter.  The angle lies between 

the impactor’s initial √Energy value and final 

√Energy value, shown in Figure 1.  In the case of 

inelastic collision, the diameter represents the final 

total √Energy of the translational system because of 

the energy lost to the environment during collision.  

There is still an angle between the impactor’s final 

√Energy variable and total final √Energy variable of 

the translational system, in a smaller circle when 

compared to the larger circle in the elastic collision 

case, as shown in Figure 2.  Note that a √Energy 

variable is also an adjusted-momentum variable 

when defined as p / √(2𝑚)   where p is the 

momentum and m is the mass.  In comparison, the 

Landau and Lifshitz text on Mechanics at the 

graduate level also uses diagrams with circles 

containing real physical angles for the description of 

2-D elastic scattering [2].  This paper discusses the 

application of circle geometry in the √Energy 

variable for the description of 1-D elastic collision. 

The observable final velocity values of the target 

can be studied in a simulation. 

 

 

 

 
FIG 1: Diagram showing collision variables √Energy or p/√(2m) after the 1-Dim collision.  The impactor 

mass (m1) equals 4 kg.  The target mass (m2) equals 2 kg. The diameter equals 24 in the unit of √Joules for 

elastic collision.  

 
 
 
 
 

diameter squared = a
squared  + b squared

after collision
a squared = p1*p1/2m1

b squared = p2*p2/2m2
diameter squared = total 

energy

a
b

diameter


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FIG 2: Diagram showing collision variables √Energy after the 1-Dim collision for inelastic collision with 

diameter equals the square root of total final translational system energy.  The elastic collision circle of Figure 

1 is shown with the maximum diameter, 24 in the unit of √Joules for elastic collision, for comparison.   

 

The simulation was performed using Microsoft 

Excel.  Different momentum transfer values were 

used in the simulation, shown in Column-D, Figure 

3.  The completely inelastic collision case would 

correspond to a momentum transfer value of about 

23 kg m/s. The results for various observable target 

final velocity values are shown in Column-B, Figure 

3.  The energy lost to the environment, defined as 

final energy – initial energy, is shown in Column-K 

as a fraction of the total initial energy.  An elastic 

collision with zero energy loss to the environment 

and maximum momentum transfer (Column-D) is 

shown in Row-12.  The graph of the fraction of 

energy lost versus transferred momentum is shown 

in Figure 4. 

 

 

FIG 3: Results for various target final velocity values.  Column-K values represent (final energy value – 

initial energy value of 578 Joules)/ 578 Joules.  The Row-12 angle value listed in Column-J is the angle  
denoted in Figure 1 for an elastic collision. 

 
 

elastic collision

inelastic  collision
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FIG 4: Graph of final energy lost as a fraction (y-axis) versus transferred momentum in kg m/s (x-axis). 

 

3. Rotational Energy add-on  
The remodeling of the energy lost arising from a 

rotational energy degree of freedom, in the case of a 

rolling target, would be easily understood by 

students using the inelastic cases shown in Figures 

3 and 4.  From the perspective of the system’s 

translational energy, a transformation of the elastic 

collision case to the inelastic one requires the 

inclusion of sound energy or rotational energy.  A 

target object with a rolling structure is illustrated in 

Figure 5.  A collision would generator an impulse 

pair and different momentum transfer values were 

discussed in Section-2 without the rotation degree 

of freedom.  With a rolling target, the received 

energy would  

the sum of linear momentum induced energy and 

angular momentum induced energy.  The rotational 

energy expression, L*L/ (2*I), where L is the 

angular momentum and I is the moment of inertia at 

the center of mass, would be the energy lost as 

shown in Figures 3 and 4.  The adjustable parameter, 

b*b//R/R, could be made to match the energy lost 

as a fraction in the simulation results shown in 

Figures 3 and 4.  

 

 
FIG 5: A target object with rolling structure.  The circle has a radius R 

 
 

impact parameter  b
L = m*v*b with I = *m*R*R

rotational energy L*L/(2I) = 
m*m*v*v*b*b/(2**m*R*R)

= (1/2)*(b*b//R/R)*(m*v*v)

m*v 
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The collision problem illustrated in Figure 1 and 

Figure 2 would strengthen a student’s spatial 

reasoning and its learning, which is an essential 

cognitive process in physics education.  

Furthermore, the emphasis on momentum transfer, 

the generation of a pair of impulses at the time of 

contact, would remind students about Newton’s 

Third Law.  The linear impulse pair in the lab frame 

is an invariant in other frames including the zero 

momentum frame would be another fact to highlight 

the Newton’s Third Law.  The decreasing impulse, 

from its maximum in elastic collision, to smaller 

values in inelastic collision is another such fact.  The 

post-collision steady state solution of the rolling 

target object after receiving an impulse has been 

covered in the MIT Lectures [3].  The MIT 

presentation used angular momentum conservation 

and showed that the steady state velocity would be 

(9/7)*(collision-induced velocity), where the impact 

parameter equals 0.8*radius for a solid sphere 

rolling on a surface exerting a frictional force.  The 

emphasis on the generated impulse pair could help 

students perform better in assessment tools, such as 

the Force Concept Inventory FCI multiple-choice 

question test, without teaching to the test, and 

further physics education research studies could 

verify the usefulness of emphasizing impulse pair in 

collision problems in terms of FCI test results. 

 

Returning to the collision aspect illustrated in Figure 

5 with an applied impulse (m*v or F*t), the 

rotational energy carries an expression, 

(1/2)*(b*b//R/R)*m*v*v, such that the impactor’s 

scattered energy will become less than it is in the 

case of the collision with translational energy only.  

In other words the exchange interaction between the 

impactor and target via the F*t impulse pair would 

depend on the degrees of freedom of the target. The 

case of minimum friction to support rolling is 

discussed in Appendix-A for instructors who are 

interested in using a rolling-with-slipping target as a 

demonstration of extra energy transfer mechanism, 

from the viewpoint of an impactor’s scattered 

energy in their classrooms.  The energy transfer 

during the scattering of very short wavelength 

electrons from a quark could be illustrated using the 

model described above.  The scattered short 

wavelength electron would lose energy due to the 

interaction with the hadron’s internal structure, 

depending on the initial quark parameter values in 

deep inelastic scattering experiments.  By the same 

token, a classically scattered impactor would lose 

more energy due to the rolling structure of the target 

object, depending on the ratio of the impact 

parameter to the radius of rotation.   

4. Collision Matrices & Moving 
Observer Frame  

In terms of generating numerical exercises from the 

perspective of teaching, it would be effective to 

have a matrix approach where numerical values can 

be generated using Excel.   In fact numerical matrix 

manipulation can also be taught directly.  

Elementary matrix computation is a topic covered in 

the US College Board SAT Math and the UK GSCE 

Math review materials for high school students UK 

[4, 5].  It is interesting to point out that the topic of 

matrix arithmetic on the UK GSCE Math review 

materials can be taught effectively [6]. The 

presentation of collision using matrices would 

reinforce the teaching of matrix arithmetic where 

physical data is analyzed beyond straight forward 

numerical manipulation.  The 2 x 2 collision matrix 

in 1-Dim has been published [6].  The numerical 

matrix operation details are shown in the Appendix-

B with the impactor m = 4 kg at 17 m/s and target 

M = 2 kg at 0 m/s.   

 

It is interesting to note that a moving observer with 

two orthogonal velocity components would report a 

2-Dim collision for the lab frame 1-Dim elastic 

collision between the 4 kg impactor and the 2 kg 

target at a total initial energy of 578 Joules.   A tree 

would be seen as moving in the NW direction 

relative to an observer moving along in the SE 

direction, a common sense notion even for students 

having majors in various technology curriculums.  

Such a moving observer could adjust his/her 

velocity such that the total initial kinetic energy 

equals to 578 Joules, the same value observed by the 

lab frame observer.  A mental construct of the 
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√Energy variables based on the moving observer’s 

data is shown in Figure 6. The “e” parameter, which 

is the height of the 90-degree triangle in the 

direction of the perpendicular line to the 

hypotenuse, is shared by both the impactor and the 

target √Energy variables through the angle , shown 

in Figure 6.  The Excel Solver, based on the 

perspective of running simulations, can be used to 

find a solution with the constraint of 578 Joules as 

the total initial kinetic energy.  The introduction of 

a “constraint perspective” could help those students 

planning to study Lagrangian Mechanics. The Excel 

Solver showed that a moving observer in the 

direction of (-50 degrees) with (9.3653 m/s, - 

11.1611 m/s) would report a total energy of 578 

Joules.  The moving observer would report an 

impactor with velocity component of (7.6347 m/s, 

11.1611 m/s) and target with velocity component  of 

(-9.3653 m/s, 11.1611 m/s), given the lab frame of 

impactor velocity component of (17 m/s, 0 m/s) and 

target velocity component of (0 m/s, 0 m/s).  Instead 

of using a simulation perspective via the Excel 

Solver, the moving frame answers could be simply 

obtained by vector subtraction principle for relative 

velocity calculation by first year physics students.  

There are advantages in the using of matrix 

multiplication instead of using vector subtraction.  

Matrix multiplication has an advantage of 

representing cause and effect in the notion of F = ma 

with a multiplicative perspective including the 

generation of new unit.  Numerical matrix 

multiplication methodology in classical collision 

has a semblance to the matrix methodology in high 

energy physics.  After the collision, the lab frame of 

impactor velocity component (5.667 m/s, 0 m/s) and 

target velocity component (22.67 m/s, 0 m/s) would 

transform accordingly for the moving observer.   

 

Note that the “e” parameter would be conserved in 

a collision when an observer moved in a direction of 

(-45 degree) with (11.333 m/s, -11.333 m/s).  The 

Excel Solver simulation results are shown in Figure 

7.  A graph of the initial and final “e” parameter 

values versus moving frame angle is shown in 

Figure 8, in which a vertical shift represents a 

change of the “e” parameter due to collision.  The 

moving frame direction of (-45 degree) calculation 

shown in Figure 9 shows that the “e” parameter is 

conserved when the angle of Figure 6 equals 

41.8101 degrees.  A student planning for a major in 

physics major would ask for the interpretation of the 

“e” parameter while most engineering major 

students would not be curious for further 

questioning.  One acceptable answer for beginning 

physics majors could be the following.  The created 

“e” parameter in the √Energy mathematical space is 

the result of doing an extension to higher dimension 

in matrix notation such that an additional parameter 

could be found to be associated with a 1-Dim 

collision in the lab frame.  In other words, the “e” 

parameter can be artificially-mathematically created 

in the √Energy mathematical space with 

trigonometry expressions of “e = a*sin  = b*cos 

“, shown in Figure 6.  The “e” parameter 

conservation case when the observer moved at -45 

degrees direction has a drawing semblance to the 

Weinberg angle illustration depicted in a particle 

physics text [7] and in open access webpage [8].  

The electric charge e could be represented as the 

perpendicular height of a 90-degre triangle with the 

weak isospin coupling g and weak hypercharge 

coupling g’ as its two shorter sides with  being the 

Weinberg angle in trigonometry expression of “e = 

g*sin  = g’*cos “.  The created “e” parameter in 

this collision example is related to the angle in 

Figure 6.  The right angled triangle in the context of 

“√Energy mathematical space with matrix 

multiplication” is a unique perspective.  The 

Weinberg angle depicted as an angle in a right-

angled triangle in the context of “weak isospin 

coupling and weak hypercharge coupling” is a 

unique perspective.  A higher 2-D dimension would 

carry the  interaction angle parameter due to an 

extra demission with new degree of freedom, similar 

to a target carrying rolling as the add-on degree of 

freedom discussed in Section 3.    

 

The angle can be described in the following way.  

The  angle, about 41.8 degrees in the above 

example, is different from the physical angle of a 

tilted moving observer at -45 degrees.  The  angle 

has an associated  rotation matrix.  The (0, 
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√Energy) vector has a physical meaning in the lab 

frame motion for a stationary target at zero energy 

initially.  The 41.8 degrees rotation matrix 

multiplication to the (0, √Energy) vector would 

transform the vector to the (√Energy-target, 

√Energy-impactor) vector, which is an invariant 

vector for the pre-collision and post-collision 

observed in a moving frame at -45 degrees, shown 

in Appendix-C.  When the “e” parameter and the 

rotation angle are not conserved, the (√Energy-

target, √Energy-impactor) vector would not an 

invariant but change.  For the case of a 50-degree 

tilted moving observer shown in Appendix-C, the 

transformations of the (√Energy-target, √Energy-

impactor) vector in the pre-collision and post-

collision are shown to be different in the matrix 

multiplications.  For an individual analyzing the 

motions in the two reference frames and taking a 

transformation perspective, the special case of “e” 

parameter conservation ensures that the angle 

rotation matrix in the multiplication transformation 

of the (√Energy-target, √Energy-impactor) vector is 

identical for the pre-collision and post-collision.  In 

other words, the elastic collision would reverse the 

horizontal velocity values with zero total horizontal 

momentum, but keep the energy constant, in a 

special moving frame shown in Appendix-C.  The 

(16.0277 m/s, -45 degrees) is a special moving 

frame for “e” and   angle conservation.  The 

numerical example shows that the 41.8 degrees 

angle rotation matrix transformation, which can 

generate the (√Energy-target, √Energy-impactor) 

invariant vector, has an origin in the zero total 

horizontal momentum, with or without a collision.  

On one hand, an individual may complain that the 

(16.0277 m/s, -45 degrees) moving frame 

observation is an unnecessary complication of the 

obvious, in this  case a simple 1-D collision; and that 

the creation of “e” and 41.8 degrees angle 

conservation is just an academic curiosity for 

rotation matrix transformation with minimal 

meaning.  On the other hand, another individual may 

be interested in the generation of new conserved 

parameters, perhaps with some parallelism to the 

use of higher dimensions via matrix language in 

particle physics theories for the explanation of high 

energy physics data. 

 

Continuing with the matrix multiplication 

perspective, the angle rotation matrix 

transformation can generate an invariant (√Energy-

target, √Energy-impactor) vector, when the angle 

is conserved.  Such a transformation perspective has 

a matrix semblance to high energy physics studying 

electroweak interaction.  The Weinberg angle 

rotation matrix multiplication to the (B-boson, W-

boson) vector would transform the vector to the 

(photon, Z boson) observable vector mathematically 

in the electroweak interaction model including 

Weinberg angle conservation.  On one hand, the 

question of why using the related rotation matrix 

in the transformation, and not any other matrices 

generated by the angle, is a graduate school level 

question.  On the other hand, a student familiar with 

geometry and linear algebra would recognize that 

the rotation matrix multiplication is simply 

mathematically associated with a rotation 

transformation of reference axes, shown in Figure 9.  

The (√Energy-target, √Energy-impactor) vector 

would contribute new projections in the new X’Y’ 

coordinates generated by the  rotation angle.  In 

any event, the exposure to numerical matrix 

manipulation in physics would also be beneficial to 

engineering students when MATLAB is an 

expected topic in first year curriculum such as 

biomedical engineering [9].  
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FIG 6: Diagram showing collision variables √Energy or p / √(2m)  before the collision from the viewpoint 

of a moving observer.   

 

 FIG 7: Results for the final change of “e” values in an Excel simulation. 

 

 

 FIG 8: Graph of initial and final “e” values in √Joules (y-axis) versus moving frame direction in degrees (x-

axis).  

moving observer 

frame direction

a
b

e


a = p1/sqrt(2*m1)
b = p2/sqrt(2*m2)

e = a sin 
e = b cos 
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FIG 9: Diagram showing the clockwise rotation of reference axes in √Energy mathematical space with the 

new X’-Y’ coordinates.   
 

5. Discussion  
Altogether, the richness of the classical collision 

phenomenon in the context of “√Energy 

mathematical space with matrix multiplication” 

enables mechanism associations to modern physics 

from Weinberg angle in electroweak theory to deep 

inelastic scattering in high energy physics 

experiments.  The artificially-mathematically 

created “e” parameter in the √Energy mathematical 

space when the 1D collision was observed by a 2D 

observer could be used to echo what Einstein had 

said: The problems that exist in the world today 

cannot be solved by the level of thinking that created 

them [10].  The Einstein’s quote could be used to 

echo the perspective of transforming a problem to a 

higher dimension, although the problem was created 

in 1D.  The level of thinking for a 2D observer is 

more involved as discussed above.  An extra 

dimension can hold extra information in which 

precise mathematical tools may be able to generate 

meaningful insights. The consideration of extra 

dimensions in String Theory is one example.  There 

were instances that enthusiastic first year physics 

students asked about the universe dimensions after 

watching “The Elegant Universe” shown on USA 

Public Television NOVA Program [11, 12].  The 

perspective discussed above would offer an 

illustrative mechanism beyond just using English 

words. In the above simulation results, the 2D 

observer would discover that the “e” parameter was 

conserved for 41.81 degrees, shown in Figure 8. 

 

The inelastic collision outcomes due to the target 

rolling condition in classical mechanics can be used 

to conceptualize high energy physics scattering with 

several outcomes.  Of course, the energy 

quantization gives rise to particle creation in terms 

of E = mc2 in high-energy physics and there is no 

analogy in classical mechanics.  This shortcoming 

in the analogy would be of minimal significance 

when explaining to students what a high-energy 

physics career would demand, since the equation 

representing the mass-energy conversion 

mechanism is not intimidating.  The richness of a 

high-energy scattering association that builds on the 

inclusion of rotational energy in a classical collision 

problem is reflected in the Excel simulation where 

the numerical values can be adjusted easily from one 

semester to another.  When a learnable mechanism 

is available, those students who take shortcuts in the 

memorization of facts would likely become 

deficient in reasoning skills. After all, the learning 

of an answer may not be identical to the learning of 

the associated investigative process in pedagogy.  A 

discussion of high-energy physics scattering at the 

introductory physics level beyond fact 

memorization, such as what happen in the particle 

decay processes with branching fractions, would 

help to inspire A-level high school and first year 

diameter squared = a squared  
+ b squared

a squared = impactor energy
b squared = target energy
diameter squared = total 
energy

a
b

diameter




X'

X

Y'

Y
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university students interested in high-energy 

physics.   

 

6. Conclusions  
The several outcomes of a classical collision 

between an object moving translationally and a 

rolling object were demonstrated through numerical 

simulation.  The scattered object’s energy transfer 

would become the rotational energy of the rolling 

object initially at rest.  The outcomes of classical 

collision carry resemblances to the possible 

outcomes found in high-energy deep inelastic 

collision of electrons with quarks inside a hadron.  It 

would be useful to show that the transformation of a 

1-Dim collision in the lab frame to a 2-Dim collision 

seen by a moving observer with two orthogonal 

velocity components has a semblance to the 

Weinberg angle in high energy physics in terms of 

numerical matrix multiplication. Future studies 

could include the collision of two rolling objects that 

may have resemblances to other high-energy 

physics scattering experiments for first year physics 

students.   

 

7. Appendix  
The details of the numerical matrix operation are 

given below for easy Excel implementation. 

 

Appendix-A 

Rolling under minimum friction condition would be 

accompanied by slipping.  The following situation 

can be used as a classroom example.  A collision 

would generator an impulse pair.  A sphere of mass 

M kg and radius R meter resting on a rough 

horizontal table received an applied force of F in 

magnitude at the center of mass for t sec from a 

collision. The friction*R*t would generate an 

angular momentum at the center of mass which 

would be 0.4*M*R*R*(angular velocity).  The 

F*t*R would generate an angular momentum L at 

the sphere surface which would be 

1.4*M*R*R*(angular velocity).  Solving the above 

two equations would give friction = F*0.4/1.4.  The 

received energy would the sum of linear momentum 

induced energy and angular momentum induced 

energy, which would be (p-net)*(p-net)/2M + 

L*L/2I at sphere surface.  The p-net would be (F-

friction)*t and I-sphere-surface would be the 

moment of inertia taking the sphere surface contact 

point to the table as the pivot.  The p-net induced 

energy would all become heat energy eventually 

while the (L*L/2I at sphere surface) rolling energy 

would continue forever in this model.  A cube of 

mass M with length 2R could only acquire the (p-

net)*(p-net)/2M energy when receiving an identical 

F*t impulse.  The rotation degree of freedom of 

the target would affect the impactor’s scattered 

energy.     

 

Appendix-B 

The numerical matrix is shown below with the 

impactor m = 4 kg at 17 m/s and target M = 2 kg at 

0 m/s.  The matrix multiplication would give the 

final velocities of 5.67 m/s for the 4 kg and 22.67 

m/s for the 2 kg.  

 

In matrix presentation, AX = Y; A the collision 

matrix, X the initial velocity vector, Y the final 

velocity vector.  

 
1

( 𝑚+𝑀)
  * (

 𝑚 − 𝑀 2𝑀
2𝑚 𝑀 − 𝑚 

) *  (
17 m/s
0 m/s

)   

= 
1

(6)
  * (

 2 4
8 −2 

) *  (
17 m/s
0 m/s

) = (
5.67 m/s

22.67 m/s
) 

 

The time reversal collision where -5.67 m/s for the 

4 kg and -22.67 m/s for the 2 kg are used in a 

collision would give -17 m/s for the 4 kg and 0 m/s 

for the 2kg.  

1

(𝑚+𝑀)
  * (

 𝑚 − 𝑀 2𝑀
2𝑚 𝑀 − 𝑚 

)*(
−5.67 m/s

−22.67 m/s
)    

= 
1

(6)
  * (

 2 4
8 −2 

) *  (
−5.67 m/s

−22.67 m/s
) 
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= (
−17 m/s

0 m/s
) 

 

The inverse of the 2 x 2 collision matrix A would 

also give the same final vector upon multiplication 

with the vector elements (17 m/s, 0).  The inverse of 

any 2 x 2 matrix is simply obtained by interchanging 

the diagonal elements and multiplying -1 to the two 

off-diagonal elements, and multiplied by the 

determinant of A.  A keen student would realize that 

the 1-dim matrix is an involutory matrix where a 

matrix has its own inverse. 

(𝑚+𝑀)

𝑑𝑒𝑡−𝐴
  * (

 𝑀 − 𝑚 −2𝑀
−2𝑚 𝑚 − 𝑀 

)*  (
17 m/s
0 m/s

)   

= 
6

(−36)
∗ (

−2 −4
−8 2

)* (
17 m/s
0 m/s

) 

=(
5.67 m/s

22.67 m/s
) 

Appendix-C 

In the case of a -45 degree moving observer, the 

Excel Solver showed that a moving observer of 

(16.0277 m/s, -45 degrees) or (11.3332 m/s, -

11.3332 m/s) would report a total energy of 578 

Joules or 24.0416 √Joules.  The moving observer 

would report a 4-kg impactor with initial velocity 

component of (5.6667 m/s, 11.3332 m/s) while 

carrying 17.9196 √Joules, and a 2-kg target with 

initial velocity component of (-11.3332 m/s, 

11.3332 m/s) while carrying 16.0277 √Joules; given 

the lab frame of impactor velocity component of (17 

m/s, 0 m/s) and target velocity component of (0 m/s, 

0 m/s).  Note that the total horizontal momentum is 

zero because 4kg*5.67 m/s + 2kg*(-11.333m/s) = 0 

kg m/s.  After the collision, the horizontal 

momentum is still zero.  The moving observer 

would report an impactor with velocity component 

of (-5.6667 m/s, 11.3332 m/s) while carrying 

17.9195 √Joules and target with velocity component 

of (11.3333 m/s, 11.3333 m/s) while carrying 

16.0277 √Joules such that the “e’ parameter and 

41.8 degrees  angle are conserved in the elastic 

collision for the moving observer. 

The transformation of the (0, √Energy) vector is 

illustrated below when the rotation matrix operates 

on the (0, √578 Joules) vector.   

(
cos 41.8101 sin 41.8101

−sin41.8101 cos 41.8101 
)*

(
0

24.04163 sqrt − J 
)  

= (
16.0277 sqrt − J
17.9195 sqrt − J

) 

The multiplication result would yield the (√Energy-

target, √Energy-impactor) vector for  = 41.8101 

degrees in Figure 6 where the observer moved in the 

direction of -45 degrees. The initial and final 

(√Energy-target, √Energy-impactor) vectors are 

identical and the “e” parameter and 41.8 degrees  

angle are conserved.   (Note that if the target mass 

becomes 4 kg, the collision with the 4 kg impactor 

also gives an “e” parameter conservation for an 

observer moving at -50 degrees.) 

 

The transformation of the (0, √Energy) vector is 

illustrated below when the pre-collision rotation 

matrix operates on the (0, √578 Joules) for an 

observer moving with ( 14.5698 m/s , -50 degrees).  

Note that the impactor would carry 19.1238 √Joules 

and the target 14.5698 √Joules before the elastic 

collision. 

(
cos 37.3025 sin −37.3025

−sin 37.3025 cos 37.3025 
) *  

(
0

24.04163 sqrt − J 
) = (

14.5698 sqrt − J
19.1238 sqrt − J

) 

The multiplication result would yield the initial 

(√Energy-target, √Energy-impactor) vector for  = 

37.3025 degrees in Figure 6 where the observer 

moved in the direction of -50 degrees. 

The transformation of the (0, √Energy) vector is 

illustrated below when the post-collision rotation 

matrix operates on the (0, √Joules) for an observer 
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moving with (14.5698 m/s, -50 degrees).  Note that 

the impactor would carry 16.6283 √Joules and the 

target 17.3637 √Joules after the elastic collision 

with an increase of “e” parameter value of about 0.4 

√Joules, show in Figures 9 and 10. 

(
cos 46.2391 sin 46.2391

−sin 46.2391 cos 46.2391 
) *  

(
0

24.04163 sqrt − J 
) 

 = (
17.3637 sqrt − J
16.6283 sqrt − J

) 

The multiplication result would yield the final 

(√Energy-target, √Energy-impactor) vector for  = 

46.2391 degrees in Figure 6 where the observer 

moved in the direction of -50 degrees. 

The Excel files are located on CUNY 

Queensborough Community College website 

(http://www.qcc.cuny.edu/physics/faculty-

research.html) for download when the article is 

published. 
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Abstract

Freshers undertaking a course in statistical

mechanics find it very difficult to understand

the logic behind the introduction of the en-

semble method. For many, it take days or

months or years to digest the concepts of

ensemble. In this article we attempt to justify

the necessity of ensembles and highlight the

easiness of the ensemble technique in finding

the thermodynamics compared to the com-

putation via time average, using some examples.

1 Introduction

The macroscopic thermodynamic properties
like energy, pressure etc in materials are due
to the microscopic behavior of constituent
particles. It is the aim of statistical mechan-

ics to answer the question, how the micro-
scopic behavior of particles or small con-
stituents, lead to a particular macroscopic
property of the material[1]. Any macro-
scopic quantity of the system which we wish
to find is measured over a finite time, which
is very long compared to the time-scale of
motion of the particles of the system. So,
the measured quantity is actually a time-
averaged quantity. In this article in Sec-
tion 2 we show that finding the time aver-
age for any system is very difficult. In Sec-
tion 3 we give a brief description about the
background of ensemble theory and differ-
ent types of ensembles commonly used. In
Section 4 we show that the examples of sys-
tems we tried to find thermodynamics using
time average method in section 2 can be eas-
ily solved using ensemble method.

36/3/03 1 www.physedu.in
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2 Time Average

Let us find how a time averaged quantity
can be theoretically calculated. Consider a
system with a collection of N interacting or
non interacting atoms or molecules or any
other particles and we are interested in find-
ing an observable quantity like temperature
which is the effect of the motion of these par-
ticles. Temperature can be determined by
performing the average over the time trajec-
tory of each particle, and then average over
all the particles[2] at equilibrium. Time av-
erage of velocity is defined for a particle as

< v >= lim
Tt−>∞

1
Tt

∫ Tt

0
v(t)dt

where Tt is the total time. We know, accord-
ing to the equipartition theorem

1
2

mv2 =
3
2

k Ttemp

where Ttemp is the temperature, k is the
Boltzmann constant and m is the mass of the
particle. So for N particles the temperature
is

Ttemp =
m
3k

1
N

N

∑
i=1

lim
T−>∞

1
Tt

∫ Tt

0
v2

i (t)dt

To get the velocity, the equation of motion of
the system must be solved.
As an example let us find how the temper-
ature of a system of harmonic oscillators is
obtained. The differential equation for a har-
monic oscillator is

m
d2q
dt2 + ω2q = 0

where ’m’ is the mass, ’q’ is the displace-
ment and ‘ω’ is the angular frequency. The
solution of the above second order differen-
tial equation is

q(t) = a cos ωt + b sin ωt

Differentiating

dq(t)
dt

= −aω sin ωt + bω cos ωt

and hence velocity

v(t) = −aω sin ωt + bω cos ωt

We can find the value of the constants ’a’ and
’b’ by applying the initial conditions.
Let at t = 0, q(t) = q0 and v(t) = v0. Then
a = q0 and b = v0

ω . The instantaneous dis-
placement

q(t) = q0cosωt +
v0

ω
sin ωt (1)

and instantaneous velocity

v(t) = −ωq0 sin ωt + v0 cos ωt (2)

Substituting in the equation for Ttemp, the
temperature for a collection of harmonic os-
cillators is given by

Ttemp =
m

3Nk
1
N

N

∑
i=1

lim
Tt−>∞

1
Tt

∫ Tt

0
(v(t))2dt

Solving we get

Ttemp =
m

6Nk
1
N

N

∑
i=1

(v2
0i(t) + ω2q2

0i)

Can we get this temperature by substituting
the unknown values?. Look at v0 and q0.
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They are the amplitudes of velocity and dis-
placement. We have N number of particles
with different values for the amplitudes of
velocity and displacement and have to use
molecular dynamics simulation method to
find these values. But it will be a laborious
process to calculate this. Thus it is, practi-
cally impossible to generate a long time tra-
jectory of a macroscopic system consisting
of a large number of atoms or molecules.
Even with the help of the fastest comput-
ers, it is hard to simulate the time trajec-
tory of more than a few tens of thousands
of molecules more than a few hundred nano
seconds. Second reason for no possibility of
finding time average is that solving equation
of state of many systems is in many cases
very difficult. To support and justify our
arguments we give two simple examples of
trying to find the time average.

2.1 Two examples of finding the time

average of energy

2.1.1 Free particle

Consider a free particle of mass m. It will be
governed by the equation

m
d2q
dt2 = 0

So
dq
dt

= a constant

Then momentum, p = a constant = p0.
Then the time average of energy is

< E >=
p2

0
2m

(3)

For N particles the calculation of average
energy will be very difficult because of the
same arguments given in the previous sec-
tion.

2.1.2 A particle in a gravitational field

Consider a particle with mass m moving in a
gravitational field and let the motion be one
dimensional. Then

q(t) = qmax −
1
2

gt2

where q(t) is the instantaneous displace-
ment measured from the ground, qmax is the
initial height and g is the acceleration due to
gravity. Let at t = 0, q(t) = qmax = h. So

v(t) =
dq
dt

= −gt

where v(t) is the instantaneous velocity
which is zero at t = 0. Then

p(t) = −mgt

where p(t) is the instantaneous momentum.

< p2 >=
1
Tt

∫ Tt

0
p2dt =

m2g2T2
t

3

Then the time average of the kinetic energy
is

<
p2

2m
>=

mg2T2
t

6
(4)

Average displacement

< q(t) >=
1
Tt

∫ Tt

0
(qmax −

1
2

gt2)dt

= qmax −
gT2

t
6
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The time average of potential energy is

< mgq(t) >= mgqmax −
mg2T2

t
6

(5)

Adding equations (4) and (5) gives

<
p2

2m
> + < mgq(t) >= mgqmax

But
qmax = h =

1
2

gT2
t

Simplifying the time average of energy

< E >=
mg2T2

t
2

(6)

This is an impractical equation since Tt will
be different and summing for N particles
will result in a large value. All these show
that finding the thermodynamics using time
average is not a practical method in statisti-
cal mechanics.

3 Introduction of ensemble

theory

The above issue of the difficulty of com-
puting the time average was faced by the
founder of statistical mechanics Ludwig
Boltzmann. To counter this, Boltzmann used
a hypothesis, accordingly a system in free
evolution and waiting for a sufficiently long
time, will pass through all the states con-
sistent with its general conditions with the
given value of the total energy. This hypoth-
esis, later known as the Ergodic hypothesis,
can be found more or less explicitly in all
of Boltzmanns work on this subject. Actu-
ally, the ergodic hypothesis assumed a cen-
tral role, above all due to J. Willard Gibbs

work in 1902. Gibbs[3] proposed an al-
ternative to avoid time averaging in order
to obtain equilibrium properties of macro-
scopic objects. He introduced and devel-
oped the concept of ensemble and used a set
of postulates to formulate an entire theoret-
ical scheme where equilibrium properties of
the system can be obtained as an ensemble
average. This method is given below.
Let us consider any observable property, say
X. The ensemble average is a simple average
over all the members of the ensemble.

< X >= lim
N−>∞

1
N

N

∑
i=1

niXi

Taking ni
N = pi

< X >= lim
N−>∞

N

∑
i=1

piXi

where pi is the probability of a mem-
ber of the ensemble to be in the ith micro-
scopic state. A virtual, mentally constructed
replica or collection of thermodynamically
identical systems is called an ensemble, or
a statistical ensemble[4]. Three important
thermodynamic ensembles were defined by
Gibbs. They are
Micro canonical ensemble(MCE): A statis-
tical ensemble where the total energy, vol-
ume and the number of particles in the sys-
tem are fixed, which means it is a com-
pletely isolated system with no exchange of
energy and particles with the surroundings
allowed.
Canonical ensemble(CE) : A statistical en-
semble where temperature, volume and the
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number of particles are fixed. It is not an iso-
lated system but can be considered as a sys-
tem in contact with a heat bath, so that en-
ergy is exchanged but temperature, volume
and number of particles remains constant.
Grand canonical ensemble(GCE) : A statis-
tical ensemble where the temperature, vol-
ume and chemical potential are fixed. Here
the system is considered to be in contact
with a heat and a particle bath.
All ensembles give the same result but we
will take canonical ensemble for further dis-
cussion because of its simplicity.

3.1 Canonical Ensemble

The thermodynamics of systems can be
obtained if we introduce the concept of
probability[5, 6]. Let pi be the probability of
the subsystem being in state i and it is equal
to the fraction of the total number of states
( of system plus reservoir) in which the sub-
system is in the state i.(with energy Ei)

pi =
Ωres(Etot − Ei)

Ωtot(E − tot)

Etot is the energy of the system plus reser-
voir, and Ωtot is the total number of states of
the system plus reservoir. Ωres(Etot − Ei) is
the number of states available to the reser-
voir when the subsystem is in the state i.
Our system does have only a measurable av-
erage energy and let us represent it by U.
From the additive property of entropy

Stot(Etot) = S(U) + Sres(Etot − U)

The other details of calculations are given
Reference [5]. Finally using Boltzmann re-

lation
S = k ln Ω

we get
pi = eβ(U−TS)e−βEi

Thus we get the probability as proportional
to a thermodynamic quantity- Helmholtz
free energy A = U − T S. Then

pi =
e−βEi

Q

where Q is called the partition function
given by

Q = ∑
i

e−βEi

3.2 Thermodynamics

In canonical ensemble we measure only av-
erage properties. This is because the en-
ergy is varying and hence we can mea-
sure only average energy. Other thermody-
namic quantities like pressure and entropy
depends on energy. So let us find expres-
sions for these thermodynamic quantities.
We want to make sure all thermodynamic
quantities that we get in canonical ensemble
is average.

3.2.1 Average pressure

So average pressure

< P >= ∑
i

Pi pi

From basic mechanics we know that Pi =

− ∂εi
∂V . Substituting

< P >= −∑
i

∂εi
∂V eβεi

Q
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Rearranging

< P >= − 1
βQ

(
∂Q
∂V

)
T,N

which can be written in the popular form as

< P >= −
(

∂A
∂V

)
T,N

(7)

where A = −kT ln Q [1, 4].

3.2.2 Average energy

< E >= U = ∑
i

εini

N

< E >= ∑
i

εi pi

But pi =
eβεi
Q . Substituting

< E >= ∑
i

εieβεi

Q
= − 1

Q

(
∂Q
∂β

)
V,N

This can written in the popular form as

< E >= −
(

∂ ln Q
∂β

)
V,N

(8)

4 Thermodynamics using

ensemble method

4.1 Classical systems

In this section we will show that the thermo-
dynamics of systems we tried to find using
the time average can be easily calculated us-
ing ensemble method.

4.1.1 Free particles

The time evolution of a classical system
can be represented as a path, or trajectory,
through phase space, the region of allowed
states in the space defined by the 2N in-
dependent coordinates q and p. As time
passes, the particles makes a trajectory in
the phase space. Since our particle possess
both kinetic energy due to momentum and
potential energy due to position a space is
imagined with momentum and position as
co ordinates. Such a space is called phase
space. It will be a 6N dimensional space.
Any point in this space will be called a rep-
resentative point and it represents a state or
a component of the ensemble. For a single
particle, let the energy be

Er =
p2

r
2m

in three dimension, where r represent a mo-
mentum state. The partition function

Q1 = ∑
r

e−βEr

For a classical system momentum varies
continuously and hence,

Q1 =
∫ ∞

0
g(p)dpe−βEr

=
4πV

h3

∫ ∞

0
p2e−β

p2
2m dp

We used the concept that in phase space the
number of states between p and p+dp is

g(p)dp =
Volume of phase space

minimum volume

g(p)dp =

∫ ∫
d3pd3q

h3
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where h3 in the minimum volume.
Solving

Q1 =
V
h3 (2πmkT)

3
2

N particle partition function,

QN =
(Q1)

N

N!

where the previous value of the partition
function was divided by N! to avoid Gibbs
paradox[7]. Using equation(8) we get

< E >= U =
3
2

NkT

Similarly any thermodynamic quantity can
be easily found.

4.1.2 Particle in a gravitational field

For a single particle of mass m in a gravita-
tional field

E =
p2

2m
+ mgq

with q one dimensional. Single particle par-
tition function is

Q1 =

∞∫
0

∞∫
0

d3pd3q
h3 e

−β

(
p2
2m+mg q

)

Solving

Q1 =
(2πmkT)

3
2

h3
AkT
mg

Here A is the cross sectional area. As before
QN can be found and we get

< E >=
5NkT

2

4.1.3 Harmonic oscillators

Now we take a harmonic oscillator with en-
ergy

E =
p2

2m
+

1
2

mω2q2

The single particle partition function is

Q1 =

∞∫
0

∞∫
0

d3pd3q
h3 e

−β

(
p2
2m+ 1

2 mω2q2
)

Solving

Q1 =

(
1

βh̄ω

)3

N particle partition function is

QN = [Q1]
N

=

[
1

βh̄ω

]3N

From this partition function we can find all
thermodynamics. The average energy is

< E > = 3NkT

Thus the ensemble method is a very com-
fortable technique to find the thermody-
namic properties associated with a system.
For classical systems the particle will be
traversing a trajectory in phase space with
each point representing a component of the
ensemble. In canonical ensemble when the
particle moves in phase space, each repre-
sentative point is at constant temperature,
volume and the number of particles and
hence we call it as an ensemble.
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4.2 Discrete system- A Toy model

Next we can deal with a system which pos-
sess discrete type of energy. It can have only
some particular energy values. This exam-
ple will give more insight into what an en-
semble is. A typical Hamiltonian is taken as

H = −JS1(S2 + S3)

where J is a constant and S1, S2, and S3 are
spins which can take value ±1. Our system
is having a fixed volume V, number of parti-
cles N is constant and temperature T is con-
stant. Ensemble theory say that the system
will pass through different available states
before it reaches equilibrium. Now let us
find out the available or possible states and
how much energy they will contribute.

No S1 S2 S3 Energy
1 +1 +1 +1 -2J
2 +1 +1 -1 0
3 +1 -1 +1 0
4 +1 -1 -1 +2J
5 -1 +1 +1 +2J
6 -1 +1 -1 0
7 -1 -1 +1 0
8 -1 -1 -1 -2J

So we have a system with only 8 possible
states. Our constituent particles can have
only these possible states. Ensemble theory
says that as time passes particles will have
all these states. Each state is a component
of the ensemble with fixed N, T and V. In
reality all the systems will have infinite pos-
sible states. So we can say our system is a
collection of such states which constitute an

ensemble.
Now let us calculate the average energy. We
see that there are 3 types of energies +2j, -2J
and 0 with multiplicities 2, 2 and 4. So the
average energy is

< E >=
∑i EigieβEi

∑i gieβEi

where gi is the degeneracy. Substituting the
values and simplifying we get

< E >= − 2J sinh 2βJ
1 + cosh 2βJ

Thus finding average energy of a system is
not difficult using ensemble method for dis-
crete energy systems also.

5 Conclusions

In statistical mechanics classrooms, many
teachers simply say that finding the time av-
erage is very difficult and hence we use en-
semble method, without justifying it with
arguments or examples. This article intends
to discuss the issues behind the difficulties
faced by the time average method in finding
the thermodynamics of systems and under-
standing of the concepts of ensemble theory.
Both classical and discrete energy systems
are used for demonstrating what an ensem-
ble is. We hope our examples in the article
will help the readers visualize what an en-
semble is!
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Abstract

In this paper, we present a very simple way of

solving the Nobel prize winning work of super-

conductivity due to Bardeen-Cooper-Schrieffer

(BCS) via (2 × 2) matrix formulation. This

alternative, intuitive original formulation of the

approach is due to P. W. Anderson. The algebra

of basic Pauli spin matrix are used to get the

energy gap equation and the average number

particles in the ground state. This formulation

is used to obtain the finite temperature energy

gap equation and universal signature of BCS

type of superconductor. For completness, we

also include (4 × 4) formulation in the single

electron Fock space yielding the same energy

eigenvalues.

Keywords: Superconductivity, BCS
theory, Pseudo-spin analog

1.Introduction

Cooper pairs [1] are the electrons having
equal and opposite momentum and spin

and behave approximately as bosons. They
are indeed quasi-particles having zero
spin.The superconductivity of a material oc-
curs [2] because of formation of the Cooper
pairs indirectly supported by phonons,
the quantized quasi-particles of lattice
vibrations. This pairing opens up a gap at
the Fermi surface. Moreover, it has been
demonstrated by Saraiva and collaborators
[3] the formation of photonic Cooper-like
pairs in transparent media in general via
the virtual Stokes and Anti-stokes (SAS)
processes in Raman spectroscopy. In such a
case, although the photons are bosons but
the photon pairs exchange virtual vibrations
in transparent media, leading to an effective
photon-photon interaction identical to that
for electrons in the BCS theory of supercon-
ductivity.

This pairing problem in supercon-
ductivity cannot be formally attacked by
the perturbation theory because of the
emergence of an intriguing non-analytic
ground state of the Cooper pairs. This non-
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perturbative condensed state was correctly
described by Bardeen-Cooper-Scrieffer
(BCS) theory [4]. In this many body ap-
proach, the orbital part of the wave function
however can have angular momentum state
such l = 0 (s state), 1 (p state), 2 (d state), 3
( f state). For an effective attraction between
the electrons in Cooper pair, it can be
argued that the singlet spin state will give
the lowest ground state energy. If the spin
part of the wave function is antisymmetric
( Singlet), then the orbital part of the wave
function has to be even ( = 0, 2, 4...). The
normal BCS Cooper pair correspond to s
(l = 0) wave superconductor while the
high temperature superconductors fall into
the category of d wave superconductors
with l = 2. The wave function in case of
l = 0 state is spherically symmetric like the
s-states of hydrogen atom. Although the
theory of Cooper pairs is quite successful
in the normal type of superconductor, how-
ever, it seems not quite adequate enough
to explain the features of high temperature
superconductivty.

Matrix formulation always gives one a
simple way of calculating the relevant phys-
ical quantities easily. The simplest examples
are the matrix formulation of simple har-
monic oscillator and spin algebra in quan-
tum mechanics. We will adopt the spin-1

2 al-
gebra to solve a quantum many body prob-
lem. Recently, this kind of formulation has
been used to extract the effective mass and
excitation spectra of Dirac materials [5, 6].

In this pedagogic approach, we will fol-

low the Anderson’s pseudo-spin formula-
tion [7] to recast the BCS Hamiltonian in
terms of pseudo-spin variables. As a con-
sequence, we will be able to write down the
ground state of BCS theory in a very trans-
parent and suggestive way. In this formu-
lation we will be able to compute the en-
ergy gap and its temperature variation in a
very easy way without going into the rigor-
ous second quantized operator calculation.
The basic (2× 2) spin marix algebra will be
sufficient enough to draw the major results
of BCS theory.

1 Pair operators and spin
operators

To proceed further, first we have to identify
the second quantized operators used in BCS
theory with the appropriate spin operators.
The BCS annihilation and creation operators
[2] for the electron pairs at k space are de-
fined respectively as

bk = C−k↓Ck↑

b†
k = C†

k↑C
†
−k↓ (1)

where the Ckσ, C†
kσ are one-particle fermion

operators. These operators however sat-
isfy the anticommutation relations consis-
tent with Pauli exclusion principle given by

{Ckσ, C†
qσ′} = δkqδσσ′

{Ckσ, Cqσ′} = 0

{C†
kσ, C†

qσ′} = 0 (2)

At this junction, let us check the commu-
tation or anticommutation relations among
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the pair creation and annihilation operators.
It is clear from the above anticommutation
relation that the number operator nkσ does
indeed satisfy the relation n2

kσ = nkσ. This
indicates that at any state either zero or
one electron is occupied. We also note that
C2

kσ = 0 = (C†
kσ)

2. This implies also (bk)
2 =

0 = (b†
k)

2. With these information, we ex-
plicity try to know the nature of these pair
creation and annihilation operators via the
commutation/anti-commutation relation.

It is easy to visualize that the pair cre-
ation and annihilation operators satisfy the
following set of rules:

[
bk, bq

]
= 0 =

[
b†

k, b†
q

]
[
bk, b†

q

]
= (1− nk↑ − n−k↓) δkq{

bk, bq
}

= 2bkbq(1− δkq){
bk, b†

q

}
= (nk↑ − n−k↓) δkq (3)

It is clear that the new paired quasi-electrons
neither obey commutation nor anticommu-
tation relations. So, we call them composite
quasi particles. With the help of these com-
mutation relations we would like to identify
the appropriate spin operators equivalent to
fermionic states. The fermionic states could
of either occupied or empty. Can we design
spin operators which can identify these two
states?

Let us denote the fermionic empty and
occupied state by

∣∣0k↑0−k↓
〉

and
∣∣1k↑1−k↓

〉

respectively. Then, we note that

1
2
(nk↑ + n−k↓ − 1)

∣∣0k↑0−k↓
〉

= −1
2

∣∣0k↑0−k↓
〉

1
2
(nk↑ + n−k↓ − 1)

∣∣1k↑1−k↓
〉

= +
1
2

∣∣1k↑1−k↓
〉

(4)

Noting down the similarity with the well-
known spin algebra ( in units of h̄ = 1)
Sz

k

∣∣ ↑ 〉 = +1
2

∣∣ ↑ 〉 and Sz
k

∣∣ ↓ 〉 = −1
2

∣∣ ↓ 〉,
we identify

Sz
k =

1
2
(nk↑ + n−k↓ − 1)∣∣0k↑0−k↓

〉
=

∣∣ ↓ 〉∣∣1k↑1−k↓
〉

=
∣∣ ↑ 〉 (5)

Similarly, we also visualize

C†
k↑C

†
−k↓
∣∣1k↑1−k↓

〉
= 0

C†
k↑C

†
−k↓
∣∣0k↑0−k↓

〉
=

∣∣1k↑1−k↓
〉

(6)

In this way, we can identify the pair cre-
ation operator and annihilation operator at
k space as

b†
k = Sx

k + iSy
k = S+

k

bk = Sx
k − iSy

k = S−k (7)

Let us verify whether the above identifica-
tion is correct or not by looking into the stan-
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dard spin algebra. It is easy to check that[
S+

k , S−k
]

=
[
b†

k, bk

]
= 2× 1

2
(nk↑ + n−k↓ − 1)

= 2Sz
k[

S+
k , Sz

k
]

=
1
2

[
b†

k, nk↑
]
+

1
2

[
b†

k, n−k↓
]

= −b†
k = −S+

k[
S−k , Sz

k
]

=
1
2
[
bk, nk↑

]
+

1
2
[
bk, n−k↓

]
= b†

k = S−k (8)

Out of four terms in each commutator in
raising and lowering spin operators, only
one term will survive because of the restric-
tion that C2

kσ = 0 = (C†
kσ)

2. Thus, the
pseudo-spin ( because of its definition in k
space) operators satisfy the SU(2) spin al-
gebra with the restrictiction that (S+

k )
2 =

0 = (S−k )
2. As a result, we can find the spin

length as follows:

(Stot
k )2 = (Sz

k)
2 +

1
2
(
S+

k S−k + S−k S+
k

)
=

1
4
(b†

kbk − bkb†
k)

2 +
1
2
(b†

kbk + bkb†
k)

=
1
2
(nk↑ − n−k↓) (9)

If the pairs are either empty or occupied,
we find Stot

k = 0. Thus we have shown that
one pseudospin for each pair of electron
states. The situation in which both states are
unoccupied is represented by a pseudo-spin
in the positive z direction, while occu-
pation of both states is represented by a
pseudo-spin in the negative z direction;
other pseudo-spin orientations correspond
to a superposition of the two possibilities.

2 BCS Hamiltonian in (4 ×
4) Matrix form

The BCS Hamiltonian for quasi-electrons
[4] interacting via an effective attractive
phonon mediated interaction is

HBCS − µN = ∑
k
(εk − µ)

(
nk↑ + nk↓

)
−V0

Ω

′
∑
k,q

b†
kbq (10)

The first part of the BCS Hamiltonian is
the sum of the non-interacting single parti-
cle energy εk with respect to the Fermi en-
ergy µ. Here Ω is the volume, V0 (> 0) is
the strength of the interaction and the sum
∑′ runs over momenta k and q such that
|εk(q) − µ| < εc where εc = h̄ωD is the char-
acteristic energy cut-off of the interaction.
Thus, this is a short range interaction. Before
proceeding for pseudospin transformation,
we would like to transform the above BCS
Hamiltonian to (4 × 4) matrix in the elec-
tron’s annihilation and creation operator’s
Fock space using the inherent anticommu-
tation algebra.

In the mean field level [2, 8, 9], the
above Hamiltonian can be written as

He f f−BCS − µN = ∑
k
(εk − µ)

(
nk↑ + nk↓

)
+∆ ∑

k

(
c†

k↑c
†
k↓ + ck↑ck↓

)
(11)
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Here, ∆ = −V0
Ω ∑q

〈
cq↓cq↑

〉
and consequently, the orginal BCS Hamiltonian which was

quadratic in pairing operators has now become linear in pairing operator.
Using the anticommutation relation between the fermionic operator (c†

kck = 1 − ckc†
k;

ck↑ck↓ = −ck↓ck↑ etc), we first rewrite the above Hamiltonian in the following form as

He f f−BCS − µN =
1
2

{
∑
k

2 (εk − µ)
(
nk↑ + nk↓

)
+ 2∆ ∑

k

(
c†

k↑c
†
k↓ + ck↑ck↓

)}

=
1
2

{
∑
k
(εk − µ)

[
nk↑ + (1− ck↑c†

k↑) + nk↓ + (1− ck↓c†
k↓)
]

+∆ ∑
k

(
c†

k↑c
†
k↓ − c†

k↓c
†
k↑ + ck↑ck↓ − ck↓ck↑

)}
−∑

k
(εk − µ)

=
1
2

{
∑
k
(εk − µ)

(
c†

k↑ck↑ − ck↑c†
k↑ + c†

k↓ck↓ − ck↓c†
k↓

)
+∆ ∑

k

(
c†

k↑c
†
k↓ − c†

k↓c
†
k↑ + ck↑ck↓ − ck↓ck↑

)}
−∑

k
(εk − µ)

(12)

Now, it is easy to recast the above Hamitonian ignoring the last constant term in equation
(12) in the following (4× 4) matrix form with ξk = εk − µ as:

He f f−BCS − µN

= ∑
k

1
2

(
c†

k↑ ck↓ c†
k↓ ck↑

)
ξk ∆ 0 0
∆ −ξk 0 0
0 0 ξk −∆
0 0 −∆ −ξk




ck↑
c†

k↓
ck↓
c†

k↑

 (13)

Considering just the upper block, we may write the part of the matrix as (2× 2) below

(
c†

k↑ ck↓
) ( ξk ∆

∆ −ξk

) (
ck↑
c†

k↓

)
(14)

The trace of this matrix (M1) is zero while the determinant being −(ξ2
k + ∆2). As a result,

the eigenvalues are simply ±
√

ξ2
k + ∆2. In the same way, the lower block also can be seen

as (
c†

k↓ ck↑
) ( ξk −∆

−∆ −ξk

) (
ck↓
c†

k↑

)
(15)
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It is evident that the trace of this matrix (M2) is zero while the determinant being −(ξ2
k +

∆2). Consequently, the eigenvalues are simply ±
√

ξ2
k + ∆2 like the upper block matrix M1.

3 BCS Hamiltonian as a
pseudo-spin Hamiltonian

Noting down the spin algebra in the pre-
vious section we can recast the above BCS
Hamiltonian in the pseudo-spin formula-
tion [7, 8] as

HBCS − µN = ∑
k

[
2(εk − µ)

1

−V0

Ω
Θ(εc − |εk(q) − µ|)

]
Sz

k

−V0

Ω

′
∑
k,q

(
Sx

kSx
q + Sy

kSy
q

)
+ ∑

k
(εk − µ)

= −∑
k

~Hk · ~Sk (16)

In the last equation we have thrown away
the constant term ∑k(εk − µ) without any
loss of physics involved in further discus-
sion. Now, we can indeed think of k-space
as a lattice (it is discretized after all, due to
the boundary conditions), and put a S =

1/2 (pseudo-) spin on each lattice site. The
above Hamiltonian effectively describes a
system of interacting spins on a lattice. The
local effective magnetic field acting on each
lattice point is simply ~Hk. The components
of this pesudo-magnetic field are given by

Hx
k =

V0

Ω

′
∑
q

Sx
q

Hy
k =

V0

Ω

′
∑
q

Sy
q

Hz
k = −2(εk − µ)

1
+

V0

Ω
Θ(εc − |εk(q) − µ|)

(17)

Thus, the z-component of Hk gives the ki-
netic energy, while the xy-component is the
potential energy.

Figure 1: A schematic illustration of the vectors
Hk and Sk in the x− z plane. At equilibrium,Hk

and Sk should point in the same direction.

The reduction of this Hamiltonian
in this form is equivalent of Anderson’s
pseudo-spin formulation [7]. Hence, the
system is a kind a magnet resides in momen-
tum space.
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In figure 1, we show the directions of
the pseudo magnetic field and the spin.

Apart from the study of magnetization
at finite temperature at mean field level,
there is one interesting application of the
above equation (17) regarding spin dynam-
ics. Using Heisenberg equation we note that

d
dt
~Sk = ~Sk × ~Hk (18)

The coupled non-linear ordinary differen-
tial equation (18) can be solved at the semi-
classical level with appropriate boundary
conditions. The ground state is the config-
uration that each spin is parallel to its own
local magnetic field.

Under time-reversal symmetry opera-
tor TR, the states are transformed accord-
ingly from |k, ↑

〉
→ | − k, ↓

〉
. Under

the operation of parity, it is seen that P|k, ↑〉
= | − k, ↑

〉
. Thus under joint opera-

tion of parity and time reversal operator, we
note that PTR|k, ↑

〉
= |k, ↓

〉
. Again the

spin-operators are transformed TR~SkT−1
R =

−~S−k. As result, Sz
k, S+

k and S−k will trans-
form respectively as Sz

−k, S+
−k and and S−−k.

Note that the kinetic energy being propor-
tional to k2, it is invariant under time re-
versal symmetry. Consequently, the BCS
Hamiltonian remains invariant under time
reversal symmetry. It is interesting to point
out that although the non-interacting part
of the Hamiltonian is invariant under parity
but the interacting part is not.

Two fold degeneracy is always present
in a system with time-reversal symmetry
known as Kramer’s degeneracy. Intreaction

with a real magnetic field can destroy
the time-reversal symmetry. In s-wave
superconductor, the pairing ( or the critical
transition temperature) is not affected by
time-reversal invariant impurities (non-
magnetic) as long as the the impurities are
not strong enough to cause localization.
This is one of the Anderson’s theorem in
condensed matter physics [10]. In other
word, disorder does not affect TC as well as
the energy gap. But the magnetic impurity
scattering can lead to spin-flips which
destroy BCS like pairing of time reversal
symmetry.

It is interesting to note that for non-
interacting case (V0 = 0), the eigenvalues of
the above Hamiltonian

(E− µN)non = ±1
2 ∑

k
(εk − µ) (19)

To find the nature of the magnet, we
find that the non-interacting state is the
paramagnet one having positive suscep-
tibility but independent of temperature
because of the Pauli exclusion principle at
the Fermi energy [χ ∝ 1

T ×
T
TF

∝ T0]. Now,
once we switch on the interaction, there will
be alignment of spins with the direction of
the magnetic field. Hence, the rotation of
spins will take place forming a domain wall.
Without the interaction, metal has a sharp
domain wall but the superconducting state
will have a soft Bloch domain wall as indi-
cated in figure 2. Here, the pseudo-spins
rotate continuously from down (full) to up
(empty) state. In this sense, BCS ground
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state is understood as a kind of formation of
soft Bloch domain wall at the Fermi surface.

Now we would like to discuss the broken

Figure 2: (a) A normal metal with sharp domain
wall (b) Superconductor with soft domain wall

symmetry in this Hamiltonian. Since, in
the non-interacting case, the Hamiltonian
is invariant under rotation about the z-axis
due to the conservation of number of parti-
cle in the Hamiltonian (Fig 2(a)). However,
ground state in Fig. 2(b) breaks the sym-
metry of the pseudospin Hamiltonian with
respect to rotation about the z axis. Because
of this symmetry a degenerate set of ground
states exists, in which the pseudospins can
lie in any plane through the z axis. The
angle Φ which this plane makes with the
xz plane plays an important key role in
Josephson effect [11].

Now, if we assume that the pseudo-
spins are lying in the xz plane so that all Sy

k
and Sy

q are set equal to zero, then we can re-
cast the BCS Hamiltonian into (2× 2) simple
Hamiltonian given by

H − µN = ∑
k

(
ξk ∆k

∆k −ξk

)
(20)

where ξk = εk − µ and ∆k = V0
2Ω ∑q Sx

q. The
above Hamiltonian is the simple Bogolibov-
deGennes (BdG) Hamiltonian [2] as

HBdG = ∑
k

[ξk τz + ∆k τx] (21)

This Hamiltonian matrix has zero
trace and its determinant is −(ξ2

k + ∆2
k).

And as a result the energy eigenvalues are

Ek = ±
√

ξ2
k + ∆2

k. As has been indicated

that in the ground state, the spin ~Sk lies
along the magnetic field ~Hk giving an
energy -Ek. If the spin is reversed, this costs
2Ek, not Ek. This reversal corresponds to
θk → π − θk, φk → π + φk. Thus , the
minimum energy required for excitation at
the Fermi energy (ξk = 0) is 2∆k. The above
derivation is valid for any spin-singlet
superconducting order parameter including
d-wave. For s-wave superconductor, the
energy gap ∆k is real and independent of k.

Finally, one interesting comment about
pseudo-spin follows like this. It is clear
from the above discussion although algebra
of pseudospin is same as that real spin, but it
is not linked with the internal magnetic mo-
ment of an electron. Hence, they cannot be
detected by the Stern-Gerlach type experi-
ments.
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4 BCS variational wave-
function and expectation
values of the operators

To formulate the BCS variational states in
the non-interactiong case (V0 6= 0), we pro-
ceed in the the basis of spin eigenstates in
a factorized form, namely in the form given
by

|Ψ0
〉
= ∏

k
|θk, φk

〉
(22)

Let the polar and azimuthal angle that char-
acterize a unit vector n̂ be θk and φk respec-
tively. We rotate the y-axis by angle θk and
subsequently rotate by angle φk about the z-

axis. How does the spin up state χ1 =

[
1
0

]
transform under the above rotation? This is
important because we have pointed out that
the local effective magnetic field will rotate
continuously the spin up and down states.
Let us evaluate it explictly.

|θk, φk
〉
= U2 U1χ1

= exp(−iσ3φk/2) exp(−iσ2θk/2)

[
1
0

]
= [cos(φk/2)− iσ3 sin(φk/2)]

×[cos(θk/2)− iσ2 sin(θk/2)]

[
1
0

]

=

[
cos(θk/2) e−iφk/2

sin(θk/2) e+iφk/2

]

= cos(θk/2) e−iφk/2

[
1
0

]

+ sin(θk/2) e+iφk/2

[
0
1

]
(23)

This form of the state will help us to com-
pute the expectation values of the spin op-
erators in the BCS Hamiltonian. But before
that we pause for a while to connect this
state with the usual BCS variational wave
function written in second quantized form.

Note that the true vacuum states are
those in which all pairs are empty (spin
down). To generate a state with the spin in
the xz plane and quantized at an angle θk

with the z axis, we have the unitary rotation
matrix

U1 = [cos(θk/2)− iσ2 sin(θk/2)]

= [cos(θk/2)− 1
2
(S+

k − S−k ) sin(θk/2)]

(24)

Note that S−k operates on the vacuum gives
zero contribution and as a result

|Ψ0
〉

= ∏
k
|θk, φk

〉
= ∏

k
[cos(θk/2)− S+

k sin(θk/2)]|0
〉

= ∏
k
(uk + vkb†

k|0
〉

(25)

with the identification uk = cos(θk/2) and
vk = − sin(θk/2). Note that |uk|2 + |vk|2 =

1 which is regarded as the normalization
condition of the variational wave function.
Moreover, a careful look also reveals that
u−k = uk while v−k = −vk. The BCS
wavefunction, Eq. (20), does not contain
a well defined particle number. In partic-
ular, |Ψ0

〉
contains all possible even parti-

cle numbers from 0 to ∞. This is consistent
with the remark made earlier about the non-
conservation of no. of particles in the super-
conducting state.
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Note that for k � kF we have 1
2 θk = π

2
and in this region, it is entirely filled with
electrons.

How is the equation (25) related to
Cooper pair wave function in real space?

We know that the wave function of
Cooper pair is spin-singlet state (zero orbital
angular momentum) with symmetrical spa-
tial part.

ψ(r1, r2; ↑, ↓) = Φ(|r1 − r2|)

× 1√
2
[| ↑>1 | ↓>2 −| ↑>2 | ↓>1]

(26)

where the spatial part Φ(r) = Φ(−r). The
Fourier transformation of the above wave
function can be written as

Φ(r) = ∑
k

g(k) eik·r (27)

Then, we notice that

ψ(r1, r2; ↑, ↓)

=
1√
2
[| ↑>1 | ↓>2 −| ↑>2 | ↓>1]

×∑
k

g(k) eik·(r1−r2)

= ∑
k

g(k)√
2
{|k, ↑>1 | − k ↓>2

−|k, ↓>1 | − k, ↑>2 |}

= ∑
k

g(k)√
2
{|k, ↑>1 | − k ↓>2

−| − k, ↓>1 |k, ↑>2 |}
= ∑

k
g(k) b†

k|0 > (28)

where we have used g(k) = g(−k) to re-
store the symmetry properties of Φ(r). This

completes the connection of Cooper pair
with the spin wave function |Ψ0 >.

Now we are going to calculate the ex-
pectation value of the spin operator.〈

S+
k

〉
=

1
2

sin θk eiφk〈
S−k
〉

=
1
2

sin θk e−iφk (29)

Note that the expectation values (setting
φk = 0) are non-zero only at θk = π

2 and
zero at θk = 0. This serves as an order
parameter in the superconducting state to
metallic phase transition. As a consequence,

〈Sx
k〉 =

1
2
〈
Ψ0|(S+

k + S−k )|Ψ0
〉

=
1
2

(
cos(θk/2) sin(θk/2)eiφk/2

+ cos(θk/2) sin(θk/2)e−iφk/2
)

=
1
2

sin(θk) cos(φk) (30)

In the similar way, we can find the expecta-
tion values of the other two operators as〈

Sy
k

〉
=

1
2i
〈
Ψ0|(S+

k − S−k )|Ψ0
〉

=
1
2

sin(θk) sin(φk)

〈Sz
k〉 =

1
2

cos(θk) (31)

It is evident that for θk = π/2, < Sz
k >= 0

while < Sx
k > 6= 0,< Sy

k > 6= 0 (provided
φk 6= π/2). On the other limit, θk = 0,
Sz

k > 6= 0 while other two expectation values
of the spin operator reduce to zero. This ob-
servation is important to identify the order
parameter of this phase transition of normal
metal to superconducting system. There-
fore, θk = π/2 limit is responsible for occur-
rence of superconducting state while θk = 0
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is the signature of the metallic state. More-
over, the expectation value of the spin op-
erator on the |θk, φk

〉
state behaves like a

classical spin of length S = 1/2. to yield the
length of the spin as 1

2 . Further, we notice
that 〈

(Sx
k)

2
〉
+
〈
(Sy

k)
2
〉
+
〈
(Sz

k)
2
〉

=
3
4
=

1
2

(
1
2
+ 1
)

(32)

consistent with the spin algebra of spin
1/2 system. We also note that〈

θk, φk|
〈
θq, φq|(Sx

kSx
q

+Sy
kSy

q|θk, φk
〉
|θq, φq

〉
=

1
4

sin(θk) sin(θq)
[
cos(φk) cos(φq)

+ sin(φk) sin(φq)
]

=
1
4

sin(θk) sin(θq) cos(φk − φq) (33)

With these expectation values, we are now
ready to compute the expectation values of
the BCS Hamiltonian in equation (16).

5 BCS gap equation

The expectation values of the non-
interacting part and interacting parts
are respectively〈

Ψ0|(H − µN)non−int|Ψ0
〉

= ∑
k
[2(εk − µ)

−V0

Ω
Θ(εc − |εk(q) − µ|)

]
cos(θk)

(34)

and

〈
Ψ0|(H − µN)int|Ψ0

〉
= − V0

4Ω

′
∑

k 6=q
cos(φk − φq) sin(θk) sin(θq)

(35)

With these variational energy expressions,
we would like to find out the specific spin
inclination which minimizes the above en-
ergy expression. Now, in this model Hamil-
tonian V0 > 0 and θ lies between 0 and π,
it is evident that φk = φq = 0 minimize
the energy expression. Therefore, minimiz-
ing the variational energy with respect to θk

for |εk − µ| < εc, we obtain

(
εk − µ− V0

2Ω

)
sin θk

= − V0

2Ω

′
∑

k 6=q
sin θq cos θk

(36)

This equation (36) is the central equation of
BCS theory from which all the calculations
of the physical quantities can be evaluated.
Making an error of order O(1/Ω), we can
neglect the term V0

2Ω on the left-hand side and
then add the term with q = k in the sum
on the right-hand side. Introducing then the
symbol

∆ = − V0

2Ω

′
∑
q

sin θq (37)
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we find

tan θk =
|∆|

(εk − µ)

Ek =
√
(εk − µ)2 + ∆2

sin θk =
|∆|
Ek

cos θk =
µ− εk

Ek
(38)

With these values, we can easily write down
the self-consistent energy gap equation as

∆ =
V0

2 ∑
k

∆√
ξ2

k + ∆2
(39)

and from which we get the integral equation
for solving the gap ∆ as

1 =
V0

2

∫ h̄ωD

−h̄ωD

N(ξ)dξ√
ξ2

k + ∆2
(40)

The above integral can be evaluated under
the assumption that the density of states
(DOS) within this energy scale (h̄ωD � EF)
is constant and is given by N(0), DOS at the
Fermi energy EF. Before, we do the exact
analysis, let us have a critical look to obtain
the approximate value of the integral. The
integrand is approximately dξ/ξ over most
of the range, which is log divergent both at
ξ → 0 and ξ → ∞. The actual integrand
however stops diverging and levels off once
|ξ| < ∆ and the upper cutoff is ωD. Thus,
the approximated value of the integral is

1 ≈ N(0)V0

[∫ h̄ωD

∆
+
∫ ∆

h̄ωD

]
dξ

ξ

1 ≈ N(0)V0

[
ln
(

h̄ωD

∆

)
+ const

]
(41)

The gap equation in this approximation
reads as

∆ ≈ const h̄ωD exp
(
− 1

N(0)V0

)
(42)

The exact final expression for the zero-
temperature energy gap is simply

1 = N(0)V0 sinh−1
(

h̄ωD

∆

)
∆ =

h̄ωD

sinh
(

1
N(0)V0

) (43)

Note that this energy gap is quite differ-
ent from the energy gap observed in typi-
cal semiconductor or insulator. As it is clear
that in superconductivity, the energy gap is
tied to the Fermi surface where in semicon-
ductor or insulator, it is connected to the lat-
tice itself. The zero-temperature gap equa-
tion contains three parameters: one (N(0))
characterizing the free-electron energy scale,
another ( ωD ) characterizing the phonon en-
ergy scale, and a third (V0 ) related to the in-
teraction term (electron-phonon). Using the
BCS approximation N(0)V0 � 1, we find
the simple expression of the zero tempera-
ture energy gap as

∆ = 2h̄ωD exp
(
− 1

N(0)V0

)
(44)

The dependence of ∆ on V0 is non-analytic,
indeed it is exactly the function exp(−1/z)
that is the cautionary example of analytic
function theory. Its Taylor series is zero
term-by-term. Therefore, the above expres-
sion cannot be obtained by perturbation the-
ory [2]. Since ωD is proportional to M−1/2,
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M being the mass of the ion, thus ∆ ≈ kBTC

is proportional to M−1/2 establishing the
isotope effect in superconductivity.

5.1 Finite temperature energy gap
equation and Universality

To compute the transition temperature TC

we generously use the molecular field
method used in the study of the theory of
ferromagnetism. At a finite temperature T,
the ensemble average spin for this two-state
system is directed along the effective field
~Hk and has the magnitude,

〈Sk〉 = tanh
(
Hk

kBT

)
(45)

Note that this tanh function is a typical char-
acteristic of any two level system. Before we
use this result, one small modification is re-
quired. This result is correct for the spin ana-
log model which works entirely in the pair
subspace. Now, If we extend the space to
allow single particle excitations we have to
change T by 2T [8]. Hence, with this vari-
ation of the spin component with tempera-
ture (ξk remains unchanged ) the new gap
equation at finite temperature T can be ob-
tained by inserting tanh( Ek

2kBT ) in the right-
hand side of equation (39)

∆ =
V0

2 ∑
k

∆√
ξ2

k + ∆2
tanh

(
Ek

2kBT

)
(46)

This factor correctly reproduces the physics
involved in this phase transition. As we
raise the temperature T, the tanh factor

gradually takes over the job of suppress-
ing the logarithmic divergence, which was

handled by ∆ in
√

ξ2
k + ∆2 in the denom-

inator. As a result, ∆ will decrease. For
T > TC , there is only one solution for the
self-consistency equation, ∆ = 0. The tran-
sition T = TC occurs in this model when
∆ = 0, i.e. superconductor becomes metal.
The integral representation of finite energy
gap equation reads as

1 =
N(0)V0

2

∫ h̄ωD

−h̄ωD

dξ tanh
(√

ξ2
k+∆2(T)
2kBTC

)
√

ξ2
k + ∆2(T)

(47)
We would like to approximate the

above integral as done in the previous sec-
tion. The upper cutoff is h̄ωD again, while
the lower cutoff is roughly ξk ≈ kBTC,
since that is where the tanh function in (46)
crosses over from unity to a linear behavior
that eventually cancels the 1/ξ divergence.
Thus TC is playing the same role in (46) that
∆ played in the gap equation in (39); as one
might anticipate, we have

1 ≈ N(0)V0

[
ln
(

h̄ωD

kBTC

)
+ const

]
(48)

and kBTC ≈ ∆(0). The numerical result con-
sistent with BCS equation ( N(0)V0 � 1, the
upper limit is very large) gives us [2, 8]

1
N(0)V0

=
∫ h̄ωD

0

dξ tanh
(

ξ
2kBTC

)
ξ

= ln
(

1.14h̄ωD

kBTC

)
kBTC = 1.14 h̄ωD exp

(
− 1

N(0)V0

)
(49)
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The critical transition temperature is pro-
portional to the Debye frequency. In addi-
tion, it depends on the density of states N(0)
and interaction strength V0 in a non-analytic
way. As the interaction becomes weaker and
weaker, TC goes down to zero.

Comparing with equation (44) we ob-
tain the final universal result

2∆(0)
kBTC

=
4

1.14
= 3.508 (50)

independent of the three parameters ωD,
N(0) and V0 and is valid in the weak cou-
pling limit. For strong coupling limit, how-
ever, the above ratio can be greater than
3.508. For any BCS type of superconduc-
tor, the ratio of zero temperature energy gap
and its transition temperature is constant
and independent of microscopic interacting
parameters relevant for electrons. Any vi-
olation of the above relation is termed as
non-BCS signature of any superconductor.
Most of the high temperature superconduc-
tors, however, do not obey the above rela-
tion.
At finite temperature T < TC, the gap equa-
tion can be written as

∫ ∞

0
dξ

 tanh( E
2kBT )

E
−

tanh( ξ
2kBTC

)

ξ

 = 0

(51)
Notice that since this integral converges, we
have extended the upper limit to ∞ without
any loss of generality. Then, we can easily

see that the energy gap should be written as

∆(T) = TC f
(

T
TC

)
∆(T)
∆(0)

= g
(

T
TC

)
(52)

The numerical integration of equation (51)
near transition temperature TC yields [2]

∆(T)
∆(0)

= 1.74
(

1− T
TC

)1/2

(53)

As a result, the coherence length in case
superconductor defined as c(T) = h̄vF

π∆(T)

varies with (TC − T)−1/2 consistent with the
mean field exponent β = 1/2 of GL the-
ory [9]. Further, it is observed that the spe-
cific heat shows a discontinuity or jump at
TC indicating the critical exponent α = 0.
In this sense, Anderson’s pseudo-spin ap-
proach is a mean field theory as the expo-
nents are classical.

6 Magnetizaton and Aver-
age particle number

We define the magntization as

M =
1
2

µB ∑
k

〈
(nk↑ − n−k↓)

〉
(54)

In computing this magnetization, we find

M2
k =

〈
(nk↑ − n−k↓)

2
〉

=
〈
(nk↑ + n−k↓)

2 − 4nk↑ n−k↓
〉

=
〈
(1 + 2Sz

k)
2 − 4S+

k S−k
〉

= (1 + cos θk)
2 −

(
4× 1

4

)
sin2 θk

= 1 + 2 cos θk + cos 2θk (55)
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It is really nice to see that the square of
the magnetization at k-th state for super-
conducting state (θk = π

2 ) identically van-
ishes to zero. However, for the metallic state
M2

k = 4 since θk = 0.
The zero magnetization also can be seen

easily from the fact that in the superconduct-
ing state because either the pairs are empty
or occupied. In the zero orbital magnetic
moment, since the total spin of the Cooper
pairs is zero, thus, the magnetic state of the
superconducting material is diamagnetic.

Now let us have a look at how well de-
fined is the average particle number. We de-
fine the average particle number as

〈N〉 = ∑
k

〈
nk,↑ + n−k,↓

〉
= ∑

k
〈1 + 2Sz

k〉

= ∑
k
(1 + cos θk) (56)

Similarly, the average square number of par-
ticle is calculated as〈

N2
〉

= ∑
k 6=q

〈
(nk,↑ + n−k,↓)(nq,↑ + n−q,↓)

〉
=

(
∑
k

(1 + cos θk)

)2

+∑
k
(1 + cos θk)(1− cos θk)

(57)

As a result, we find〈
N2
〉
− (〈N〉)2 =

〈
(∆N)2

〉
= ∑

k

(
1− cos2 θk

)
(58)

Note that for θk = 0 (metallic one), this fluc-
tuation in number of particles is zero while

for the superconducting state this value is
non-zero. Again the sum is of the order of
O(N) and hence,〈

(∆N)2〉
〈N〉2

∼ 1
〈N〉 (59)

This implies that the root mean square de-
viation (RMS) from the average number of
particles 〈N〉 is of the order of 1√

〈N〉
. For a

typical 1020cm−3 value of the average num-
ber of particles, this RMS value (relative
fluctuation) turns out to be 10−10. Thus, al-
though |Ψ0 > does not conserve number of
particles however, it does not pose any se-
rious issue in calculating the physical quan-
tity within BCS theory. In such a case we can
simply compute the physical quantity with
definite number of electrons 〈N〉 in the k-th
state.

7 Conclusion

In this paper, Anderson’s Pseudo-spin ana-
log has been used to obtain BCS gap equa-
tion without invoking the complex calcula-
tion involving second quantized operators.
This formalism points out the existence of
soft domain wall in the superconducting
state in contrast to sharp one in the metal-
lic one. Besides, the spontaneous symmetry
breaking can be identified in this formalism.
Finally, this approach finds an easy way to
compute the finite temperature energy gap
equation, transition temperature and its uni-
versality highligting the mean field theory
of statistical mechanics. The formalism has
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been also extended to account for the mag-
netism and the number fluctuation in BCS
state. Besides, we have incorporated (4× 4)
matrix formulation of BCS Hamiltonia in
single electron’s Fock space for complete-
ness.
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Abstract

In this paper, we will use a simple spin inequality

to compute the ground state energy of nearest

neighbour Heisenberg Hamiltonian in one di-

mension. The implication of this inequality will

be highlighted in the thermodynamic properties

also. Finally, the utility of this technique is

illustrated in Majumdar-Ghosh model.

Keywords: Spin algebra, Heisenberg
Spin Hamiltonian

1.Introduction

The story of magnetism is evergreen and till
date can inspire the researcher [1, 2, 3]. Con-
sider the atoms in a crystal with zero orbital
quantum number but with non-vanishing
spins. It is further assumed that such atoms
are separated by sufficiently large distances
so that the interaction between them is con-
sidered to be weak [4, 5]. In the famous

Heisenberg model, the interaction between
two adjacent spins is taken to be as the sim-
ple scalar product of spin operators at two
different sites i and j given by

H = ∑
<ij>

Jij ~Si · ~Sj (1)

Here, Jij is the exchange integral related to
the matrix elements of Coulomb interation
of the exchanged two particle wave func-
tions. It is interesting to point out that be-
yond the usual ∑<ij> Jij ~Si · ~Sj terms, the ab-
initio calculations [6] necessarily introduce
the four-body spin operators in the S = 1

2
case and biquadratic terms in the S = 1
in the effective Hamiltonian formalism. In
theoretical computations, this integral Jij is
taken to be constant. In the Heisenberg
model, the electronic degrees of freedom are
neglected and only the spin degree of free-
dom plays a key role in controlling the mag-
netic properties of the solid comprising of
the atoms. These spin Hamitonians not only
include Spin -1/2 but also an arbitrary spin
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S ≥ 1/2. There is indeed rich and quite ro-
bust physics from the phase transition point
of view and also from the exactly solvable
models of quantum many body physics [7,
8, 9, 10].

2. Spin Inequality

We will start from a simple quantum me-
chanical relation about the expectation value
of a hermitian operator. Let O be the hermi-
tian operator and {|Φn >} be its complete
set of orthonormal eigenstates with eigen-
values On. Then, we can write the expec-
tation value of the hermitian operator O in
an arbitrary state |Ψ > (|Ψ >= ∑n Cn|Φn >

along with < Ψ|Ψ >= 1; ∑n |Cn|2 = 1) as

〈O〉 = 〈Ψ|O|Ψ〉
= ∑

m,n
C∗mCn 〈Φm|O|Φn〉

= ∑
n
|Cn|2On ≥ O0 (2)

Thus, it is clear from the above equation
that the largest value of 〈O〉 is given by the
largest eigenvalue of O obtained by taking
the |Ψ > to be the eigenstates of O with
the largest eigenvalue. Even, if we consider
the smallest value of 〈O〉 , then we have to
take the smallest eigenvalue of O0. Hence,
for an arbitrary hermitian matrix, the largest
diagonal element is bounded by the largest
eigenvalue. This fact will now be utilized to
show that the maximum value of

〈
~Si · ~Sj

〉
=

S2. Here, the spins are considered on differ-
ent sites (i 6= j). Now, note that

~Si · ~Sj =
1
2

[
(~Si + ~Sj)

2 − ~S2
i − ~S2

j

]
(3)

Thus, the largest expectation value of ~Si · ~Sj

is given by the largest eigenvalue of the op-
erator on the rhs of the equation (3). It is
interesting to note that the three terms in

the rhs of equation (3) commute ([H, ~Si
2
] =

0 = [H, ~Sj
2
]) with each other which indicates

that we can find simultaneous eigenstates
for them. The eigenvalues of ~S2

i and ~S2
j are

S(S + 1) while the eigenvalues of (~Si + ~Sj)
2

are Stot(Stot + 1) with Stot = |S − S|, ..., S +

S = 0, 1, 2....2S.
Therefore, the largest expectation value

of eigenvalue of ~Si · ~Sj is obtained with
Stot = 2S and hence,

Max
〈
~Si · ~Sj

〉
=

h̄2

2
[2S(2S + 1)− 2S(S + 1)]

=
h̄2

2
× 2S2 = h̄2S2 (4)

One might wonder then, the minimum
value of the expectation of ~Si · ~Sj would be
−S2. But it is not; as can be seen below by
the computation from the equation (2). The
minimum value of

〈
~Si · ~Sj

〉
is obtained from

Stot = 0 as

Min
〈
~Si · ~Sj

〉
=

h̄2

2
[0− 2S(S + 1)]

= − h̄2

2
× 2S(S + 1)

= −h̄2S(S + 1) (5)

Therefore, the expectation value of ~Si ·~Sj sat-
isfies the following bounds given by

− S(S + 1)h̄2 ≤
〈
~Si · ~Sj

〉
≤ S2h̄2 (6)

For just two spins with S = 1
2 , we have

two eigenvalues of −3h̄2

4 (triplet state) and
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h̄2

4 (singlet) and the difference between the
eigenvalues is h̄2. With the above two ex-
pectation values, we now move forward to
calculate the ground state energy of Heisen-
berg models comprising of 2, 3 and 4 spins.

3.Two Spin Heisenberg
Hamiltonian

The two spins are interacting via the Hamil-
tonian given by

H = J~S1 · ~S2 (7)

A straightforward spin algebra yields, there

are two eigenvalues one being −3Jh̄2

4 non-

degenerate and other Jh̄2

4 is three-fold de-
generate. These eigenvalues also can be un-
derstood from the maximum and minimum
values of ~S1 · ~S2 as shown in the previous
section. The partition function of the system
as a function of temperature (β = 1

kBT ) can

be written with ∆ = Jh̄2

4 as

Z(∆, β) = e−β∆(3 + e4β∆) (8)

The average energy of the above two level
system can be written as

Eav = ∆− 4∆
1 + 3e−4β∆ (9)

which correctly reproduces the high temper-
ature (0) and low temperature (−3∆) values.
The entropy can be computed as

S(∆, T) = kB log(3 + e4β∆)

−4∆
T

1
(1 + 3e−4β∆)

(10)

As T → 0, the entropy S → 0 validating the
third law of thermodynamics. In the high
temperature limit, S → kB log 4 exploring
completely the accessible microstates. Fur-
ther, one can calculate the specific heat of the
system as a function of dimensionless vari-
able x = 4β∆ given by

C(x) = kB
x2 e−x

(1 + 3e−x)2 (11)

The specific heat shows a peak at a tempera-
ture related to ∆, a characteristic signature of
a two level system. The three fold degener-
acy can be partially broken by incorporating
an additional term in the Hamiltonian as

Hnew = J
(
~S1 · ~S2 − 3S1zS2z

)
(12)

In such a situation, one has doubly degen-

erate states with energy − Jh̄2

2 and two other
non-degenerate states having energy eigen-
values 0 and Jh̄2. Hence, the partition func-
tion (∆1 = Jh̄2) can be calculated as

Z = 1 + 2e
β∆1

2 + e−β∆1 (13)

In the same tune, the average energy and the
specific heat can be written as

Eav =
∆1

(
e−β∆1 − e

β∆1
2

)
1 + 2e

β∆1
2 + e−β∆1

CV(y) = kB

y2e−y/2
(

13
2 + 1

2 ey + 3e−3y/2
)

(1 + 2ey/2 + e−y)2

(14)

with y = β∆1 being a dimensionless vari-
able. In the zero temperature limit, the av-
erage energy becomes −∆1/2 while the spe-
cific heat vanishes to zero. While in the high
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temperature limit, the specific heat as well
as the average energy vanish to zero. The
zero average energy value is consistent with
the fact that

Eav =
2× (−∆1/2) + 1× 0 + 1× ∆1

1 + 2 + 1
= 0

(15)

4.Three Spin Heisenberg
Hamiltonian

With nearest neigbour interaction, the
model Heisenberg Hamiltonian of one di-
mensional spin chain can be formulated as

H = J
N

∑
n=1

~S(n) · ~S(n + 1) (16)

Here ~S(n) is a quantum spin operator at-
tached to a lattice point n = 1, 2, , , N. Here
J is assumed to be positive. Periodic bound-
ary conditions are adopted by the condition
~SN+1 = ~S1. As a small subset of three spins
system, the above Hamitonian reduces to

H = J
[
~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S1

]
(17)

Defining ~Stot = ~S1 + ~S2 + ~S3, we note that
the above Hamiltonian can be recast as

H =
J
2

[
(~S1 + ~S2 + ~S3)

2

−~S2
1 − ~S2

2 − ~S2
3

]
=

J
2

[
~S2

tot − ~S2
1 − ~S2

2 − ~S2
3

]
(18)

It is not always possible to diagonalize such
type of nearest neighbour Hamiltonian in
this fashion because ~S2

tot contains terms with

exchange interaction between the spins that
are not nearest neighbour such as ~S1 · ~S3.
Such terms are not always included in the
Hamiltonian.

For an arbitrary S, Stotal = 3S, hence the
maximum energy of the system turns out as
Emax = J

2 [3S(3S + 1)− 3S(S + 1)] = 3JS2.
For a special case of spin-1/2 system, this

maximum energy reduces to 3Jh̄2

4 . Even, if
all the spins are down, then the energy also

remains same as 3Jh̄2

4 . Thus, this energy state
of the three spin system is doubly degener-

ate with eigen value 3Jh̄2

4 with J > 0. One
can flip the spins to get the ground states.
This flipping of spins generates 6 degener-

ate states with energy −3Jh̄2

4 . With J > 0,
this is indeed the ground state of the system.
This state corresponds to one “up” spin and
two “down” spins. Indeed for the 3 spins
system one can have 23 = 8 possible con-
figurations. With all these energies, we are
ready to study the thermodynamic proper-
ties [11, 12]. The partition function of the
system can now be written as

Z(J, T) = 2 e−
3Jh̄2β

4 + 6 e
3Jh̄2β

4 (19)

The associated free energy can be found as

F = −kBT log 2 +
3Jh̄2

4
− log

(
1 + 3 e

6βJh̄2
4

)
(20)

The entropy at zero temperature correctly
counts the states in the ground state with the
result

ST→0 = kB log 6 (21)

However, at high enough temperature, en-
tropy translates to kB log 8. The average en-
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ergy of the system can be computed from
the partition function as

Ē =
3Jh̄2

4
− 9Jh̄2

2
1

3 + e
−3βJh̄2

2

(22)

The two limits are of interest. At zero tem-
perature it correctly produces −3Jh̄2

4 energy
while at high enough temperature, the av-
erage energy stays within the gap given by

−3Jh̄2

8 . This is consistent with the fact (as-

suming ∆2 = 3Jh̄2

4 ) that

Eav =
6× (−∆2) + 2× ∆2

6 + 2
= −∆2

2
= −3Jh̄2

8
(23)

Finally, the specific heat of this two level
system can be calculated as

C(J, T) = 3kB
x2 e−x

(3 + e−x)2 , x =
3Jh̄2

4kBT
(24)

The specific heat remains positive through-
out the range of its parameter and shows a
peak at some temperature characteristic of a
two level system.

5. Four Spin Heisenberg
Hamiltonian

With nesrest neigbour interaction, the model
Hamiltonian [5] of an antiferromagnetic sys-
tem can be written as

HAFM = J
[
~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4 + ~S4 · ~S1

]
(25)

The above Hamiltonian can be recast as

HAFM =
J
2

[
(~S1 + ~S2 + ~S3 + ~S4)

2

−(~S1 + ~S3)
2 − (~S2 + ~S4)

2
]
(26)

Considering the antferromagnetic interac-
tion ~Stot = (~S1 + ~S2 + ~S3 + ~S4), ~S13

tot = (~S1 +
~S3) and ~S24

tot = (~S2 + ~S4), we note that the
minimum value of Stot is 0 while the max-
imum values of S13

tot and S24
tot are 2S and 2S

respectively. Hence, the ground state of the
above antiferromagnetic four spins system
can be computed exactly as

E0 =
Jh̄2

2
[0− 4S(2S + 1)]

= −4Jh̄2S2
(

1 +
1

2S

)
(27)

Again for special case of spin−1
2 system, we

can get the ground state energy of four spin
system as

EAFM
0 = −4Jh̄2(1/2)2

(
1 +

1
2(1/2)

)
= −2Jh̄2 (28)

For ferromagnetic case, the four spin Hamil-
tonian written in equation (5) is modifies as

HFM = −J
[
~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4 + ~S4 · ~S1

]
(29)

Again considering the parallel spin config-
uration, we find Stot = 4S and hence, the
ground state energy will be

EFM
0 = − Jh̄2

2
[4S(4S + 1)− 4S(2S + 1)]

= −4Jh̄2S2 (30)

For Ising system where S = ±1, we obtain
EFM

0 = −4Jh̄2 (J > 0).

6. Majumdar-Ghosh Chain

It is again a one dimensional quantum spin
model [13, 14, 15] with the nearest and next

36/3/05 5 www.physedu.in



Physics Education July - September 2020

nearest neighbour exchange interactions as

H = 2J
N

∑
i=1

~Si · ~Si+1 + J
N

∑
i=1

~Si · ~Si+2 (31)

with periodic boundary conditions ~SN+1 =
~S1 and ~SN+2 = ~S2. A careful look into
the above Hamiltonian reveals that it can be
written in a very nice form as

H = J
N

∑
i=1

[
~Si · ~Si+1 + ~Si · ~Si+2 + ~Si+1 · ~Si+2

]
=

J
2

N

∑
i=1

[
(~Si + ~Si+1 + ~Si+2)

2 − ~S2
i

−~S2
i+1 − ~S2

i+2

]
(32)

The rearrangement of the terms ensures that
the connectivity of the three spins in a block.
Like in three spin case, the minimum energy
configuration corresponds to one free spin
and the rest two spins forming a singlet. For
example, one can have the eigenstate

|Ψ0 >= (| ↑i↓i+1> −| ↓i↑i+1>)× | ↑i+2) >

(33)
There are two linearly independent ways of
forming such configurations. For spin -1/2
system, the minimum energy per spin [16] is
simply

εmin = −3Jh̄2

4
(34)

Prof. Pasupathy [17] gave an elegant vari-
ational argument regarding the minimum
bound state of the above Hamiltonian as

3Jh̄2

4
≤ 9Jh̄2

4
+ 2 < H > (35)

by noting the fact that the triad of spin can
have either S = (1/2)h̄ or S = (3/2)h̄. As a

result, we can have

< H >≥ −3Jh̄2

4
(36)

Using the spin inequality equation (6) in the
second section, it is easy to notice that the
energy per spin satisfies the equation given
by

− 3Jh̄2

4
≤ εmin ≤

3Jh̄2

4
(37)

Again, from the variational principle,

< Φ|H|Φ >≥ Eg

= J
N

∑
i=1

MinΦ [< Φ|(~Si · ~Si+1

+~Si · ~Si+2 + ~Si+1 · ~Si+2)|Φ >]

≥ −3Jh̄2

4
(38)

If |Φ > is such an eigen state of the Hamil-
tonian so that the upper bound equals to
the lower bound, then the eigenstate |Φ >

must be the ground state. This rigorously
proves that the ground state energy per

spin εmin is indeed −3Jh̄2

4 for Majumdar-
Ghosh chain model. In fact, the exact solu-
tion of the Majumdar-Ghosh model has in-
spired the researcher [18] to frame a family
of one-dimensional translationally invariant
spin Hamiltonians having degenerate dimer
ground states. Another well-known tech-
nique Jordan-Wigner transformation is used
to compute the degeneracay and ground
state of various spin chains [19].

6. Conclusions

In this paper, we have used a very sim-
ple spin inequality to compute the bounds
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on the ground state of Heisenberg Hamilto-
nian. This identity also can be used to iden-
tify the ground state energy of Majumdar-
Ghosh model in one dimensional interacting
many body system.
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1 Introduction

The conduction of heat is basically the trans-
fer of heat energy through matter from high
temperature to low temperature. In this pro-
cess no part of the material medium is mov-
ing itself. In 1822, Jean B. J. Fourier laid
the foundation of the rate of flow of heat by
the conduction method. He quantified this
process with the ”thermal conductivity” of
the medium through which the heat energy
propagates.

Conduction of Heat : Consider the heat
flows normally across thin slab of cross- sec-
tional area A , thickness δx, with one face
maintained at temperature T + δT and other
face at T ( see Fig 1). The temperature
gradient, the temperature per unit distance,
across the slab is δT

δx . The rate of flow heat
normally across the slab is given by:

rate of flow of heat = −K A
δT
δx

Figure 1: Flow of heat across thin slab

The negative sign indicates that the heat
flows in the direction from the high temper-
ature to lower one and K is a constant for the
material known as coefficient of thermal con-
ductivity. If both the parallel faces of the slab
are closed enough( δx is very small), then
the temperature gradient , δT

δx , can be writ-
ten as dT

dx ( by using the calculus notation).
Hence the rate of flow of heat, in the limit of
small time interval, can be written as:

dQ
dt

= −K A
dT
dx

(1)
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Where dQ is the amount of heat passes
through the slab in the time dt. The above
equation can be used to define the coeffi-
cient of thermal conductivity of given ma-
terial, K: it is the amount of heat flows per
second normal to the faces of thin parallel-
sided slab of a given material of unit area,
when the opposite faces of the slab are main-
tained at unit temperature difference under
the steady state condition. Its C.G.S. unit
is cal.cm−1sec−1(◦C)−1. Copper is an excel-
lent conductor of heat and its coefficient of
thermal conductivity is 0.92 cal/cm/sec/◦C.
On the other hand, air is a very poor conduc-
tor of heat, its value of K in the C.G.S. unit is
0.000058 .

Rate of flow of heat: In order to under-
stand the concept of rate of flow of heat, first
we will consider the conduction of heat in a
metallic rod heated at one end and cooled
at the other end. Assume that there is no
loss of heat from the sides of the rod. This
is possible if one uses the thick good con-
ducting rod. As the fraction of heat which is
lost from the sides of the rod is proportional
to 1/r, hence the thick rod can develop the
steady flow of heat ( ratio of surface area /
cross section area = 2πrl/πr2, where r and
l are the radius and length of the rod re-
spectively ). In the steady state, the tem-
perature gradient remain the same for all
the cross-sections ( see Fig 2a). This implies
that the amount of heat flows through each
cross section of the rod in the given time is
same. It also indicates that the temperature
distribution along the length of the rod is

a straight line as shown in the Fig 2b. The
same behaviour is also shown by the per-
fectly lagged rod ( no loss of heat from its
sides) which is heated at one end and cooled
at the other. Therefore due to the uniformity
of the temperature gradient in the steady
state, we can calculate the heat flow through
the good conductor by using eq.(1).

Similarly, the temperature gradient can
be maintained uniform in a thin sheet whose
area is large compare to its thickness. The
lines of flow of heat in thin sheet will be
identical to the flow of heat in the perfectly
lagged rod ( rod covered completely with
cotton-wool so that no heat is lost from its
surface) or thick rod. ( see Fig 3 ). The
flow of heat lines near the edges of thin plate
may not be straight but the flow of heat lines
passes through the rest of the major portion
of the plate are straight. So one can approx-
imately assume that there is no loss of heat
from the edges and the temperature gradi-
ent is uniform. Therefore, we can summa-
rize the main conclusion: The study of rate
of flow of heat through (i) a uniform rod
whose sides are perfectly lagged ( Searl’s
method of calculation of K for good conduc-
tor) and (ii) a sheet of material whose area is
large compare to its thickness ( Calculation
of K for a bad conductor by using Lees and
Chorlton method) can be described by us-
ing the eq. (1) ( For more details see ref[1] ).
In both the above experiments, steady state
must be achieved otherwise coefficient of
thermal diffusivity may be involved which
measures the rate of change of temperature
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Figure 2: (a) Uniform flow of heat in the thick rod. ( b) The temperature distribution along
the length of the thick rod.

in the medium.

Lees and Chorlton Set up: In this experi-
ment, a bad conductor ( X) in the form of
thin circular disc is placed between the hol-
low circular cylinder ( C) and the copper or
brass disc (B ). Usually in the Lab, the card-
board sheet whose K = 0.00035 in C.G.S.
unit, is used. A hollow cylinder ( C) which is
placed over the bad conductor has the same
diameter as B and X. The bottom of the hol-
low cylinder has thick brass or copper block
with a hole bored in it to place the ther-
mometers ( See Fig.4).

The hollow circular cylinder has the

provision to allow the steam to enter and
exit from it. The lower disc B received the
heat by the means of conduction. If the area
of the disc X is A and its thickness is d, then
rate of flow of heat through the bad conduc-
tor ( X) is :

dQ
dt

=
K(T1 − T2)A

d

where T1 and T2 are the steady temperature
of Block C and B. Since brass is a good con-
ductor, therefore the temperature recorded
in the thermometers fixed in the Disc C and
B actually measures the temperature of the
upper and lower face of the bad conductor
(X). If the emissivity of the disc B is ε then
the heat radiated per unit time by the lower
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Figure 3: The passage of flow of heat through a thin sheet having a small thickness and large
area.

disc B is
dQ′

dt
= (A + S) ε

where A and S are the area of lower surface
and curved surface of disc B respectively. (
Remember both the disc B and bad conduc-
tor have the same area A) Now in steady

Figure 4: Lees and Chorlton set-up.

state
dQ
dt

=
dQ′

dt

K(T1 − T2)A
d

= (A + S) ε

Hence

K =
A + S

A
d

(T1 − T2)
ε (2)

There are two special cases for the cal-
culation of K which crucially depend on
the procedure followed in the evaluation of
emissivity.

Case I: Top surface of disc B is covered with
bad conductor (X) :

The emissivity ( amount of heat radiated per
unit area per unit time) of lower disc B can
be defined as:

ε =
rate of heat loss

Area
=

M s (dT/dt)
(A + S)

The rate of heat loss from the conductor B is
proportional to the rate of change of temper-
ature w.r.t. time ( dT/dt). When the upper
surface of B is covered with the bad conduc-
tor, the heat will be lost by the lower portion
and from the curved surface area of B only.
After substitution of the value of emissivity,
eq. (2) becomes

K =
d

(T1 − T2)

M s
A

(
dT
dt

)
T2

(3)

where M is the mass of the disc B and s
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is the specific heat of the material of the disc
B.

Case II: Top surface of disc B is not cov-
ered with bad conductor (X) : In this case
both upper as well as lower surface of disc B

along with the curved surface area of it will
radiate the heat. Hence the ε becomes:

ε =
M s (dT/dt)

(2A + S)

After substituting the value of ε in eq.
(2), it becomes.

K =

(
A + S

2A + S

)
d

(T1 − T2)

M s
A

(
dT
dt

)
T2

(4)

the extra factor ( A+ S)/( 2A + S) in the
above equation is called Bedford’s correc-
tion.

In both the above cases, the important part is
to measure the rate of heat loss , dT/dt from
the disc B.

2 Calculation of rate of heat loss

The major source of error in the calculation
of K lies in the measurement of rate of cool-
ing of lower disc B at the temperature T2 .
In order to draw the cooling curve, first heat
the lower copper disc B at 10◦ C above its
steady temperature. Record the fall in tem-
perature after every 30 seconds until it falls
10◦ C below the steady state temperature.
There are two methods to evaluate the rate
of cooling, dT/dt, at the temperature T2.

Method I : Slope at a given point on
the curve

In this method, first plot the fall in tem-
perature ( T) of lower disc B w.r.t. time (
t). In order to measure the dT/dt at the
steady temperature T2, draw the tangent at
this temperature T2 in the temperature ver-
sus time curve. The common mistake that
the student usually does that they draw a
tangent at the steady temperature T2 by sim-
ply using the scale only. One must follow
the correct procedure for drawing the tan-
gent at the given point on the curve ( Here it
is rate of cooling curve). The correct method
for drawing the tangent at given point is as
follows:

(i) First, place the plane mirror strip per-
pendicular the the plane of paper. The mir-
ror should be placed in such a way that it
should pass through the given point on the
curve at which tangent is to be drawn.

(ii) Now If we orient the mirror at TT′

position then the image PQ of the part of
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given curve NP in the plane mirror doesn’t
appear as the smooth curve ( See Fig 5a ).

(iii) Again rotate a plane mirror such
that the curve NPN′ appear as smooth and
continuous ( without any kink) and the mir-
ror must pass through the point P. ( See Fig
5b). One should try this procedure 2- 3 times
in order to get the correct position of plane
mirror.

(iv) At this position of mirror , draw the
line RPR ′ along the edge of the mirror. Now
we can easily draw the perpendicular LPL′

with the help of protractor or compass at
point P which lies on the given curve NPN′.

(v) The line LPL′, is the tangent to curve
NPN′ at the given point P.

(vi) Calculate the slope of the line LPL′,
∆Y/∆X, which measures the dT/dt at the
temperature T2.

Method II

In this method , one can calculate cooling
rate , dT/dt by dividing the difference be-
tween the two consecutive temperatures (
say dT = Ti − Ti+1) by the corresponding
time interval (dt = ti − ti+1). Now plot
the dT/dt w.r.t the average temperature ,T̄

(
where T̄ = Ti + Ti+1

2

)
[2].

From the the graph which is straight
line ( see Fig. 6), one can easily find the rate
of cooling, dT/dt, at the steady temperature
of the lower block B (T2).

3 Calculation of Errors

Case I ( Top surface of the conductor B is
covered with bad conductor X)

The coefficient of thermal conductivity is
given as:

K =
M s d

A(T1 − T2)

(
dT
dt

)
T2

Now rate of heat loss by disc B , (
dT/dt), can be calculated by two methods
as explained in the previous section. If we
use the method I , by drawing the tangent in
the cooling curve at the point T2, the above
formula can be rewritten as:

K =
M s d

π r2(T1 − T2)

(
T′ − T′′

t

)

Where area A = π r2 and r is the radius of
the disc. The disc B is to be cooled from T′

(T2 + 10◦C) to T′′ ( T2 − 10◦C) through T2 in
t seconds. The error in K is calculated as:

σK = K

[
σ2

M
M2 +

σ2
T′−T′′

(T′ − T′′)2 +
σ2

d
d2 +

σ2
t

t2 +
4σ2

r
r2 +

σ2
T1−T2

(T1 − T2)
2

]1/2

(5)
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Figure 5: Method of drawing a tangent at given point ( Here P) on the curve by using a
plane mirror

Figure 6: Rate of change of temperature ver-
sus average temperature

The mass of disc is very large as compare
to other quantities in this experiment and
hence the relative error due to this term is
very small and may be neglected. The er-
ror in σ2

T′−T′′ is equal to σ2
T′ + σ2

T′′ , which is
the sum of the squares of the least count of

the thermometer used to measure the tem-
perature of disc B . Similarly the σt is the
least measured time from the stop watch
and again t is the total time taken in seconds
by the disc B when its temperature changes
from T′ to T′′. The error σ2

T1−T2
should be

σ2
T1

+ σ2
T2

, where σT1 and σT2 are the least
count of both the thermometers. The vernier
constants of screw gauge and vernier caliper
are expressed as σr and σd respectively. Since
specific heat of the disc B is a constant quan-
tity , so it will not contribute to the error
budget.

If we use method II ( by plotting the
graph between dT/dt versus average tem-
perature, T̄), the error in the coefficient of
thermal conductivity can be written as:
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σK = K

[
σ2

M
M2 +

σ2
Y

Y2 +
σ2

d
d2 +

4σ2
r

r2 +
σ2

T1−T2

(T1 − T2)
2

]1/2

(6)

where Y =
(

dT
dt

)
T2

The uncertainty in Y

is given as:

σY =

√
1

n− 2 ∑
i
(Yi − c−m T̄i)2

Where c and m are the best fit values
of C and M obtained after fitting the data
(T̄, dT/dt) by using the relation Y = C +

M T̄ and n is the total number of data points
used to plot the graph between dT/dt and T̄
( For more details see ref.[3]). The method
to obtain Yi = dT/dt and T̄i is already ex-
plained in the previous section. Here one
can again ignore the error due to the mass
of the disc B as the mass of the disc is very
large.

Case II ( Top surface of the B is not covered
with bad conductor X),

In this case the coefficient of thermal con-
ductivity is given by eq (4). There is one
extra term present in this expression called
Bedford correction i.e. G = A+S

(2A+S) =
r+2d

(2r+2d) . The error due to this correction term
can be written as

σG = G

[(
σr + 2σd
r + 2d

)2

+

(
2σr + 2σd
2r + 2d

)2
]1/2

The error due to this correction term is
added in either eq. (5) or eq. (6) depending

upon which method is used for calculating
the rate of heat loss.

4 Possible modification

One possible change that can be incorpo-
rated in this set up is to replace the lower
copper disc B with the copper block . The
rate of flow of heat which passes through the
copper block can be measured with the help
of cooling system. It consist of several turns
of copper tube wound helically around the
copper block tightly (see Fig 7). By measur-
ing the rate of flow of water and the temper-
ature difference of the inlet and the outlet
water, one can calculate the rate of flow of
heat into the copper block. It is also essen-
tial to use the ’constant head’ for the water
supply into the cooling system [5].

Figure 7: Possible modification of Lees and
Chorlton set-up
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5 Precautions

1. After removing the steam chamber ( C)
from the metallic disc ( B), at-least wait for 2
– 3 minutes so that heat gets uniformly dis-
tributed over the disc B. It is important to
ensure that the temperature of disc B is still
10◦ C above the steady state temperature be-
fore noting down the change of temperature
w.r.t time.

2. It is important to check that both the ther-
mometers are displaying same readings at
room temperature. If it is not, then note
down the difference between the two read-
ings. This difference should be added to the
term (T1 − T2), mentioned in the formula of
K ( see eq.2).

3. Use the thermometers which have least
count less than 1◦ C ( i.e 0.5◦ C or 0.2◦ C
). This will provide more data points near
the steady temperature T2 and cooling curve
may become smooth.

4. Both the steady state ( Calculation of T1

and T2) and the dynamical part ( calculation
of cooling curve) of this experiment must be
done successively as it depend crucially on
the room temperature.

5. The outer surfaces of C and B should be
nickel plated so that both should have the
same emissive power.

6. There should be good thermal contact be-
tween the metal disc and the bad conduc-
tor (X). In order to achieve this, the glycer-
ine should be smeared between the speci-
men and the metallic disc.

7. Record the steady temperature T1 and T2

of the disc C and B only when it remain sta-
ble for more than 10 - 15 minutes.
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Abstract 

Starting from J.D. Jackson's definition [1] of the 
topic of grounding, we present some knowledge of 
electrical safety, essential for every physics 
student.  
 

Keywords: Electrodynamics, Electrical Safety, 

Grounding (Earthing), Human Health, Education.   

1. Introduction 
Importance of the topic of Electrical Safety for 

students working in a laboratory, or for future 

engineers, empirical scientists, and even simple 

householders, is obvious. We widely use electrical 

supply, generated by very powerful power plants 

with furnace burning natural gas, oil, coal, nuclear 

reactors, or with hydro, solar, wind and other 

renewable energy sources.  Through the supply of 

the electricity via the wires, the power sources offer 

us numerous possibilities of having very serious 

injuries, if we do not use the advantage of having the 

power supply with reasonable care.  Here, we shall 

mainly focus on the topic of grounding – one of the 

central and educationally interesting topics of 

Electrical Safety.        

     Wishing to avoid the very unsuccessful term 

"general resistance of the earth mass" found, e.g., in 

Israeli official instructive book "Electrical Law" [2], 

let us start from the definition of grounding found in 

the classical text [1]: 

    "When a conducting object is said to be grounded, 

it is assumed to be connected by a very fine 

conducting filament to a remote reservoir of charge 

that serves as a common zero of potential. Objects 

held at fixed potentials are similarly connected to 

one side of a voltage source, such as a battery, the 

other side of which is connected to the common 

'ground'. Then, when initially electrified objects are 

moved relative to one another in such a way that 

their distributions of electricity are altered, but their 

potentials remain fixed, the appropriate amount of 

charge flow from or to the remote reservoir, 

assumed to have an inexhaustible supply. The idea 

of grounding something is a well-defined concept in 

electrostatics where time is not a factor, but for 

oscillating fields the finite speed of propagation 

blurs the concept. In other words, stray inductive 

and capacitive effects can enter significantly. Great 

care is then necessary to ensure a 'good ground'." 

   The concept "remote reservoir of charge" of [1], is 

definitely much better than the concept of "general 

resistance of the earth mass" of [2].  The latter 

concept is even misleading, because the very 

concept of resistance [3] is associated with the way 

of the measurement, for which the geometrical 

presentation of the relevant piece (sample) of 

material must be given. Just assume that you 

measure the resistance of a material ball, while the 

electrodes are connected to the North's and the 

South's poles of the ball. Then, move one of the 

contacts towards the other; the measured resistance 

is obviously reduced, with the limiting value of zero, 

obtained when the contacts touch each other.  
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    However, the words "very fine conducting 

filament" of [1] are generally wrong.  No realistic 

grounding can be "very fine" -- a mistake that has to 

be pinpointed just because of the wide use of [1].  

Presumably, Jackson would like to have the "very 

fine" filament exclusively because of the field 

problem, that is, for suitability in the calculation of 

the fields, not considering the main purpose of the 

grounding.  In order to see the mentioned suitability, 

consider a spherical capacitor (two concentric 

conducting spheres), with the internal sphere having 

its potential zero. The theory of such capacitor is 

quite simple, and one easily obtains, via the radiuses 

of the spheres, the formula for the capacitance [3] 

                1 2

1 2

4
,

1 1
C r r

r r


 



                     (1) 

   However, in order to ground the internal sphere, 

one has to make a hole in the external sphere for the 

grounding wire with a possible current in it to pass 

via the hole. The simple picture of the field, which 

led to (1), will be less disturbed, if the diameter of 

the grounding wire (the "conducting filament" in 

[1]) is much smaller than the diameter of the hole, 

because the magnetic field of the current in the wire 

is stronger near the wire.  Note that since the 

grounding wire has to supply the charge, we cannot 

ignore the current, whose pulses cause time varying 

magnetic field, resulting in some electrical field. 

   Nevertheless, the thinness of the grounding wire 

represents a problem from the positions of the 

electrical safety -- one should not forget an 

important reason why grounding is really needed! 

   According to the formula for resistance of a piece 

of wire of length l, and cross-section S, [3]    

 

                                       
l

R
S


                                     (2) 

 

as the diameter of the wire tends to zero (and so S 

does), R becomes large.  

   Let us give an example showing how the latter is 

dangerous for the grounding.  This example is taken 

from [4], where we also dealt with finding a relation 

between the internal resistance of the generator and 

its power, here we assume that the internal 

resistance  intR  is given.  

 

2. A case from students' power 

laboratory  
 

   Thus, we speak about a teaching laboratory where 

a student studies a generator, and it may occur that 

a defective 220 volts generator might electrify its 

metal body that the student touches.  Since the metal 

body is grounded, there is a "competition" between 

the source of 220 volt and the source (the ground) of 

0 volt – which one will define the body's potential? 

Electrical safety requires that the potential of the 

metal body that can be touched by the student to be 

less than 30 volts. The actual potential obviously 

(see Fig.1) depends on the ratio  

 

                                  

int

grR

R
                                   (3) 

 

z

R
gr

+

E

0

The touch

a

 
Fig. 1:  Our equivalent scheme. "Z" is our "Rint".  

The generator is thus {E,Z}. E here is 220V. Point a 

denotes the metal body of the generator, which can 

be touched by the student, and where, in the case of 

the fault, a dangerous voltage arises.  
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   Since the resistance of the human body is much 

larger than Rgr, in the parallel connection of the two, 

the resistance of the body can be ignored, and the 

voltage divider, seen in Fig. 1, defines the voltage 

on the generator's body as 

      

int int

220 220
gr gr

gr

R R
V

R R R
 


 volt.    (4) 

(As we shall immediately see, the assumption of 

intgrR R  is justified). In order to have this be 

less than 30 volts, we require that 

                                    

int

30

220

grR

R
                       (5) 

that is, approximately, 

                                      
int

7
gr

R
R                       (6) 

   Since the more powerful the generator, the smaller 

intR is (i.e. the generator is "more ideal"), and since 

we are interested, in the laboratory, to study 

generators that are as powerful as possible -- 

actually intR is rather small (say, a half ohm). 

Obviously, Rgr must be very small. The latter 

excludes using a "very fine filament", and if one also 

considers that it is necessary to have very firm 

mechanical connections of all the pieces of the 

grounding path (for the reliability of the grounding) 

– then one sees that the grounding connections are 

actually made of a wide (massive) pieces of wire. 

   Works [5-31] are advised for more conceptual 

(and history, e.g. [31]) reading.  

 

3.   A commonly asked question 

  

    Which is more lethal to the electrical shock: 

voltage or current? 

Finally – the current. Of course, without any voltage 

no current can arose, just as without pressure of a 

knife on the skin there will be no penetration of the 

knife into the body, but finally it is the movement of 

the knife in the body which is killing.   

   It is widely accepted to consider human as a linear 

resistor (of the value about 1 kiloohm). The 

resistance of skin is involved, which can be changed 

from 700 ohm for wet skin, up to 14 kohm for a dry 

skin. If one is a long time under voltage stress, then 

feeling the danger, he becomes nervous, and his skin 

becomes covered by sweat, resulting in decrease of 

its resistance, and the current is strongly increased.  

It is clear from the said, that for woman and children 

it is more dangerous to be under electrification than 

for adults. It is also clear that working in the 

conditions of high humidity is unwanted as re 

electrical safety. 

   Any damage requires certain energy. The 

expression for the electrical power P is 

    P vi                                

Thinking in terms of a linear resistor, i.e. using 

   v Ri  , 

we have for P  either 

2P Ri ,   or 
2v

P
R

     

Since power systems are given by voltage sources, 

i.e. v ,  not i is given,  we should choose the latter 

expression for P, from which it is clear that smaller 

R, the higher is P, and the damage. Also for i(t),   

v
i

R
  ~ 

1

R
. 

   It has to be known that: we sense one or few mA, 

10 mA causes pain, 60mA causes cramps of the 

muscles, and 100 mA is almost surely lethal. The 

danger depends, however, on the path of the current 

inside the body, and directly through the heart, even 

10 microampere may be lethal.  

    One walking on electrified soil, when the current 

through the body is from one lag to another 

(seemingly, not a dangerous path), is in danger – if 

this current will reach the value about 60 mA, the 
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cramp of the muscles occurs, and the human may 

fall because of the cramp, and then the current might 

be through the chest.  We can roughly estimate the 

dangerous "step voltage" as  

1 60 60stepV k mA V    

   However, the topic of parameters of human body 

is not at all simple.  We shall make two comments.  

The first includes a warning – using even a common 

textbook, one should check the parameters given in 

the book.   

    The initiative of [20] to include safety 

considerations (chapter 9 there) into a standard 

course of circuit analysis is highly appreciated, and 

some of the examples there are very interesting.  

However, reading in [20]: "In his book "Medical 

Instrumentation" (Boston: Houghton Mifflin, 1978), 

John G. Webster suggests the following values for 

resistance of the human body:   

( ) 15 , ( ) 150 ,

( ) 100 , 200 .

skin skin

limb trunk

R dry k R wet

R arm or leg R

   

   
 

I had a problem, because trunk is wider than either 

arm or leg -- thus its resistance should be lower.  

Thus, I found in the library of Ben Gurion 

University Webster's book, and indeed saw in it that 

the figures were just opposite: 

 ( ) 200 , 100 .limb trunkR arm or leg R     

Thus, some answers in [20] has to be recalculated -

- nota bene! 

    The second comment relates to the attempts to 

find a good equivalent circuit imitating the current 

response of the body.  That it is widely accepted (see 

the references in [23]) that such a scheme should 

include linear resistors and capacitors, and no 

inductors, seems to us problematic.  

    Indeed, consider that we can expect in the body 

some diffusion processes for the current that flows 

via the life tissue/medium.  This means a delay of 

the current with respect to applied voltage. 

However, in the macroscopic view of a lumped 

circuit, a delay of  ( )i t  with respect to ( )v t  is an 

inductive feature. Indeed, substituting into 

di
v L

dt
  

( )i t  as some positive pulse, one finds the maximum 

of ( )v t on the initial slope of the pulse, i.e. before 

the maximum ( )i t . The connection of the delay 

with the inductance is also seen in the following 

manner. Assume the model 

( ) ( )v t Ri t   ,      0     

for which  ( ) (0)v Ri  --  obvious forestalling the 

current by the voltage. Assuming that    is small, 

we expend ( )i t  and write this equation as 

( ) ( )
di

v t Ri t R
dt

    

which is the equation of a series R-L circuit with  

L R  . 

    Such, an inductance should not be ignored.   

 

    Of course, nonlinear modeling should be much 

more complicated. 

     In order to avoid electrical shock, any repairing 

of the electrical equipment should be done only 

when the equipment is not electrified.  You never 

make any such work when you are alone, i.e. and 

never see you. If you are under voltage stress, 

somebody has, first of all turn down the switch that 

interrupts the voltage supply in the whole room. Of 

course, one has to know a priori where this switch 

is.     

4.  Some questions for additional 

consideration   

The following questions show how multifold and 

complicated is the topic of electrical safety, and how 
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easily we can meet the associated hazards.  Though 

some of the questions are simple, their list outlines 

the scope of the topics one should keep in mind 

when considering electrical safety, and this gives a 

correct orientation. 

    Does the reader know (and for what reason) that:   

1. powder, e.g. flour, can be explosive,   

2. when a liquid flows in a plastic pipe, an 

electrostatic charge is accumulated on the pipe 

walls, and this is the static charge which can 

cause a dangerous spark, 

3. the water that is pouring from a faucet to a 

bucket may be positively charged, and the fact 

that the bucket may be metal and then left for 

some time on the ground does not eliminate the 

charge in the water quickly enough; because of 

the charge, the water may lead (see [17] for an 

interesting example) to a spark, 

4. it is prohibited to turn on or off a light if the 

switch is located in an area (say the kitchen) 

where a strong smell of gas is detected,   

5.         in order to cause ignition or explosion of a 

certain gas, powder or liquid, the spark has to 

possess some minimal energy; which is 

somewhat similar to the medical fact that in 

order to be infected by a virus and became ill, a 

certain amount (dose) of the virus is necessary. 

6. regarding the possibly of causing explosions, a 

corona-type discharge is less dangerous, than a 

spark-type discharge.  

7.        by saying that a flammable liquid is ignited, 

we mean that the vapor (gas) of the liquid, over 

its surface, is ignited, 

8. a flammable gas may be ignited only at a certain 

concentration, and at a higher concentration it 

becomes explosive; the explosive concentration 

is usually about twice the flammable 

concentration, 

9. the dangerous "step" voltage caused by 

lightning can be distributed both in the 

horizontal and the vertical direction (on 

buildings), 

10. there have been cases of injury by lightning 

through a telephone cable, 

11. if a car is staying on a junction during a storm, 

and an electrical wire falls on the car, no 

passenger should emerge from the car, but 

rather wait for an electrician to remove the wire, 

12. kite-flying by children near voltage lines is 

dangerous, 

13. static charge is dangerous not only in the 

chemical industry but also in the integrated 

circuit industry, where the discharge can cause 

damage to the thin layers of the microcircuits,   

14. today there are instruments in the chemical and 

electronic industries, made from special plastic 

materials that have a low triboelectric ability 

(i.e. the ability to absorb static charge) allowing 

to reduce the risk of a spark; the development 

of such materials is a challenging field of 

material science, 

15. one can be shocked while holding a well-

grounded frame of a drill if the floor is 

electrified by a motor with faulty isolation, 

16. one can be shocked by the line voltage when 

connecting one of the wires of an unlit bulb to 

the zero-potential wire of the line, while not 

directly touching the phase-wire of the line, 

which is because the wires in the switch are 

inter-placed, and the switch does not interrupt 

the hot wire -- thus the voltage can come to 

one's hands via the lamp, 

17. the large metallic foundation of a high-voltage 

line column (post, tower) has to be grounded at 

each of its corners (think about one lying on the 

ground, touching the electrified foundation by 

his shoulder), 

18. new buildings have their grounding electrode 

systems organically included in the building's 

foundations, 

19. in the conditions when even a short-time 

overvoltage of power equipment is dangerous, 

the grounding of the equipment may be 

unwanted or even prohibited, because of the 

possibility of the electrification of the soil 

around the grounding electrodes, caused by a 

lightning stroke (a high voltage can come to the 

equipment via the grounding); this is relevant to 

the regions where lightnings are usual,  

20. in order to improve the quality of grounding, in 

some cases special salts are introduced into the 

soil – this reduces   in (2), 
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21. there have been cases where plumbers working 

near old houses received electric shocks when 

disconnecting a water pipe from the 

underground water system, 

22. when starting to work, electricians sometimes 

first touch an open electric wire with the back 

of a hand. 
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Appendix: Some historical background  

 
 The lightning-rod for lightning protection was 

proposed by Benjamin Franklin approximately in 

1750. 

  The use of a "Faraday cage" for lightning 

protection of buildings was introduced by James 

Clerk Maxwell in 1876. 

 Luigi Galvani conducted the first experiments on 

the influence of an electrical current on a live 

(animal's) body in 1791.  Galvani could have 

answered question 22 of Section 3.   

 Approximately one hundred years after Galvani's 

experiments, the pioneer of heavy-current and high-

frequency current engineering, Nikola Tesla, started 

a systematic study of the influence of electrical 

current on the human body, which was necessary for 

the safe application of his inventions.  It was Tesla 

who discovered that at very high frequencies one 

can touch a very high voltage, and in his lecture in 

Philadelphia in 1893 Tesla personally demonstrated 

touching the terminals of a 200 kV source.  Tesla 

had proved that the 50 - 60 Hz line is the most 

dangerous among the alternating current supplies, 

and that contrary to Edison's opinion, up to about 

500 volts, the constant-voltage current is more 

dangerous for people than alternating current of 50 

or 60 Hz.  The proofs were experimental and 

demonstrated on very few individuals, often Tesla 

himself.  Even today we do not know enough about 

the electrical parameters of the human body that 

allow to calculate precisely the distribution of the 

density of electrical current, which is passing 

through it, and this is a subject of biophysical 

investigations.  Tesla's experiments, motivated by 

his interests in electrical safety, also led to the 

medical applications which are called today 

electrotherapy. 

 The "Fire Protection Handbook", which included 

important rules of electrical safety, named the 

National Electrical Code (NEC) appeared in the 

USA in 1897.  It is now published by the American 

National Fire Protection Association (NFPA) with 

many improvements. 

 NEC is a very extended and complete list of 

instructions for electrical safety arrangements.  This 

document has influenced electrical safety rules in 

many countries outside the USA, though in 

England, Germany, Switzerland, Russia and some 

other countries there are their own detailed and very 

useful regulations. 

 The NEC is readily available today (including a 

CDROM version).  Even just a study of the 

classification of hazardous areas given in the NEC 

provides an understanding of some basic electrical 

safety problems. 
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Abstract 
The present work proposes a graphical method of 
obtaining reciprocal lattice from direct lattice 
while at the same time demarcating those 
reciprocal points which correspond to real planes 
thus establishing the connection of reciprocal 
space to the diffraction pattern of the given 
lattice. The said approach acquaints the students 
with the origin and physical significance of the 
reciprocal lattice in a more conceivable way. This 
has been done using programming through an 
open-source software SCILAB which helps the 
students to develop and experiment with 
different forms of 2D and 3D reciprocal lattices.   

 

1. Introduction 
Reciprocal lattice, which is one of the most 

important and basic concepts in Solid State 

Physics, also happens to be the most baffling for 

students encountering it for the first time. The 

construction of the reciprocal lattice from a direct 

lattice is an enigma to most students and the said 

evolution as given in most textbooks leaves a lot 

unexplained and open to doubts.1–3 The treatment 

of the subject is mostly mathematical with only the 

construction of reciprocal basis lattice vectors 

from the direct basis vectors demonstrated 

graphically. These reciprocal basis vectors are 

then made to extend throughout in 2D or 3D to 

make up the entire reciprocal space just as a unit 

cell in a direct lattice may be extended to make up 

the entire real lattice.1–3 Also, the reported work 

about the pedagogy of teaching and explaining 

reciprocal lattice is mostly analytical in approach 

where the mathematical construct and equivalence 

of direct lattice with reciprocal lattice is 

demonstrated.4–8 

It is a fact that what can be visualized, can be better 

conceptualized. This is especially true in the early 

stages of the introduction of a new concept where 

learning through vi- sualization can help build a 

better connection to the physical aspect of the 

problem and hence provide better clarity and 

understanding as compared to analytical methods. 

Also, the use of Information Technology and 

programming methods in teaching open wide av- 

enues of generalizing a basic oversimplified 

physical problem done in texts to approach more 

realistic conditions, while also being able to depict 

the results using 2D and 3D plots. The present 

work proposes the methodology of going step by 

step in generating the reciprocal lattice from the 

direct lattice graphically and plotting the points 

along the way in each step using open source 

software SCILAB, as a better way of introducing 

the origin and physical significance of the 

reciprocal space. 

The work presented considers an orthogonal 10 x 

10 square lattice in real space for simplicity. This 

simple lattice may be viewed as stacked parallel 

planes along various orien- tations. The idea is to 

represent each of the family of parallel planes by a 

single point in a new coordinate plane called the 

reciprocal space. The reciprocal space has the 

dimensions of wave number k just as the real space 

has the dimensions of distance. The work 
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describes a step-by-step graphical method of 

obtaining the reciprocal points corresponding to 

each family of parallel planes in a direct lattice. It 

is these graphically obtained points which 

correspond to the diffraction spots obtained from 

the given lattice, thus presenting a visually clear 

picture of how some points on the reciprocal space 

correspond to real planes and hence the diffraction 

pattern, thus emphasizing the physical origin, need 

and importance of the reciprocal space. 

The generation and plotting of the reciprocal 

points have been done using the open- source 

software SCILAB, thus leaving huge scope for 

students to modify the chosen direct lattice and 

generate its corresponding reciprocal lattice for 

better understanding. The work may be extended 

to simulate 3D plots of the reciprocal lattices as 

well as generating their corresponding Brillouin 

Zones for different direct lattices.   

I. IDENTIFYING THE PLANES 
 

 
FIG. 1: Direct lattice in real space with three 

families of planes Consider a 10 x 10 orthogonal 

square lattice in 2D such that the lattice constant is 

one unit dimension along both x and y-axis as 

shown in Fig. 1. 

The given lattice is viewed by any external agency 

as “families of parallel planes”, stacked along 

varying orientations. These families of parallel 

planes are labeled using Miller Indices such as 

{1,1}, {1,2}, {6,1} to name a few. Each family of 

parallel planes in any given lattice can be uniquely 

identified with two physical parameters, i) a 

specific orientation with respect to the origin, 

namely, the direction normal to the planes and ii) 

the inter-planar distance between any two adjacent 

planes. Since all planes in each family are 

equivalent, hence an entire family of parallel 

planes may be represented by only one plane 

which is closest to the origin i.e., has the smallest 

perpendicular distance from the origin. This one 

plane is sufficient to provide both the inter-planar 

distance and the normal direction for the entire 

family of parallel planes.

 
FIG. 2: Family of planes {1,1} with plane (1,1) 

shown by solid line 

 

For example, the family {1,1} consists of planes 

(1,1), (2,2), (3,3), · · · (10,10), as shown in Fig. 2 

but the entire family may be represented by a 

single plane (1,1) which is the plane closest to the  

origin. Thus, extending the argument, all families 

of planes in the 10 x 10 direct lattice can be 

represented by one plane each. These single, 

closest to origin planes for {1,1}, {1,2} and {2,1} 

families are shown in Fig. 3(a), while Fig. 3(b) 
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shows the nearest planes for all families in 10 x 10 

lattices under consideration. One may note that the 

closest to origin planes corresponding to all 

families of planes may be represented within one 

unit cell, by dividing the Miller indices (h,k) of the 

plane by the least common multiple of the indices 

h and k, thus implying that all information 

regarding the geometric arrangement, symmetry 

and hence the physical properties of the given 

lattice is contained in a single unit cell.

 

(a) Planes closest to origin corresponding to 

families {1,1}, {1,2}, {2,1}  

(b) Closest to origin planes for all families of a 

10 x 10 lattice 

FIG. 3 

 
II. RECIPROCAL  LATTICE  POINTS  

FROM  DIRECT  LATTICE 
PLANES 

Reciprocal space is a reproduction of direct 

lattice in wave number or k space. Direct 

lattice, as shown in Fig. 1, is a plot of points in 

a coordinate plane which has dimensions of 

distance with one unit being equal to the 

lattice constant along each axis. The new 

reference plane called k space or reciprocal 

space is a plot of points in a coordinate plane 

which has dimensions of wave number or 

inverse of length as k = 2π/λ. The unit 

dimension in this plane is 2π/(lattice 

constant). Since for simplicity we have 

chosen the lattice constant as one unit, the k 

space is marked as 2π, 2. 2π, 3. 2π . . . as 

shown in Fig. 4. 
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FIG. 4: Reciprocal space for 10 x 10 direct lattice 

The idea is to convert each family of parallel 

planes in the real lattice to a single point in the 

reciprocal lattice, so that all perceivable families 

of planes in the real lattice may be replaced by one 

point each in the reciprocal space. Also, as 

discussed above, each family of planes can be 

represented by one single plane, therefore the next 

step would be to represent this single plane in the 

direct lattice by a single point in the reciprocal 

space. 

Consider the plane (1,1) in Fig. 5(a). This plane 

represents the family  {1,1} and can  be uniquely 

identified by the vector OP, whose direction is 

normal to (1,1) and whose magnitude is the inter-

planar spacing, d11, which is the smallest 

perpendicular distance to the plane (1,1) from the 

origin.  Figure 5(b) shows the vectors OP,OPJ, 

OPJJ normal to the planes (1,1), (1,2) and (2,1) 

whose magnitudes are d11, d12, d21 and 

directions are OˆP, OˆPJ,OˆPJJ.  This may be 

repeated for all planes in Fig.  3(b) such that a 

similar normal vector is obtained for each of these 

planes. 
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(a) The normal vector OP to plane (1,1) with 

inter-planar spacing d11 

  

(b) Normal vectors OP, OPJ and OPJJ to planes 

(1,1), (1,2), (2,1) respectively with 

corresponding inter-planar spacings d11, d12 and 

d21 

  

FIG. 5 

 

Each normal vector is then converted to a single 

point in the reciprocal space. This is done for the 

vector OP in Fig. 6(a), by marking a point P1 in 

the reciprocal space of Fig. 4, at a distance of 1/d11 

from the origin along the direction of OˆP. Now 

this single point P1 in the reciprocal space 

represents the entire family of planes {1,1} as it 

contains the information about the orientation of 

the family of planes with respect to the origin as 

well as the inter-planar spacing between them. 

Figure 6(b) shows the reciprocal points for the 

families {1,1}, {1,2} and {2,1}. 
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(a) Reciprocal point P1 in k space 

representing family of planes {1,1} 

  

(b) Reciprocal points P1, P2 and P3 in k 

space representing families of planes {1,1}, 

{1,2} and {2,1} 

FIG. 6 

 

Generating the reciprocal points for all planes of 

10 x 10 lattices which are shown in Fig. 3(b), one 

obtains a set of reciprocal points spread out in the 

k space as in Fig. 7(a). Each of these points 

corresponds to real planes in the direct lattice. 

Figure 7(b) shows these points superimposed on 

the reciprocal lattice of Fig. 4. Thus, it may be 

observed that of all the reciprocal points in the 

entire reciprocal space, only some (marked as 

squares) correspond to real planes of the direct 

lattice.  

 

 

(a) The reciprocal points corresponding to 

real planes in the direct lattice. 

 (b) Reciprocal space with the points 

corresponding to real planes shown as squares. 

FIG. 7 

III. RECIPROCAL POINTS AND 
DIFFRACTION SPOTS 

 

When a wave falls on a lattice, each family of 

parallel planes appears to it as a “diffraction 

grating” with grating constant being the inter-

planar spacing. Refer to Fig. 1, where each set 
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of parallel lines represents a diffraction 

grating. 

Provided the wavelength of the incoming wave is 

of the order of the inter-planar spacings, those 

planes for which the angle of incidence satisfies 

the Bragg’s Law, would produce a first-order 

diffraction spot on a photographic plate. The 

location of the diffraction spot on the 

photographic plate is analogous to finding the 

location of the reciprocal point P1 

corresponding to the family of planes {1,1} on 

the reciprocal space. Just as the location of the 

reciprocal point P1 depends on the orientation 

of the family of planes and their inter- planar 

spacing, so does the location of diffraction spot 

on the photographic plate. Each family of 

planes will lead to one first-order diffraction 

spot, in the same manner as each family of 

planes corresponds to one reciprocal point in k 

space. Thus, the reciprocal points obtained 

graphically in Fig. 7(a) from the real set of 

parallel planes of the direct lattice are a 

representation of the diffraction spots or the 

diffraction pattern obtained from the 10 x 10 

direct lattices. 

Consequently, the reciprocal space provides a 

map of possible k values or wavelengths that can 

interact with a given direct lattice. The values of 

wave number k (or wavelength) that will interact 

with the direct lattice planes have a special 

significance as they are a spread of the diffraction 

pattern that would be obtained from the given 

direct lattice, thus establishing a connection 

between the reciprocal lattice and the diffraction 

pattern of a givendirect lattice. 
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