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Abstract

The recent results of muon g − 2 experiment

conducted at Fermilab, USA has created a

sensation in the field of particle physics. The

gyromagnetic ratio ‘g’ of muon found from

muon g − 2 experiments differ from the Stan-

dard Model expectation value of 2. This paper

explores the significance of muon and compares

the results obtained from various muon g − 2
experiments conducted at different laboratories

across the World. The prospects of muon and

the underlying hints of muon anomaly to explore

the physics beyond the Standard Model has also

been highlighted.

1 Introduction

Muon, a heavier relative of the electron is
a point-like particle. Unlike proton it has
no composite parts, so the properties of the
muon is all it’s own. Muon is 207 times
heavier than an electron, which makes it
more sensitive to new types of virtual par-
ticles [1]. A muon has intrinsic magnetic

property. Moreover, like a spinning top, it
also has an angular momentum, called spin.
Therefore muons gyromagnetic ratio ‘g’ is
determined by its magnetic strength and
rate of its magnetic gyration. The muon g−
2 experiment has been assigned such a name
basing on the fact that the gyromagnetic ra-
tio ‘g’ of muon differs from the Standard
Model expected value of 2. This anomaly
is called the anomalous magnetic moment
of the muon and this anomaly is now chal-
lenging the Standard Model of physics. In a
recent experiment of muon g− 2 conducted
at Fermilab, USA, scientists have found that
this subatomic particle muon is disobey-
ing the highly accepted theories of particle
physics prescribed in the Standard Model.
The Standard Model developed in 1970, is
the widely accepted mathematical explana-
tion for the known and predicted behav-
ior of all the particles of the Universe. The
significant disagreement between the parti-
cle’s newly measured behavior and the Stan-
dard Model appropriate behavior hints that
the Universe may contain unseen particles
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and forces beyond the purview of the Stan-
dard Model. The recent experimental results
from various laboratories across the globe
have also provided enough evidence that
this tiny subatomic particle, muon seems to
be disobeying the known laws of physics.
Muon g− 2 is a particle physics experiment
conducted at Fermilab, USA to measure the
anomalous magnetic dipole moment of a
muon to a precision of 0.14 parts per mil-
lion. The experimenters believe that muon
g − 2 anomalies will better understand the
properties of muon and use them to probe
the future prospect of the Standard Model
physics.

In this article, we review the signifi-
cance of muon and its magnetic moment
anomaly that may lead to physics beyond
the Standard Model and its prospect.

2 Significance of Muon

Like all other planets in the Universe, every
moment Earth is hit by enormous number of
very high energy particles and nuclei origi-
nating from astrophysical sources called pri-
mary cosmic rays [2]. Further the inter-
action of these primary cosmic rays with
Earth atmosphere ( 15 km) creates a shower
of many other particles. The shower of
these particles especially includes electron-
positron (e+e−) pairs, muons (µ±) and neu-
trinos (ν̄µ, νµ). The neutral pi-mesons (π0)
decay to photons (γ), which further cre-
ate e+e− pairs. However, the decay chain
of charged mesons (π±) produces µ± and

νµ(ν̄µ) as shown in Eq.1.

π± → µ± + νµ(ν̄µ) (1)

The discovery of muons had taken
place in 1930s by the working group of
Anderson and Neddermeyer while observ-
ing a photograph of a highly penetrating
track of minimum ionized particle in the
cloud chamber from cosmic ray. Like elec-
trons, the positive charge of muon repre-
sents its antiparticle and there are no neu-
tral muons. Muons can also be produced
artificially in high energy collisions at an
accelerator using the same channel. Posi-
tive and negative muons have the same rest
mass of 106 MeV/c2 and the same spin of
1/2. Both decay with a relatively long mean
life of 2.2 µs into electrons and neutrino-
antineutrino pairs as given in Eq.2. The long
mean lifetime of muon allows scientists to
make precision measurements of its proper-
ties before it decays to respective particles
and anti-particles.

µ± → e± + ν̄µ(νµ) + νe(ν̄e) (2)

Because of their relatively slow lifetime,
they can reach the Earths surface with speed
of light. Before reaching the ground, they
roughly lose about 2 GeV energy to ioniza-
tion while traveling through the Earth atmo-
sphere. Thus, they are the most numerous
charged particles of cosmic ray found at sea
level. The energy loss and decay of muon ul-
timately reflects its energy and angular dis-
tribution spectrum at the sea level. So, the
mean energy of the muons at the ground or
sea level is ∼4 GeV.
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3 Magnetic Moment Anomaly

Analogous to classical mechanics in quan-
tum mechanics, the intrinsic spin angular
momentum (~S) of an elementary charged
particle produces magnetic dipole moment
(~µ) as expressed in Eq.3.

~µ = g
q

2m
~S (3)

Where, q = ±e is the charge of the parti-
cle in terms of the magnitude of the electron
charge e, m is the mass of the charged par-
ticle, and the proportionality constant g is
the gyromagnetic ratio also called g−factor.
Stern-Gerlach in 1921 while studying atomic
and sub-atomic magnetic moments of sil-
ver atom, and in 1927 Phipps and Taylor
while studying hydrogen atom, the g-factor
of the electron was found to be 2. The
factor of 2 was obtained from the experi-
mental observation of a two-band structure
of the sample atoms with a separation of
one Bohr magneton (µB = eh̄

2me
) which is

due to the unpaired spin of an atomic elec-
tron. However, the Diracs (1927) relativistic
wave equation for electron is also in good
agreement with its experimentally observed
g value. Despite the success of the Dirac
equation, the discrepancies with Dirac the-
ory was accounted for by introducing a ra-
diative correction term by Schwinger in 1947
while explaining hyperfine structure in hy-
drogen atom. This radiative correction (Fig-
ure 1(b)) term is called one-loop (lowest or-
der) correction to gSM

µ = 2 (Figure 1(a)). This
radiative correction term is also true for elec-
tron sibling i.e muon (µ) resulting in g-factor

(gµ) greater than 2.

Figure 1: The Feynman diagrams for: (a) gSM
µ =

2; (b)The lowest order radiative correction.

So theoretically, the general expression
for muon magnetic moment [3] can be writ-
ten as,

µ =
(
1 + aµ

) qh̄
2m

, (4)

where, aµ =
gµ−2

2 is a dimensionless quan-
tity and is referred as the anomaly. The
corresponding magnetic moment is called
anomalous magnetic moment. As the exper-
iments are measuring muon g-factor which
deviates from 2, hence their name is muon
g− 2 experiments.

4 Muon g− 2 Experimental

Results

The kinematics of muon decay is central to
the measurement of muon anomaly [4]. Be-
cause of parity violation in weak interaction,
the decay of charged pions produce longitu-
dinally polarized muons. When muons are
injected into the uniform magnetic field, the
decay electron/positron provides the muon
spin direction. By measuring the muon
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cyclotron frequency and the spin preces-
sion frequency, the anomalous angular fre-
quency can be obtained from which anoma-
lous magnetic moment (aµ) can be deter-
mined. The precision in the measurements
in the muon anomaly from successive ex-
periments conducted at various laboratories
across the World are listed below. In 1960,
the Columbia University was the first to
measure the muon magnetic moment with
a precision of about 5% showing the same
value of ’g’ as that of electron [5].

4.1 Muon g− 2 Experiment at CERN

The muon g− 2 experiments began at CERN
using cyclotron in 1959, and the first re-
sult was published in 1961 with 2% pre-
cision and the next result was published
with 0.4% precision. In 1966 using Proton-
Synchrotron, the result showed a quanti-
tative discrepancy between the experimen-
tal and the theoretical values of aµ with 25
times more precise than the previous ones.
To avoid the systematic difficulties of the
existing experiment, the third muon stor-
age ring [6] experiment at CERN (1969 -
1976), confirmed the theory with a precision
of 0.0007% [6] at a particular energy called
magic energy i.e. 3.1 GeV [6]. The stor-
age ring uses electric quadrupoles for verti-
cal focusing of the beam. The electric field
due to these electric quadrupoles creates
motional magnetic field in the rest frame of
muon. This motional magnetic field affect
the spin precession frequency and hence the
anomalous angular frequency of muon. This

additional contribution to anomalous angu-
lar frequency vanishes at a particular energy
called magic energy. Moreover, at magic
energy the anomalous angular frequency of
muon depends only on applied magnetic
field. Hence it becomes easy to estimate the
anomalous angular frequency of muon [6].

4.2 Muon g− 2 Experiment at BNL

After 20 years later, the muon storage ring
experiment at Brookhaven National Labo-
ratory (BNL) [7] achieved a new standard
in precision at the same magic energy of
3.1 GeV. It had used the same measure-
ment principle as CERN but with a very
high-intensity beam and directly injecting
muons to the storage ring instead of pions.
The experiment took data with positive and
negative muons separately between 1997 to
2001. The final result obtained was in ac-
cordance with similar precision from posi-
tive and negative muons data, which were
found to be inconsistent with the Standard
Model theory contributing to new physics.

4.3 Muon g− 2 Experiment at FNAL

The muon g − 2 experiments at Fermi Na-
tional Accelerator Laboratory (FNAL) [8]
measured aµ using the same muon storage
ring as used at BNL but with improved mag-
netic field intrinsic uniformity. It also used a
similar concept as executed in BNL for the
anomaly measurement. The FNAL result is
found to be in excellent agreement with the
previous BNL measurement only with 3.3
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standard deviations greater than the Stan-
dard Model prediction. The estimated value

of aµ in Standard Model is 1659181.0± 4.3×
10−10 [9].

The results of aµ obtained from above mentioned experiments are listed in table below.
The error in the results includes quadrature combination of systematic, statistical and fun-
damental constant uncertainties.

Experiment Years aµ Reference

CERN 1979 1165924 ± 8.5 ×10−9 [6]
BNL 1999, 2000, 11659208.0 ± 6.3 ×10−10 [7]

Average 2001
FNAL 2021 11659204.0 ± 5.4 ×10−10 [8]

BNL, FNAL 2021 11659206.1 ± 4.1 ×10−10 [8]

5 Future Scope

The recent result of muon g− 2 is quite ex-
citing and possibly hints towards the expla-
nation of quires that the Standard Model has
lacked behind. Generally, antimatter is cre-
ated by radioactive decay and is also pro-
duced by cosmic rays and lightning. But
within a very short duration, the produced
antimatter bounce into matter resulting in
more matter than antimatter in the Uni-
verse. Similarly, dark matter has not been
explained by the Standard Model as it does
not interact electromagnetically but consti-
tute the crucial part of the origin of the
Universe. The muon magnetic anomaly is
not only sensitive to all four fundamen-
tal interactions of the Standard Model but
also can reveal a new type of fundamen-
tal interaction. So the anomaly may ex-
plain this new type of interaction which may

exist beyond the Standard Model, matter-
antimatter asymmetry, and the possible ex-
istence of dark matter in the Universe, etc.

Apart from the above-mentioned facts
during last few decades the amazing muon
has been used as a tool for betterment
of science and society because of the ad-
vanced technology deployed in nuclear and
particle physics [10]. At first, they were
used in the 1960s to take X-ray photog-
raphy of Chephrens pyramid to investi-
gate hidden and unknown chambers, by
the method of absorption of muons (atten-
uation of the cosmic-ray flux) while pass-
ing through it. Muons have also been
used to probe the geological structure of the
volcano, Mt. Asama, Japan in 2004 and
confirmed the complete meltdown of the
Japanese Fukushima reactor in the 2011 dis-
aster. Using cosmic-ray muons, now-a-days
with more developed detectors and tech-
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niques have opened up the possibility to im-
age precisely very large volume containers,
cargo vehicles, train stations, etc. to detect
any explosive materials (bombs, fissile ma-
terial).

Muons are being used to study the
properties of new compound materials that
have the potential to provide novel semicon-
ductors for the electronics industry or room-
temperature superconductors and also has
capability to observe the phenomena of
“magnetricity” in “spin-ice” (i.e. magnetic
version of electronics). This technique was
first used at the UK ISIS facility using accel-
erator generated muons.

6 Summary

The Universe is the embodiment of parti-
cles. The observed behavior of the parti-
cles is governed by certain forces. To un-
derstand, describe and predict the nature
and behavior of all the particles of the Uni-
verse physicists have framed a model called
Standard Model. This model has been de-
veloped taking into account all particles
and forces discovered so far. The Standard
Model is a valid model which successfully
describes the observed and predicted behav-
iors of all known particles of the Universe.
However, disagreement of observed results
from the predicted results of the Standard
Model raises two pertinent questions :

• Is Standard Model theory is valid Uni-
versally?

• Are there new, as yet unobserved parti-
cles and forces that exist in nature?

A popularly addressed muon g− 2 ex-
periment recently conducted at Fermilab,
USA, with highest precision has created
a new sensation in the world of particle
physics. It has been confirmed from the
experiment that the gyromagnetic ratio g
of the muon differs from the simple ex-
pectation of 2. Hence, this disagreement
has opened up many possibilities and many
questions also. Muon g − 2 sensation may
create a new theory in the near future.
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Abstract 
 

This paper shows that the delta function can be 

displayed independently in a generalized space. We 

show why the delta function is important in a 

generalized space. In this regard, we review the 

essential properties of the delta function on the 

smooth manifold. Then, we deduce the Heisenberg 

canonical computational relation and a universal 

formula for the adjoint of a linear operator on the 

smooth manifold by using the definition of delta 

function in generalized space. 

1. Introduction 

Delta function has been introduced by Dirac in his 

renowned book [1] as a function which has some 

very unusual properties. This function is so familiar 

for physicists and it has so many applications in 

different areas of physics and mathematics. There 

are many reports about this function that are usually 

associated with its applications in different branches 

of physics. Some of these applications include a 

unified representation of the distribution of a 

function of one or several random variables. It is 

also applied to model an impulse and other 

distributions such as a point charge, point mass or 

electric point. In quantum mechanics, for instance, 

by using delta function, the canonical commutation 

relation has been investigated between the 

momentum and position operators and the Ehrenfest 

theorem was derived for the free particle. Dirac delta 

function is one of the examples given for the zeroth 

theorem of the history of science [2]. There is a 
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pedagogical paper that illustrates the application of 

delta function in quantum mechanics through 

different examples [3]. This function in the form of 

potential function has been studied many times in 

non-relativistic quantum mechanics [4-9]. For a 

useful text to review Delta function in details, see 

[10]. 

 Some of the most important properties of delta 

function, which usually exists in the textbooks, are 

as follows: 

( ) ( ) (0)f x x dx f




                                           (1)                                                                 

where ( )x is the delta function and ( )f x  is a test 

function that should be continuous. If the ( )f x  is 

discontinuous at 0x  , there is an impressive and 

good discussion [11]. From (1), we can conclude 

( ) 0x x                                                                (2) 

One can obtain two results from the above 

statement. Firstly, the associative law does not hold 

for delta function. In this case, there is a usual 

example [12, 13]: 

1
( . ) ( ) 1. ( ) ( )x x x x
x

                                   (3)                                                                    

1 1
.( ( )) .0 0x x

x x
                                               (4)                                                                     

Secondly, we may add any finite multiple of this 

zero (2) to one side of an equation 

( ) ( ) ( ) ( )A x B x B x cx x                                (5)                                                                     

where c is an arbitrary finite constant. However, if 

we should divide both sides by x , the addition 

( )c x  is no longer zero at 0x  . Hence

( ) ( )
( )

A x B x
c x

x x
                                             (6)                                                                  

Which is not necessarily true for any arbitrary value 

of c . As an example for the above equation we can 

write 

1
ln ( )

d
x c x

dx x
                                                (7)                                                                       

where (2 1)c i n    and n  is any integer.  

( ) ( )
(2 1) ( )

A x B x
i n x

x x
                               (8)                                                                                                                                                                    

One of the most important properties of delta 

function is  

 
( ( ))

'( )a

x a
g x

g a





                                          (9)                                                                       

where ( ) 0g a   and '( ) 0g a   [14]. This equation 

plays crucial role in the section 5 of our paper. In 

general, our idea of the generalized delta function is 

related to employing a generalized space to define 

delta function. 

In section 2 we try to answer the original question: 

why the representation of delta function in 

generalized space is important? In section 3 we 

introduce generalized delta function and its 



Physics Education                                                                                   January – March 2021  

 

 37/1/02                                                                        3                                                            www.physedu.in  

fundamental properties in generalized space. In 

section 4, we endeavor to deduce the Heisenberg 

commutation relation by using generalized delta 

function; it is worthwhile that we don't use the 

representation of the momentum operator in 

generalized space. Finally, in section 5, we show 

that one of the applications of generalized delta 

function is computing a universal formula for the 

adjoint of a linear operator in Hilbert space.  

2. Why generalized delta function is 

important? 

The ''relativity revolution'' and the ''quantum 

revolution'' are among the greatest successes of 

twentieth-century physics, yet the theories they 

produced appear to be fundamentally incompatible. 

General relativity remains a purely classical theory 

and describes the geometry of space and time as 

smooth and continuous, whereas quantum 

mechanics is related to microscopic world. Many 

attempts have been made to unify two theories, and 

one of the ideas to the unification of these theories is 

quantized gravity [15-19]. 

      Just as the orthonormality condition for two 

vectors in continuum space is the Dirac delta 

function, we need to display this function in 

generalized space to represent Hilbert space. 

Therefore, generally for the representation of 

quantum mechanics in generalized space, it is 

necessary to know the form of the delta function. 

For example, to deduce momentum operators in 

generalized space one can use generalized delta 

function. In the renowned paper [20], directly and 

according to the generalized delta function, the 

momentum operator has been represented. 

 Now, there are different approaches to represent the 

momentum operators in generalized space [20-27]. 

The form of the momentum operators in generalized 

space is as follows: 

4

4

1 1

2

j

i jii i
P i i g

x xg

  
      

  
         (10)                                                                

where ( ) ln( ( ))j

ji i
x g x

x


 


. where j

ji  is the 

Christofell symbol and is defined by

( ) ln( ( ))j

ji i
x g x

x


 


. 

Also, recently the representation of the inverse 

momentum operator in generalized space has been 

obtained [28].  

3. Generalized delta functions  

Suppose a manifold with an atlas consisting of only 

one chart, equipped with the metric

: , 1,2,...,ijg i j n ; n being the dimension of the 

manifold. The manifold is such that there exists a 

global one-to-one correspondence between the 

points of the manifold and n . Therefore, we will 

work only within the system of the coordinates ix

defined on all n representing the manifold. The 
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metric is 2 ( ) i j

ijds g x dx dx where det ijg g . 

From the reference [3], we define the normalized 

kets x  in coordinate representation of the Hilbert 

space in generalized space so that 

i iX x x x , 1nd x g x x                    (11)                                                                      

In equation (11), iX is an operator with real 

eigenvalues ix . Note that, ix  are the coordinates 

that cover all n .   

At first we consider the normalized eigenvectors of 

position which satisfy  

 ' '' ' '',x x x x                                               (12)                                                                              

where  ' '',x x  is the generalized delta function 

[4].  We can define 

 ' '', 0x x  for ' ''x x                                        (13)                                                                          

And 

' ' '' ' ''( ) ( , ) ( ) ( )x x x h x h x                               (14)                                                                            

where   is the invariant volume element 

1

' ' '2( ) ( ) nx g x d x  , and g  is the square root of the 

absolute value of the determinant of the metric 

matrix. 

The relation between the delta function and the 

generalized delta function is as following 

 
   ' '' ' ''

' ''

' ''
,

( ) ( )

x x x x
x x

g x g x

 


 
                    (15)                                                                    

Since we know that  ' '' ' ''( ) , 0i ix x x x   and 

' ''

'
( )i i i

jj
x x

x



 


, then one can write 

' '' ' '' ' ''

'
( ) ( , ) ( , )i i i

jj
x x x x x x

x
  


  


             (16)                                                                         

From the basic point ( ) ( ) (0) ( )f x x f x   we 

have 

' ' '( ) ( ) (0) ( ) (0) ( )f x x f x f x                      (17)                                                                          

Now, by using the equations (15) and (17) we obtain 

' ''

'

' ''
' '' '

' ''' '

( , )

1 ( )
( ) ln( ( ))

( ) ( )

i

i i

x x
x

x x
x x g x

x xg x g x











  
 

 

      (18)                                

 Again, with respect to the property of the ordinary 

delta function, that is  

' '' ' ''

'' '
( ) ( )x x x x

x x
 

 
   

 
 

 we can differentiate the generalized delta function 

in different points:  

' '' ' ''

'' ''''

1
( , ) ( )

( )
i i

x x x x
x xg x

 
  

 
 

           (19)                                                                         

After comparing equations (18) and (19) we obtain 

the final equation  
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' '' ' '' ' ''

' ''
( , ) ( , ) ( , )j

jii i
x x x x x x

x x
  

 
  

 
        (20)                                                                       

Note that, Equation (20) can be used directly to 

calculate the momentum operator in a generalized 

space [20]. 

4. Heisenberg commutation relation 

The canonical commutation relation has been 

investigated in ref. [29] between the momentum and 

position operators and the Ehrenfest theorem was 

derived for the free particle. The only assumption in 

this reference is the spatial uniformity of the 

probability density to find the particle. In any way, 

here we are looking for the representation of 

generalized delta function and its fundamental 

properties. We can show that the properties of a 

generalized delta function are very different from 

those of a Dirac delta function and that they behave 

like a pole in the complex plane. 

Now, we can define the pure wave plane on the 

mentioned manifold 

 

.

22

ip x

n

e
x p p x





                                  (21)                                                                    

And 

1 1
1

( ) ( )

n nd p p p d p p p
g X g X

        (22)                                                                       

Without the momentum operator representation in 

generalized space, we indicate the canonical relation 

between position and momentum operators. 

According to the definition (11) and by using the 

equation (22) we can write 

   

,i i i

j j j

n n i n n i

j j

X P X P P X

d xd p x p x x p p d xd p p x p p x x

    

  
 

Now with respect to the equation (21) we can 

continue the procedure to find 

 
' '

' ' ' '

2

( )

(2 )

i i i i
j j j jip x ip x ip x ip xn

n n i

jn

d p
d xd x g x x p e e x x e e x x



  
  
  

  

   ' ' ' ' '

'

n n i n n

j j

i d xd x x x x x x x x x x
x x

 
  

     
   

  

( )i n i

j ji d x g x x x i                           (23)                                                              

We have used equation (16) to derive the above 

result. 

5. Application of generalized delta 

function  

In this section we consider two explicit examples for 

generalized delta function. One of them is the 

application of the equation (20). Indeed, this 

equation is used directly to obtain the momentum 

representation in the generalized space as it seen in 

ref. [20], in detail. 

For other example, same of the ref. [31], we can 

obtain a universal formula for the adjoint of 

arbitrary operator with respect to the generalized 

delta function.  
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Consider an operator A  corresponding to the 

diffeomorphism f which is defined as

( )A x f x . Note that, x is the member of 

manifold M and also f is a function such that   

:f M M . From definition of A , we conclude 

that † ( ( ), )x A y f x y . By defining z through 

( )z f x  we can get 

( ) ( ) ( ) det( )

( ) det[( ( )( )] ( )

n nz
z g z d z g z d x

x

gof
x D f x x

g






 



 
  
 

              (24)                                                           

Now we can write  

*

[ ( )] ( ) ( )
f g

f x x x
g

 
 

  
 

                                  (25)                                                                                                                                                                            

where *f  is the pullback of f and we have 

  *( ) ( ) ( )
f f

f g x g f x
x x

 

   

 


 
                        (26)      

Using the equation (25), we find the following 

expression   

1 1

1 1

*

( ) ( ( ), ) ( ) ( )( ( )) ( , ) ( ( ))

( ( )) ( ( ))

x f x y h x z f z z y h f z

g
f y h f y

f g

    

 



 
  
 

 
       (27) 

Note that, since f is a diffeomorphism so it is 

invertible. Therefore, f and its inverse are both 

differentiable. The equation (27) gives following 

equation 

1 1

*
( ( ), ) ( , ( )) ( ( ))

g
f x y x f y f y

f g
    

  
 

   (28)                                                                             

Therefore, 

† 1 1

*
( ) ( ( ))

g
x A y x f y f y

f g

  
  

 
          (29)                                                                                                                                                                  

Now we can extract the following equation from the 

above equation  

† 1 1

*
( ) ( ( ))

g
A y f y f y

f g

  
  

 
                     (30)                                                                             

Note that, the equation (30) can be introduced as a 

universal formula for adjoint of the arbitrary linear 

operator.  

5. Conclusion 

Our investigation shows that a review of the 

fundamental properties of the delta function in 

generalized space. This subject seems to have 

received less attention independently in the 

research's papers. We have investigated the 

Heisenberg canonical relation only by using 

completeness relation in generalized space. In fact, it 

is impossible to derive the canonical relation without 

introducing the momentum operator properly, unless 

we use the special property of the delta function in 

generalized space. With the help of the equation 

(16), it is possible to discuss the Ehrenfest theorem 

in generalized space. We can see this in ref. [31], for 

a specific representation of the momentum operator 

in generalized space but they did not use the 
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generalized delta function at all. According to 

equation (30) we can obtain adjoint of every 

arbitrary linear operator. As a matter of fact, we 

have no restrictions in initial definition of

( )A x f x , for the form of the function ( )f x  

and in any case we can compute adjoint of A .  
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Abstract 
The use of computer as a medium of learning has 
been proven can attract interest and motivation of 
students to study physics specially quantum 
mechanics. The Scilab as an open source 
computational software package provides various 
tools to simulate and solve the problems in quantum 
mechanics. In this paper the solution of Schrodinger 
equations are obtained for basic quantum mechanical 
systems like particle in infinite potential well, linear 
harmonic oscillator and hydrogen atom under various 
potential energy conditions imposed on the systems. 
 
 

1. Introduction 

A good use of the mathematics by teacher as a 

language in physics in the classroom is very 

important. If a teacher can demonstrate the solution of 

the complex physical problems graphically at 

different conditions, in real time with the classroom 

lesson took his or her teaching at higher level [1]. The 

programming in Scilab can be well used for the 

purpose [2].  

 

In this paper solution of Schrodinger equations (Eigen 

values and Eigen functions) for some basic quantum 

mechanical systems at different potential conditions 

are obtained using Scilab software. The programs 

written in Scilab can be effectively used in the 

teaching and inspiring the students to explore various 

aspects of the systems discussed. 

 

Scilab is the software for numerical computations and 

scientific visualization. It is capable of interactive 

calculations as well as automation of computations 

through programming. Its ability to plot 2D and 3D 

graphs helps in visualizing the data we work with. All 

these make Scilab an excellent tool for teaching, 

especially those subjects like quantum mechanics that 

involve matrix operations and solving of differential 

equations. Scilab can help the students to understand 

all the intermediate steps in solving even complicated 

problems, as easily as using a calculator. The greatest 

feature of Scilab is that it is free and it is available for 

many operating systems including Windows, Linux 

and MacOS X.  

 

In the program, the build in function ode is used to 

solve the Schrodinger equations. The if else statement 

is used to get correct eigen value and corresponding 

eigen function which satisfy the given boundary 

conditions. The eigen functions are plotted in the 

graphics window of Scilab by using plot or plot2d 

function [3,4]. 

 

The two energy guesses (upper and lower) have to be 

provided through the Scilab Console after the 

execution of the program. The energy guesses are such 

that one of the guess energy values leads to the 

positive value and another leads to negative value of 

wave function at the boundary. 

 

2. Basic quantum mechanical systems 
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The Schrodinger equations for following quantum 

mechanical systems [5] are solved for eigen values of 

energies and corresponding eigen functions. 

i. Particle in infinite square well potential 

ii. Linear harmonic oscillator 

iii. Hydrogen atom 

 

i. Particle in infinite square well potential 

 

If ψ(x) be the wave function for particle then the 

Schrodinger time independent wave equation for a 

particle is, 
2

2 2

2
( ( )) 0

d m
E V x

dx


  

 
Here we take an electron as a particle in infinite square 

well. For an electron 
2 6 0.511 10 eVmc   , width of 

the well

0

1Aa   and a constant, 

0

1973 eV Ac  . The 

symbol u is used instead of ψ for wave function in the 

program. The above Schrodinger equation is solved 

for following potential energy conditions. 

 

A. 𝑉(𝑥)=0 for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,     𝜓(𝑥)=0  

 

2

2 2

2
0

d mE

dx


   , for 0<𝑥<1 

Energy eigen values and eigen functions are given by 

2 2 2 2

2 22
n

n c
E

mc a


 and 

2
sinn

n x

a a


  . 

 

B. 𝑉(𝑥)=x for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,      𝜓(𝑥)=0  

 

2

2 2

2
( ) 0

d m
E x

dx


    , for 0<𝑥<1 

 

C. 𝑉(𝑥)=1 – x   for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,     𝜓(𝑥)=0  

 

2

2 2

2
( (1 )) 0

d m
E x

dx


     , for 0<𝑥<1 

 

D. 𝑉(𝑥)=2 for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,     𝜓(𝑥)=0  
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2

2 2

2
( 2) 0

d m
E

dx


    , for 0<𝑥<1 

 

E. 𝑉(𝑥)= x2 for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,     𝜓(𝑥)=0  

 

2
2

2 2

2
( ) 0

d m
E x

dx


    , for 0<𝑥<1 

 

F. 𝑉(𝑥)= x2 – 2x + 1 for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,     𝜓(𝑥)=0  

 

2

2 2

2
( ( )) 0

d m
E

x
x x

d


    2

2 1 , for 0<𝑥<1 

 

G. 𝑉(𝑥)= x2 – x + 0.25 for 0<𝑥<1 

𝑉(𝑥)=∞ for 𝑥≤0 ∴ for 𝑥≤0,      𝜓(𝑥)=0  

𝑉(𝑥)=∞ for 𝑥≥1 ∴ for 𝑥≥ 1,     𝜓(𝑥)=0  

 

2

2 2

2
( ( – . )) 0

d m
E

dx
x x


   2

0 25 , for 0<𝑥<1 

 

Figure 1: Scinote (Infinite Square Well) 
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Table 1: Energy eigen values at different potential energies inside the well 

n 

En (eV) 

using 

formula 

En(eV) 

using Scilab program for potential energies inside the well discussed in above cases 

𝑉(𝑥)=0, 

0<𝑥<1 
A B C D E F G 

1 37.6229 37.59265 38.09236 38.09236 39.59265 37.87503 37.87503 37.62532 

2 150.491 150.3706 150.8707 150.8707 152.3706 150.6913 150.6913 150.4413 

3 338.606 338.3339 338.8339 338.8339 340.3339 338.6616 338.6616 338.41163 

4 601.966 601.4825 601.9825 601.9825 603.4825 601.8127 601.8127 601.56271 

5 940.573 939.8164 940.3164 940.3164 941.8164 940.1478 940.1478 939.89778 

6 1354.42 1353.335 1353.835 1353.835 1355.335 1353.667 1353.667 1353.4177 

7 1843.52 1842.040 1842.540 1842.540 1844.040 1842.372 1842.372 1842.1226 

8 2407.86 2405.930 2406.430 2406.430 2407.930 2406.262 2406.262 2406.0127 

9 3047.45 3045.005 3045.505 3045.505 3047.005 3045.338 3045.338 3045.0882 

10 3762.29 3759.265 3759.766 3759.766 3761.265 3759.598 3759.598 3759.3487 

 

 

 

Figure 2:a. Ground State (n=1) Eigen Function 

 

 

Figure 3:b. First Excited State (n=2) Eigen Function 

 

 

 

 

Figure 4:C. Second Excited State (n=3) Eigen Function 

 

 

Figure 5:d. Third Excited State (n=4) Eigen Function 
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Figure 6:e. Fourth Excited State (n=5) Eigen Function 

 

ii. Linear harmonic oscillator 

 

Here we take a particle in linear harmonic oscillator 

potential V(x). For a particle mc2 = 940 MeV and a 

constant, 197.3 eV nmc  . If ψ(x) be the wave 

function for particle then the Schrodinger time 

independent wave equation for a particle is, 
2

2 2

2
( ( )) 0

d m
E V x

dx


  

 
 

Energy eigen values and eigen functions are given 

by  

2

1
( )

2
n

k
E n c

mc
  and  

2 2
0/2

0
0

1
( )

2 !

x x

n n
n

x
x e H

xn x




  
  

 
, where 

0x
km

  

 

The above Schrodinger equation is solved for 

following potential energy conditions. 

 

A. 21
( )

2
V x kx  (take force constant k=100) 

2
2

2 2

2 1
( ) 0

2

d m
E kx

dx


    

B. 21
( )

2
V x kx bx   (take force constant k=100 

and anharmonicity constant b=10) 

C. 2 21
( )

2
V x kx bx   (take force constant k=100 

and anharmonicity constant b=10) 

D. 2 31
( )

2
V x kx bx  (take force constant k=100 

and anharmonicity constant b=10) 

 
Figure 7: Scinote (Harmonic Oscillator) 
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Table 2:Energy eigen values of harmonic oscillator at different potential energies  

N En (eV) using 

formula 

En(eV) using Scilab program for potential energies of HO 

discussed in above cases 

2

1
( )

2
n

k
E n c

mc
   A B C D 

0 32.17608     

1 96.52825 96.52825 105.4735 105.7414 106.8960 

2 160.8804     

3 225.2326 225.2326 238.7132 246.7299 260.0095 

4 289.5847     

5 353.9369 353.9369 370.8137 387.7185 420.1967 

6 418.2891     

7 482.6412 482.6412 502.3473 528.707 585.5672 

8 546.9934     

9 611.3456 611.3456 633.527 669.6955 755.1367 

 

 

Figure 8: Probability density plot for n=1 

 

Figure 9: Probability density plot for n=3 

 

 

Figure 10: Probability density plot for n=5 

 

Figure 11: Probability density plot for n=7 
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Figure 12: Probability density plot for n=9 

iii. Hydrogen atom 

 

The hydrogen atom is the simplest example for an 

atomic system consists of nucleus (a proton) and an 

orbiting electron. If ( , , )r    be the wave function 

for this two particles system, then the Schrodinger 

time independent wave equation for the system will 

be, 
2

2 ( , , ) ( ) ( , , ) ( , , )
2

r V r r E r        


     

Where, 
2

0

( )
4

e
V r

r


 is the potential energy and 

mM
m

m M
  


is the reduced mass of the system 

and  
2

2 2

2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r


    

       
      

       

The Schrodinger equation can be separated into 

radial and angular wave equations. Here only the 

radial wave equation is solved, since it gives the 

eigen values of energies. 

2

2 2 2 2

1 2 2 ( 1)
0l

l

dRd E V l l
r R

r dr dr r

     
      
  

 

( )
( )l

u r
R r

r
   

2

2 2 2 2

2 2 ( 1)
0

d u E V l l
u

dr r

   
    
 

 

For electron 

2
0

6 0.511 10 eV and 3.795, 1973 eVAe cmc   

The constant factor 
0

1

4
is included in above value 

of e. l=0,1,2,3,……. is orbital quantum number. For 
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Figure 13: Scinote (H-atom) 
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Figure 14: a. Energy Eigen Value and Radial Wave Function for  n=1 
and l=0 

 

 
Figure 15:b. Energy Eigen Value and Radial Wave Function for  n=2 
and l=0 

 

 
Figure 16:c. Energy Eigen Value and Radial Wave Function for  n=2 
and l=1 

 
Figure 17:d. Energy Eigen Value and Radial Wave Function for  n=3 
and l=0 

 

 
Figure 18:e. Radial Wave Function for  n=3 and l=1 

 

 
Figure 19:f. Radial Wave Function for  n=4 and l=0 
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3. Conclusions  

The present work is comprehensive illustration of 

nature of solutions of Schrodinger equations and 

eigen values of energies of quantum mechanical 

systems taught at undergraduate level. These 

programs can be effectively used in the classroom 

teaching to explore different aspects of the quantum 

mechanical systems. 
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Abstract

In a direct-current (dc) circuit, a power supply

and a ground can each be modeled as a large,

distant, conducting sphere bearing a net surface

charge. The relation between the charge

on and potential of each of these spheres is

analyzed before and after they are connected to

a concentric spherical capacitor that is initially

uncharged. Expressions for the potential at all

points in the vicinity of the charged capaci-

tor (both inside and outside it) are written down.

Students are frequently confused about
the relationship between the charge on and
potential of a grounded surface or of the ter-
minals of a dc power supply. The follow-
ing problem can help illustrate some of the
key concepts. A solid metal sphere of radius
R1 = 1 cm is surrounded by a concentric
spherical metal shell of inner radius R2 = 5
cm and small radial thickness. Thin wires
are connected to the shell and sphere (by
passing through a small hole in the shell in

order to reach the central sphere). One wire
is used to ground the inner sphere, and an-
other to connect the shell to an emf of ξ = 5
V. Find the potential at a point P that is 6 cm
from the center of the sphere. The geometry
is shown in Fig. 1.

 

 

R1 = 1 cm 

R2 = 5 cm 
6 cm 

ξ = 5 V 
P 

Figure 1: A grounded 1-cm-radius metal sphere
surrounded by a concentric metal shell con-
nected to the positive terminal of a 5 V dc power
supply. (That implies the power supply cannot
be floating but must have its negative terminal
grounded.) Find the potential at point P just out-
side the shell.
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To solve this problem, students should
recognize that “ground” is a big conductor
(like the Earth) which defines the reference
potential of 0 V. Model it here as a metal
sphere of radius R large compared to R1 and
R2. Students often believe zero potential im-
plies zero charge, but that is not true in gen-
eral. In fact, the surface of the Earth has
a net negative charge relative to the atmo-
sphere [1]. To be general, suppose the large
grounded sphere has charge Q0 on its sur-
face.

Likewise, the 5 V supply can be mod-
eled as another metal sphere of the same
large radius R. These two large spheres
must be located far away from both the con-
centric system (of the shell and inner sphere)
and each other, so that they do not interact
electrically with them. Thus the two con-
nection wires must be long. To be specific,
suppose they are straight with one point-
ing radially north and the other radially east
away from the center of the 1-cm sphere, as
sketched in Fig. 2. One of the large spheres
has a potential of 5 V relative to the other,
grounded sphere; the separation distance
between them is so large (compared to all
radii in the problem) that it can be approxi-
mated as infinite. Thus the charge Q5 on the
sphere of potential ξ = 5 V must be greater
than that on the grounded sphere such that

kQ5

R
− kQ0

R
= ξ (1)

where k is the Coulomb constant.
To be exact, Q5 and Q0 are the charges

on the two large spheres when switches S1

 

 

R1 

R2 
P 

S2 

R 

R 

ξ = 5 V 

0 V 

S1 

Q0 

Q5 

Figure 2: Ground is modeled as a metal sphere
of large radius R connected via a long wire
through switch S1 to the inner sphere of radius
R1. The potential ξ is sourced by a metal sphere
of the same large radius R connected via another
long wire through switch S2 to the outer shell of
radius R2. (The figure is not to scale: the length
of the two wires and radius R of the two large
spheres are actually much bigger.) With both
switches initially open, there are charges Q5 and
Q0 on the large spheres, whereas the concentric
spherical capacitor is uncharged.

and S2 in Fig. 2 are open. Now close both
switches. Some charge must flow along the
two wires to set the potential of the central
small sphere to 0 V (since it is connected to
the reference large sphere) and the poten-
tial of the concentric shell around it equal to
that of the supply large sphere which ends
up being ∆V that is slightly smaller than 5
V. To achieve electrostatic equilibrium, pos-
itive charge Q must flow onto the shell and
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migrate entirely to its inner surface, where
it will distribute itself uniformly. The same
amount of charge must flow off the cen-
tral sphere to ground, leaving it with a net
charge of −Q uniformly distributed on its
surface, as depicted in Fig. 3. (The usual
assumption is made that there is negligi-
ble charge on the two long wires assuming
they are thin enough [2].) This charge dis-
tribution guarantees there is no electric field
within the metal composing either the cen-
tral sphere or the concentric shell (i.e., in the
gold-shaded regions of Fig. 1) as must be
true for conductors in equilibrium. All elec-
tric field lines that start on the inner surface
of the shell terminate on the surface of the
central sphere.

 

 

R1 

R2 
P 

S2 

R 

R 

ΔV 

0 V 

S1 

Q0 + Q 

Q5 – Q 

–Q 

0 V 

ΔV 
Q 

Figure 3: Charges on and potentials of the four
spherical conductors after switches S1 and S2

are closed and electrostatic equilibrium is estab-
lished.

Meanwhile the large spheres are so far
away that their electric fields are negligible
near this concentric capacitor. Thus there
is no electric field between the outer sur-
face of the shell and the point P that is 1 cm
away from it. Consequently there is no po-
tential difference between the shell and that
point, and thus the potential at point P is ∆V
which will be negligibly different than 5 V
for spheres of radius R large enough to serve
as an ideal ground and power supply.

Students may have performed the com-
mon laboratory experiment of mapping out
the equipotential curves for a pair of concen-
tric cylinders in a water tray [3] or drawn
with silver paint on conductive paper [4]. In
that case, they may remember that the po-
tential everywhere inside the inner cylinder
is equal to the value on its surface, and like-
wise the potential everywhere outside the
outer cylinder is equal to the value on its
surface. Those experimental observations
corroborate the theoretical results presented
above.

To carry the analysis one step further,
how does the exact potential difference ∆V
between the concentric shell of radius R2 =

5 cm and the inner sphere of radius R1 = 1
cm depend on the value of R in Fig. 3? The
answer is that ∆V is a bit smaller than ξ = 5
V owing to the flow of charge Q along the
wires, as follows.

The charge on the grounded sphere
ends up being Q0 + Q. Nevertheless it re-
mains the reference and thus its potential is
still 0 V by definition. It is connected by a
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wire to the central sphere having charge −Q
on it. Thus the potential on that inner sphere
must also be 0 V, and so the potential in the
space between it and the surrounding shell
is

V(r) = −kQ
r

+
kQ
R1

(2)

for any radial distance r from the center of
the sphere in the range R1≤r≤R2. Specifi-
cally V(R2) is equal to

∆V = −kQ
R2

+
kQ
R1

. (3)

Meanwhile, the charge on the large sup-
ply sphere equilibrates to Q5 − Q. Thus
the potential difference between it and the
grounded sphere is

k(Q5 − Q)

R
− k(Q0 + Q)

R
= ∆V. (4)

Substituting Eq. (1) into the left-hand side of
Eq. (4) gives

ξ − 2
kQ
R

= ∆V. (5)

Finally, eliminating Q between Eqs. (3) and
(5) results in

∆V =
R2 − R1

R2 − R1 + 2R1R2/R
ξ. (6)

For example, if R1 = 10 mm, R2 = 50 mm,
and R = 1000 mm then Eq. (6) becomes

∆V =
40
41

(5 V) ≈ 4.88 V (7)

which is 2.4% smaller than 5 V. On the other
hand, if the two large spheres are ten times

larger in radius (i.e., R = 10 m) then Eq. (6)
gives

∆V =
400
401

(5 V) ≈ 4.988 V. (8)

One sees that ∆V can be made as close to
5 V as one likes, by choosing the grounded
and supply conductors big enough. This re-
sult illustrates that any large conductor can
serve as a source or sink of charge while its
potential remains nearly constant.

In summary, an initially uncharged
spherical capacitor receives equal and oppo-
site charges ±Q on its facing surfaces when
one of its conductors is connected to ground
and the other to a dc power supply of emf
ξ. By modeling that ground and power sup-
ply as large, distant metal spheres, the re-
lationship between the charge on and po-
tential of each of them is clarified, which
can help improve student understanding of
these concepts. In particular, the larger in
radius those distant spheres are, the smaller
will be the drop in the potential difference
between them when they are connected to
the spherical capacitor. Furthermore, the po-
tential in the vicinity of the capacitor varies
only in the space between their facing sur-
faces, and is constant inside the inner sphere
and outside the outer spherical shell com-
posing it.
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Abstract 

In this paper, a simple yet effective and alternative 

method is described to observe the temperature 

dependence of resistance of a positive temperature 

coefficient of resistance (PTCR) by making use of a 

free-running multivibrator constructed around IC-

555 Timer. Since the output pulse width of a free-

running multivibrator is a function of the 

capacitances and the resistances attached to the 

circuit, this property along with the fact that 

resistance varies with the temperature to which the 

component is subjected can be exploited to study 

the variation of resistance along with the 

temperature. The width of the output pulse and 

resistance was found to increase with the rise in 

temperature. Hence, the circuit could be utilized for 

temperature sensing applications. Furthermore, 

this method may also be used to determine the 

value of an unknown resistance R(T) attached to the 

circuit and the value of the temperature coefficient 

of resistance (α). This simple and cost-effective 

method could be included as an experiment in the 

curriculum of various undergraduate and/or post-

graduate courses and can also be taken upon as a 

project work by interested students.  
 
 

1. Introduction 
Many engineering applications often require a 

positive temperature coefficient (PTC) materials. 

Such materials show an increase in electrical 

resistance upon raising their temperature. They are 

being used especially in PTC temperature sensors 

and PTC thermistors as they display linear 

characteristics. Besides, resistances, a basic 

electrical component find its uses in our everyday 

life. Whether simple electronic gadgets or complex 

machines such as televisions and satellites, these 

components are used everywhere  and   are   one  of   

the  most   widespread electrical components. 

Resistance as the word signifies is basically opposed 

to the flow of electric current in the circuit. 

Naturally, a curious mind would ask if the resistance 
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offered by the aforementioned is of a fixed value or 

does it depend on some external factors. As known, 

the resistivity increases with increasing temperature 

in conductors and vice versa. Further, the 

multivibrator can be constructed utilizing BJTs or by 

employing a versatile IC-555 timer in the free-

running (astable) mode on a logic breadboard. With 

the intent to examine the variation of resistance with 

temperature, especially the PTCR effect, a free-

running multivibrator has been constructed around 

IC-555 timer with the sample heating arrangement. 

The development of such a simple experiment will 

surely offer an undergraduate (UG) and/or post-

graduate (PG) student a better apprehension of the 

issue and would produce an involvement in natural 

philosophy (science) in particular [1-3]. 

Accordingly, in the present work, a method is 

discussed to study the temperature dependence of 

resistance (PTCR effect) with the help of an IC-555 

timer circuit in astable mode connection by 

correlating them with the output pulse width. Also, 

the generated temperature-dependent output pulses 

width has been verified using PSpice electronic 

simulation software. 

 

2. Relevant Theory 

The resistance of a PTC component such as that of a 

simple resistor is a function of temperature to which 

it is subjected. The higher the temperature, it is 

subjected to, the higher is the resistance offered by 

it. The absolute value of the resistance at a particular 

temperature is given by the equation: 
 

)}(1{)( refref TTRTR      (1) 
 

Here Rref is the resistance at some reference 

temperature Tref, α is the temperature coefficient of 

resistance of the material used and Tref is some 

reference temperature at which α is specified 

assuming that the length and area don't change with 

temperature. Besides, the output pulse width  

( ;OnWW   during ON time) of IC-555 timer in 

astable mode at pin no. 3 (fig. 1) is given as [5]: 
 

CRRW BA )(693.0     (2) 
 

The terms RA, RB, and C are the resistances and 

capacitance as indicated in fig. 1. As is evident from 

the above equations, the time period of the output 

pulse is a function of RA, RB, and C. If any of these 

values are altered, the output pulse width will change 

accordingly. Further, with an aim to protect the 

circuit, a resistance (RS) was connected in series with 

R(T) and hence the value of 
SA RTRR  )( .  

Therefore, eqn. (2) can be rewritten as 
 

CRRTRW BS })({693.0    (3) 
 

It is clear from eqn.(3) that if the values of RB and C 

kept constant, the value of RA i.e. R(T) controls the 

width of output pulse (W). Thereby, knowing the 

experimental value of W, one can very easily 

estimate the value of R(T) at any particular 

temperature and consequently its variation with 

temperature. We have from eqns. (1) and (3), 
 

CRTRRW BrefS })1({693.0      (4) 
 

Here, the change in temperature, refTTT  . It is 

noticed from this expression that W is directly 

proportional to ΔT. Hence, using the experimental 

value of T or ΔT in eqn. (3), W can be easily being 

calculated. Hence, using expressions (3) and (4) the 

temperature dependence of resistance can be 

obtained using Timer-555 operating in astable mode. 

 

 
 

FIG. 1: External connection diagram to realize the PTCR effect using 
IC-555 timer in astable mode with sample heating arrangement. 
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3. Experimental Detail 

3.1. Circuit Diagram 
 

Fig. 1 shows the external connection diagram of IC-

555 timer for astable mode operation with sample 

heating arrangement. A heater coil of 1500 watt is 

used as the sample resistance R(T). The value of R(T) 

= 37 at room temperature (27C) was taken in the 

present study. As stated earlier, to protect the circuit 

a series resistance RS = 300 has been connected 

with R(T) so that value of 
SA RTRR  )( . However, 

the interested reader may change the value by 

changing the materials as well as the length of the 

wire to see the effect on the output pulse width. The 

entire circuit is built-up around IC-555 timer on a 

logic breadboard. The output pulse width can be seen 

and measured on a CRO screen connected across pin 

number 3. 
 

3.2. Design considerations 
 

Theoretically, there is not any sort of restrictions on 

the values of RA, RB and C however depending upon 

the least count of the oscilloscope, the scale of the 

oscilloscope used and the resistance of the coil 

(present case) at the room temperature there is a need 

to restrict the values of RA, RB, and C in order to 

observe significant changes in the width of the pulse 

produced by the free-running multivibrator. In this 

experiment, the value of RA was taken as 337Ω at 

room temperature. Further, it is known that if the 

value of RB>>RA then there would hardly be any 

difference in the time period of the output pulse and 

the very purpose of the experiment would stand 

defeated. Accordingly, the value of RB was chosen 

as 1.5kΩ so that any change in the coil’s resistance 

with a change in temperature would show a 

significant difference in the CRO. Also, the value of 

the capacitance, C was chosen as 1μF for the same 

reason. 

 

 
 

FIG. 2: Variation of experimentally observed output pulse width (W) 
with temperature. 

 

4. Results and Discussion 

Fig. 2 shows the variation of output pulse width (W) 

at pin 3 with temperature along with the fitted curve. 

It is noticed that the width of the output pulse 

increases with the rise in T. A linear least-squares 

fitting of W-T data yielded the equation W = 0.0012 

+ 1.10707 x 10-7
 T with the adjusted R2 = 0.98156. 

 

 
 

FIG. 3: Variation of resistance R(T) with output pulse width (W) as a 
calibration curve. 
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The values of R(T) at different temperatures were 

obtained from the eqn. (3) using the experimentally 

observed values of W and were plotted as a 

calibration curve (Fig. 3). A linear regression 

analysis of the W-R(T) data gives rise to the 

equation: 
 

W = A + B.R(T)    (5) 
 

The value of coefficients was estimated to be A = 

0.0012 and B = 6.9295 and the value of the 

regression coefficient (R2) between eqn. (5) and the 

experimental data was found to be 1. Therefore, any 

experimentally measured value W could be 

substituted in eqn. (5) and consequently, the 

corresponding value of resistance can easily be 

obtained at a given temperature. The value of R(T) 

may also be estimated graphically from the 

calibration curve (Fig.3). 

 

 
 

FIG. 4: Temperature variation of resistance R(T) showing PTCR 
effect. 

 

 

The temperature variation of resistance has been 

presented in Fig. 4. It is seen that the value of 

resistance increases with the rise in temperature i.e. 

the system shows the linear temperature-dependent 

resistance response in the present range of 

investigation, which indicates the positive 

temperature coefficient of resistance (PTCR) 

behavior. Such a behavior could be understood as the 

electrons flowing through a conductor (heater 

element, present case) are being impeded by atoms 

with the rise in temperature, and the number of 

phonons gets increased i.e. The atoms start vibrating 

with higher amplitude. These vibrations in turn 

cause frequent collisions between the free electrons 

and the other electrons. Each collision drains out 

little energy of the free electrons which restrict their 

movement (delocalized electrons). This, in turn, 

restricts the current flow in the sample and 

consequently led to an increase in resistance or 

resistivity of the material with the increase in 

temperature. A line of best fit was obtained as R(T) 

= 34.982 + 0.1597 T with the adjusted R2 = 0.98156. 

The value of the temperature coefficient of 

resistance of the sample at room temperature was 

estimated to be 0.00432 (°C)-1 using the relation: 

dTTdRRref /)(.1 . The positive value of α also 

supported the PTCR behavior of the test sample. 

These observations were verified by the PSpice 

electronic simulation software. Figs. 5(a) and 5(b), 

respectively display the output pulses for R(50°C) = 

39.11Ω and R(350°C) = 89.61Ω. It is noticed that the 

values of W are nearly comparable to the 

experimental results. Also, noticed that the output 

pulse width ( OffW ) remains constant during the OFF 

time of IC-555 timer in the astable mode for every 

temperature. This is because the discharge path 

contains RB and C only as CRW BOff 693.0  [5]. 

 

 

 
 

FIG. 5: Output pulses when (a) R50°C = 39.11Ω and (b) R350°C = 89.61Ω 

as observed in PSpice electronic simulation software. 
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FIG. 6: Schematic diagram of temperature sensing device. 

 

 

It is to note that the value of RS will rely upon the 

specimen used as R(T). Hence, this technique may 

either be used to know the value of unknown 

resistance at a particular temperature as well as their 

dependence, R(T) on T. Furthermore, since W  R(T) 

and consequently W  T, the present circuit could 

easily be extended as a temperature sensor. The 

schematic diagram of the same is presented in Fig. 

6. 

 

5. Conclusions 

The experiment performed in this article enabled us 

to get an insight into and/or provide an alternative 

method to study the temperature variation of the 

resistance of a PTCR material. With little alteration 

and a bit of intuitive thinking, this experiment can be 

extended to study the coefficient of thermal 

expansion and could also be used to obtain the 

resistivity (ρ = RA/l) of a material. Apart from this, 

the variation of resistance of a negative temperature 

coefficient (NTC) component such as that of a diode 

could also be studied by replacing the resistance coil 

with a diode connected in reverse biased mode and 

consequently the bandgap of the semiconductor. 

Such a cost-effective experiment can easily be 

arranged in any UG and/or PG laboratory which will 

help the students to develop scientific insight, 

scientific temper, and inculcate an interest in the 

field of research. Also, one may use other materials 

like ceramics, ceramic/polymer composites, 

nanomaterials, etc. for intended applications. Thus, 

it is recommended as project work for those who are 

interested in physics, electronics, electrical 

technology, and material science. 
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