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Editorial

Revitalizing Physics Education:
A New Chapter
As we proudly present the third issue of our Physics Education Journal, we mark
a significant milestone in our journey to revitalize physics education. After a
dormancy of almost three years, our first and second issues were met with enthu-
siasm and appreciation from the physics community. This renewed energy and
commitment to quality publishing have set the stage for our continued growth and
relevance.

A Commitment to Excellence
Our editorial team has worked tirelessly to ensure that each article meets the high-
est standards of academic rigor and relevance. This issue promises to deliver
insightful research, innovative teaching methods, and thought-provoking discus-
sions that will enrich the physics education landscape.

In This Issue
This third issue features a diverse range of articles, including innovative labora-
tory experiments on drums by Sir C.V. Raman, a discussion on tensors, a new
approach to polynomial algebra and a simple demonstartion of amplitude modu-
lation. These contributions reflect our commitment to addressing the needs and
interests of physics educators and learners.

Gratitude and Acknowledgment
We extend our heartfelt gratitude to our authors, reviewers, and readers for their
unwavering support and contributions. Your dedication to physics education is the
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driving force behind our journal’s resurgence.
Looking Ahead As we move forward, we remain committed to publishing

high-quality research and fostering a community of physics educators and learn-
ers. We invite you to engage with our content, share your thoughts, and contribute
to our future issues.

Professor O.S.K.S Sastri
Editor-in-Chief
Physics Education Journal (IAPT)
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Abstract

In many college laboratories across India,

students conduct or replicate experiments per-

formed by scientists worldwide. However, the

groundbreaking experimental work of Sir C. V.

Raman, one of India’s most brilliant experimen-

talists, is often overlooked. To address this gap,

we propose a simple and cost-effective method

to introduce Raman’s classic experiment on

drums into college laboratories.

1 Introduction

Sir C. V. Raman’s study about drums was
first published in 1920, while he was at
Kolkata [1]. In 1922 he gave a detailed ac-
count on the Indian contribution of making
musical drums [2]. After 15 years of de-
tailed studies, while in Bangalore, he pub-
lished a breakthrough paper on the harmon-

ics generated by Mridangam [3], which is
actually the beginning of a systematic study
of musical drums. Out of many musical
drums in India, Mridangam is the most an-
cient instrument and it is played in concerts
and art forms. Many theoretical and exper-
imental studies about the vibrations of the
drum head of Mridangam were published
later [4–7]. Our paper gives a simple method
for the study of harmonics in musical drums
in an undergraduate laboratory very eas-
ily and cost-effectively. Before going to our
method a brief idea about the contributions
of Raman in the field of drums is given in
the next section.

2 Raman’s contribution

Raman, while working at Kolkata in Indian
Financial Service, during his spare time,
studied the acoustics of Indian drums [8].
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The most important drum that attracted Ra-
man with its highly harmonious tones was
Mridangam. One of the objectives of Ra-
man on studying was to find the differences
in the construction of the Indian musical in-
struments from other regions of the world
and to find the most important component
that contributes to the tonal qualities of In-
dian instruments. Raman found that the

Figure 1: The production of tones on Mridan-
gam head as in Reference [9]

black paste on the drum head is the cause of
shifting the non-harmonic overtones in a cir-
cular membrane to harmonic tones in Indian
instruments like Mridangam. To excite dif-
ferent harmonic tones, Raman sprinkled ly-
copodium power on the drum head and the
drum was played with experienced artists
[10]. By hearing and seeing the tones pro-
duced, Raman identified the harmonics as
there were no modern techniques for study

at that time. The images of Mridangam
drum head excited by Raman are given in
Figure 1. The frequency ratios obtained by
Raman [3] are given in Table 1

Mode Ratio
0,1 1.000
1,1 2.00
2,1 3.00
0,2 3.25
3,1 4.00
1,2 4.321
4,1 5.00
2,2 5.34
0,3 5.167

Table 1

This is a historical discovery that was pub-
lished in Nature [1] a prestigious journal of
physics. Before going to the details of our
study we will have an understanding of har-
monics and their relevance in music. What
is meant by a mode will be discussed in an-
other section.

3 Harmonics

A sound produced by any instrument con-
sists of a collection of frequencies. The low-
est frequency among them is termed as the
fundamental frequency and higher frequen-
cies are termed as overtones. These overtone
frequencies and the fundamental are called
together as harmonics when they have an
integer multiple number relation. Consider
the set of frequencies in Table 2.
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Frequency(Hz) Ratio
150 1
210 1.4
260 1.73
300 2
330 2.2
450 3
600 4

Table 2

Here the lowest frequency is 150Hz and
hence it is the fundamental frequency and
all other frequencies are called overtones
of fundamental. But only 300Hz, 450Hz,
600Hz are harmonics along with fundamen-
tal since they have integer ratios. Hence the
150 Hz is called first harmonic, 210Hz and
260 Hz are called first and second overtones
but not harmonics as they do not form inte-
ger ratio with 150 Hz. The 300Hz is called
third overtone and second harmonic and so
on. The central loaded region of the Mridan-
gam is called the Karane(Figure 2).

Figure 2: The black loading on Mridangam
head

4 Modes of vibration of a simple

circular membrane

In India many drums like Dhol, Timila
etc use one or more layers of animal skin
stretched over a wooden shell and are
played with either hand or stick. The vi-
brations of a single layer of animal skin at-
tached to the drum head are studied as a
circular membrane with a fixed boundary.
A mode is a pattern of vibration in which
the whole membrane vibrates except certain
points that remain at rest called nodes. The
two-dimensional wave equation represents
the vibration of a circular membrane [11] is.

∇2ψ(r, θ) =
1
c2

∂2ψ(r, θ)

∂t2

Here ψ(r, θ) is the transverse displacement,
r is radial component of displacement and
θ is the angular component of displacement

and c =
√

T
d where T is the tension pro-

duced on the membrane and d is the mass
density. The r-dependent solution for the
membrane is [12]

ψ(r) = AJn(kr) + BYn(kr)

where Jn(kr) is the Bessel function of first
kind with order n and Yn(kr) is the Bessel
function of second kind with order n. At the
center of the membrane r = 0. The Bessel
function of second kind has no finite solu-
tion at the centre. Hence we consider only
first part of the solution as

y(r) = AJn(kr)

At boundary r = a, since it is fixed we get

Jn(ka) = 0
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There are numerous solutions for this equa-
tion given by xnm. These solutions are
termed as zeros of the Bessel function or
roots of the Bessel function. The number of
the roots is represented by m and the order
of the Bessel function is represented by n.
Thus we get

ka = xnm

Physically on a drum head, the non-
vibrating points originate along the diam-
eter or along the circumference of a circle
called nodes. The straight line and the cir-
cle created by zero vibration points are then
called nodal diameter and nodal circle re-
spectively. The number of nodal diameters

Figure 3: The modes of vibration of circular
membrane

formed on a drum head is represented by
the order of the Bessel function n and the
number of nodal circles formed on the drum
head are indicated by the number of roots of
the Bessel function m. The first few modes
of vibration in circular membrane are shown
in Figures 3 and 4. The frequency ratios

Figure 4: The modes of vibration of circular
membrane

of first few modes of vibration of a circular
membrane calculated using the zeros of the
Bessel function [13] are given in the Table 3

Mode Ratio
0,1 1.00000
1,1 1.59335
2,1 2.13556
0,2 2.29545
3,1 2.65311
1,2 2.91733
4,1 3.15548
2,2 3.50016
0,3 3.59851
5,1 3.64749

Table 3

The lowest mode is the fundamental mode
which has only one nodal circle and no
nodal diameter. The axis-symmetric vibra-
tion of modes do not generate nodal diame-
ters and hence all modes with n = 0 have
only nodal circles. The first nodal diame-
ter is formed by the vibration of the second
mode that has one nodal circle also. This
mode generates the first overtone frequency
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which is 1.5933 times the fundamental. Out
of nine overtone generating modes given in
the table, second, third, fifth, seventh and
tenth modes have one nodal circle and 1,
2, 3, 4 and 5 nodal lines respectively. Two
nodal circles are formed in the fourth, sixth
and eighth modes with 0,1, and 2 nodal lines
respectively. The changes in the vibration in
angular direction generates these nodal di-
ameters. The maximum number of nodal
circles are formed by the ninth mode with no
nodal diameter. From Table 3, it can be seen
that all the overtones have a non-integer ra-
tio with fundamental and due to this none
of them form harmonics. Thus, the sound
produced by an ordinary circular membrane
drum head is not musical. Now let us study
the music produced by Mridangam in the
next section.

5 Music produced by Mridangam

Mridangam is a drum built with wood and
air is enclosed inside the instrument after
construction [14]. A Mridangam is shown
in Figure 5. A black region with high den-
sity is made on the drum head constructed
with goat skins by rubbing fine paste made
of rice, and stone that is known ’Purana-
keedam’. The cow or buffalo hide is used
to make an annular region on the drum
head and ropes are used to stretch the drum
head tightly on the rim. The circular gap
between the loaded region and annular re-
gion is filled with materials like tiny plastic
balls, dried stems of wheat or paddy. Har-

Figure 5: The Mridangam

monic tones are produced by five strokes on
the right loaded head in Mridangam. The
strokes include Dheem, Arachappu, Naam,
Chappu and Dhin [15]. The stroke Dheem
is produced by striking the loaded region on
the drum head with fingers in the right hand
and removing immediately. The Arachappu
is produced by the little finger, strikes along
the diameter in the loaded region away from
the centre and other fingers are used as sup-
port. Naam stroke is made by striking at
the edge of the annular membrane with for
finger and keeping the dark region at rest
by placing the ring finger at its circumfer-
ence. The Chappu is elicited by striking
with the little finger at the circumference of
the loaded region towards the centre. The fi-
nal stroke Dhin is produced by striking fore
finger at slightly inward to the circumfer-
ence of the loaded region and the ring finger
is placed on the circumference at 60-degree
distance.

6 Our method

The audio samples of Mridangam strokes
in MP3 format with a duration of few sec-

38/3/1 5 www.physedn.in



Physics Education October-December 2024

onds are collected. The samples are placed
in a folder on a mobile phone. For analysis,
the Visual analyzer software freely avail-
able on the internet is used. The installation
is done by double-clicking on the executable
file and following the instructions. Open the
software using the icon on the desktop. A
screenshot of the software window is shown
in Figure 6. Connect headset or mike on the

Figure 6: The screenshot of Visual Analyzer
software

laptop, place the mobile phone near the talk-
ing point of the headset. Click on the ON
button in the menu bar before the settings
menu and play the sound from the mobile
phone. The capture spectrum button on the
panel in the left bottom end in the software
window. A new window showing the fre-
quency spectrum will appear. Left-click and
drag to zoom the spectrum at the beginning
of the axis. Place the mouse at each peak in
the frequency spectrum and corresponding
x-axis and y-axis values are seen at the bot-
tom. The spectrum is saved as a PDF file us-
ing

File −→ Printspectrum

Figure 7: The frequency spectrum of Naam
stroke

7 Results

The Dheem stroke excites the lowest mode
or fundamental mode. For all other strokes,
the fundamental is slightly higher than one.
This indicates that the other strokes do not
vibrate in fundamental mode since the fin-
gers placed on the drum head suppress it. In
such strokes, the higher harmonics that are
in the integer relation are identified by the
brain and generates a pitch sense around the
frequency of the second harmonic present in
the stroke. To tune the drum head, artists
use Arachappu or Naam strokes. Hence we
plot Naam stroke as an example that is given
in Figure 7. Here we used a Mridangam
tuned to pitch D3 and its standard frequency
is 146.83Hz. The frequency of the peaks
present in the spectrum is given in Table 4.
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Number of peak Frequency (Hz) Ratio
1 160.059 1.10
2 290.61 2.00
3 439.169 3.02
4 560.717 3.85
5 720.53 4.95

Table 4

8 Discussion

Here, the third peak is the most prominent,
indicating that the third harmonic tone is
heard when the Naam stroke is excited. Sim-
ilarly, the most prominent peak in the spec-
trum is used to determine the order of the
harmonic tone produced. In other words,
the modes vibrating with maximum energy
are identified from the dominant peak.

C. V. Raman extensively studied the
acoustics of the Indian drum Mridangam
and published his findings after years of
meticulous evaluation. Today, the same
tonal characteristics can be analyzed with
significantly less effort and time using mod-
ern software techniques. The study of musi-
cal drums and their harmonics can serve as
an engaging experiment for undergraduate
students, helping them understand and ap-
preciate C. V. Raman’s contributions to the
field of acoustics.

9 Conclusions

We believe that the best way to honor Ra-
man, India’s greatest scientist, is by study-

ing and replicating his experiments. His re-
search is so insightful that dedicating a sec-
tion of college laboratories to exploring his
contributions would be highly beneficial. In
this paper, we demonstrate that Raman’s
study of harmonics can be easily conducted
using a computer, a resource readily avail-
able in most college laboratories.
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Abstract

At the first face-off with Tensors, they appear to

be scary and formidable. Even Einstein had to

struggle a lot to master it. But once well versed

with the subject Einstein used it aptly in the

formulation of his masterpiece General Theory

of Relativity (GTR), whose fame in due time

made the subject of tensors synonymous with

GTR in Physics. Earlier, however, with their

little use in other areas of physics, students not

opting for GTR could turn a blind eye to them.

But since GTR much water has flown down the

tensor pipeline, and the subject has evolved a lot

with numerous applications not only in Physics

and Mathematics but in fields as varied as

Computer Science, Chemistry, Geology, Statis-

tics, Medicine, Engineering, etc. In Physics,

it is now regarded as an indispensable tool

for the description of all the four fundamental

interactions. Further, an operation on tensors

called tensor product is a pre-requisite for the

description of quantum states when two or more

quantum systems get together, and also, the

entangled states in their joint vector space need

tensors for their expression. Very significantly,

the fifth aspect of tensors, apart from its ability

to represent invariance, anisotropicity, many

quantum systems states and entanglement, is

the capacity for large data storage, which is an

artifact of the fact that high-rank tensors can

be effectively represented by multi-dimensional

hyper matrices. This feature of tensors has

come to great advantage in Computer Science,

where it is utilised for organising or storing large

data and data mining with bearing on machine

learning, deep learning, tensor imaging, face

recognition, computer vision, etc. This article

is a modest attempt (as the subject is deep and

profound and cannot be justified in an article

of over a dozen pages) to make accessible the

features of tensors and their significance to the

undergraduate students. The goal here is not

to provide the students a working knowledge of

tensors but to entice them by showing them the

wonderful world of tensors so that they learn it

on their own.
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1 Tensors: Etymology, Origin and

Development

It appears that the English word Tensor,
which owes its origin to the Latin word Ten-
sus meaning Tension, has an influence on
its import. Box 1 quotes a few tensor anec-
dotes that testify to tensor’s reputation or
notoriety for being daunting. Incidentally,
the first tensor used in physics has a close
connotation with its meaning, as it is none
other than the famous stress tensor. A ten-
sorial expression, represented by some sym-
bols adorned with multiple indices in sub-
script and superscript fashion, projects a
frightening sight to anyone who wants to
comprehend its meaning. In case the sym-
bol appears pleasing to some gutsy person
and emboldens him/her to read the mod-
ern highly abstract definition ‘A tensor is a
binary covariant functor [1] that represents a so-
lution for a co-universal mapping problem on the
category [2] of vector spaces over a field,’ will
certainly spin his/her head. This no doubt
looks quite intractable at the first sight. But
a little familiarity with tensors makes one re-
gardful of how important a tool it is to ex-
press equations of physics, notwithstanding
the other important applications which the
tensors lend themselves to.

The word ‘tensor’ was introduced by
William Rowan Hamilton (1805–1865), ini-
tially to describe something different from
what is now meant by a tensor (namely,
the norm operation in a certain type of al-
gebraic system now known as Clifford alge-

Figure 1: Few Tensor Progenitors Photographs
with their names.

bra). The contemporary usage was intro-
duced by Woldemar Voigt around 1898. The
concept of tensors has its origin in the devel-
opment of differential geometry by mathe-
matical stalwarts no less than Carl Friedrich
Gauss (1777-1855) and Bernhard Riemann
(1826-1866). Later, Elwin Bruno Christof-
fel’s (1829-1900) work in differential geome-
try, particularly the connection formulae ob-
tained by him to express covariant deriva-
tives, paved the way for tensor calculus.
Gregorio Ricci-Curbastro (1853-1925) and
his Student Tullio Levi-Civita (1873–1941)
generalized Christoffel’s ideas and devel-
oped them further to institute the concept
of tensors and absolute differential calculus.
Figure 1 contains photographs with names
printed below each of a few of the progen-
itors of the subject of tensors. The abso-
lute differential calculus, later known as ten-
sor calculus, forms the mathematical basis of
the general theory of relativity, which pop-
ularized the subject by leaps and bounds.
From 1920 onwards, tensor concepts pro-
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gressed to newer, more abstract areas that is
from differential geometry to topological al-
gebra, Topological algebra [3] and more re-
cently, to category theory. It won’t be an
exaggeration to say that the study of ten-
sors is a study in the progress of mathemati-
cal thought. The stated tensor definitions in
Box 2 allude to this evolution of mathemati-
cal ideas.

BOX 1. Tensor Anecdotes.

2 Tensor Applications

These days abundance of literature on ten-
sors being copiously produced by mathe-
maticians, physicists, computer scientists,
statisticians and engineers as well as experts
in other scientific fields signify to the im-
portance that tensors hold in Science and
Engineering. As mentioned above, few
decades before tensors were almost synony-
mous with General Relativity- except for a

minor use in all other branches of Physics.
The realization that gauge fields are geo-
metrical objects has made the geometrical
(coordinate-independent) aspect of tensors
become more and more significant in the
study of all interactions as all fundamental
interactions including gravity are deemed to
be different manifestations of the same su-
per force.
In recent decades, relativistic quantum field
theories, gauge field theories, and various
unified field theories have all used tensor
algebra analysis exhaustively. Also tensor
products naturally arise in quantum me-
chanics as a description of many particle
state space because they can take into ac-
count the superposition aspect of quantum
states when separate quantum systems are
brought together. Further the fast burgeon-
ing field of quantum computation hinges on
the concept of entangled states which need
tensors for their formulation. In mathemat-
ics tensors are used in Differential Geom-
etry, Differential Equations, Spectral The-
ory, Continuum Mechanics, Fluid Dynam-
ics, Multilinear systems in Numerical Alge-
bra, Tensor complementarity problems, Op-
timization, etc.
One of the most important applications of
tensors is to tensor decomposition that is
presently used for applications in numer-
ous varying fields. Though tensor decom-
position methods have appeared as early
as 1927, but they remained unused in com-
puter science field as late as the end of 20th
century. An early use of tensor decompo-
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sition was sought in the area of psychomet-
rics which deals with intelligence evaluation
and other personality characteristics. But
in the last two decades, a growing comput-
ing capacity and an increasing familiarity
with multilinear algebra have led tensors to
emerge in a big way in the earlier untouched
areas of statistics, data science and machine
learning. In data science, real data are often
in high dimensions with multiple aspects
and tensors provide elegant theory and al-
gorithms for web data mining, face recogni-
tion softwares, higher order diffusion tensor
imaging in medical imaging, psychometrics,
chemometrics, neuroscience, graph analy-
sis, fluorescence spectroscopy, geophysics,
etc. In each case, data is compiled into a
multi-way array or a hyper matrix and the
essential features of the data are isolated by
decomposing the corresponding tensor into
sum of rank one tensors.

BOX 2. Qualitative definitions of Tensors.

3 Approaching Tensors

In physics any quantity that has both magni-
tude and direction is a vector. Displacement,
velocity, acceleration, and force are few ex-
amples of mechanical vectors. In three di-
mensional Cartesian space, a vector is rep-
resented by its x, y, z components. If we
multiply this vector by a scalar quantity, all
the three components of the vector scale up
proportionately or, in other words, the vec-
tor changes its magnitude without changing
its direction.
What if we want to create a new vector
with a different magnitude as well as di-
rection than the initial vector? Multiplica-
tion by a scalar only changes the magni-
tude. Taking the inner product with an-
other vector turns it into a scalar, and in
this way, the direction too is lost. Form-
ing the cross product with another vector,
though it changes the direction, always does
so in the normal direction. So, for chang-
ing direction in an arbitrary way, we either
take the outer product of a vector with an-
other vector and obtain a second-rank ten-
sor having a magnitude and two directions,
or multiply the initial vector by a new math-
ematical entity called a tensor and obtain a
tensor of higher rank, having a magnitude
and multiple directions. Table 1 presents the
resultant quantities obtained from various
multiplicative products of scalars and vec-
tors, along with their examples in physics in
three-dimensional Cartesian space.
A physical example of a tensor of rank two
is force acting on a plane surface area. In
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this case, both the magnitude and direc-
tion of the force, and the size and orien-
tation of the area, will determine the to-
tal effect. The size of the area and its ori-
entation can be represented uniquely by a
vector whose magnitude is proportional to
the area size and whose direction is nor-
mal to the surface. Therefore, the effect of
the force upon the surface depends on two
vectors, the force vector and the area vec-
tor, and hence is described by a tensor of
second rank. Second-rank tensors appear
in physics when physical quantities exhibit
anisotropic behaviour in the system, often in
a “stimulus-response” mode, as discussed
in the next section. In general, a second-
order tensor, which takes in a vector of some
magnitude and direction, returns another
vector of a different magnitude and direc-
tion. If we take into consideration the com-
ponents of force, each of the components
acting on each component of the area vector,
then there are nine terms altogether, which
can succinctly be arranged in matrix of or-
der 3 representing the total stress. So ten-
sors can thus be represented by arrays, and
manipulated in a manner reminiscent of ma-
trix manipulation. The Figure 2 shows ten-
sors of zero, first, second and third rank as
dimensional arrays or matrices. The single
and multi-dimensional different stress com-
ponents and Figure 3 exhibits the distress
tensor of a point in 3D space.

Figure 2: Tensors as multi-dimensional (Hyper-
matrix) array of numbers.

3.1 Tensor Definition

Tensors have been defined in several equiv-
alent ways. These definitions can be broadly
classified into two main types. The first type
is traditional and defines tensors using co-
ordinate transformation properties of com-
ponents of tensors, whereas the second type
is more modern and abstract and defines
tensors in their component free formulation.
We will briefly discuss only the first defini-
tion, due to constraints of the article size, but
encourage the reader to learn about the sec-
ond type in the suggested readings.

As remarked, tensors are usually intro-

Figure 3: Stress tensor components in 3D space.

duced in terms of tensor components trans-
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formation rule. A tensor consists of tensor
components and an underlying basis vec-
tors of the coordinate system in which it
is referred to. For the ease of understand-
ing we consider the simplest case of or-
thonormal Cartesian coordinate system in
Euclidean space. In this system the basis
unit vectors are constant and so it suffices
to give the components of a tensor. An-
other thing is that the transformations be-
tween Euclidean bases are always orthogo-
nal. An orthogonal transformation of ten-
sors from one Euclidean space to another
preserves the length, and also makes no
distinction between covariant [4] and con-
travariant [5] tensors. If T(x) = Mx is an
orthogonal transformation, we say that M is
an orthogonal matrix. And from matrix the-
ory we know that a matrix is orthogonal iff
its inverse and transpose are the same, i.e.,
M−1 = MT.

We shall now examine the behaviour of a
low order tensor of rank one that is a vec-
tor if we move from a two dimensional (2D)
Cartesian coordinate system S to another 2D
Cartesian system S’. The case of transforma-
tion rule of scalars which are tensors of the
lowest rank is trivial because scalars are in-
dependent of the choice of coordinate sys-
tem and does not require basis vector for
their description. The 2D Cartesian S′ coor-
dinate system in consideration is rotated by
an angle ϕ with respect to the S system, as
shown in the Figure 4. Let E be an electric
field vector lying on a 2D plane, the vector
making an angle θ with the x-axis in the S

system. Then the components of E in the S
system are Ex = |E| cos θ and Ey = |E| sin θ.
The coordinates of the electric field vector in
the rotated system S′ will be,

E′
x = |E| cos(θ − ϕ) (1)

= |E| cos θ cos ϕ + |E| sin θ sin ϕ (2)

E′
y = |E| sin(θ − ϕ) (3)

= |E| sin θ cos ϕ − |E| cos θ sin ϕ (4)

Using Ex = |E| cos θ and Ey = |E| sin θ, the
above Eqs. (1) and (2) become,

E′
x = Ex cos ϕ + Ey sin ϕ (5)

E′
y = Ey cos ϕ − Ex sin ϕ (6)

These transformation equations can be writ-
ten in matrix form as,[

E′
x

E′
y

]
=

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

] [
Ex

Ey

]

The matrix form of Eq. (5) can simply be
written as E′ = ME, where

M =

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]

is a 2 × 2 matrix and E′ and E are 2 × 1 col-
umn matrices. Since the elements in the ma-
trix are identified by their row and column
positions, the transformation Eqs. (3) and (4)
can also be put as

E′
i = ∑

j
aijEj (7)

Where the indices i and j take the variables
x and y, and the direction cosine coefficients
aij are: axx = cos ϕ, axy = sin ϕ, ayx =
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TABLE 1. Resultant tensor quantity from various multiplicative products of scalars and vectors and

their examples in Physics.

− sin ϕ, ayy = cos ϕ.
Taking partial differential of Eq. (7) with re-
spect to each of the components, and putting
them into a matrix yields the following:[

E′
x

E′
y

]
=

axx = ∂E′
x

∂Ex
axy = ∂E′

x
∂Ey

ayx =
∂E′

y
∂Ex

ayy =
∂E′

y
∂Ey

 [
Ex

Ey

]

Thus, the vector (tensor of rank 1) transfor-
mation rule can also be succinctly cast as:

E′
i = ∑

j

∂E′
i

∂Ej
Ej (8)

Now, by just noting that the transformations
in Euclidean space are orthogonal, we can

write the inverse transformation equation
by inverting the matrix M, which amounts
to just transposing the row elements with
column elements, that is, replacing aij with
aji.

M−1 =

[
cos ϕ sin ϕ

− sin ϕ cos ϕ

]

One can easily check that |M| = |M−1| =
1 and that |M||M−1| = I, meaning that
the tensor remains invariant under rotation
transformation. Using this fact, the inverse
transformation equations E = M−1E′ can be
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Figure 4: Electric field vector E and their com-
ponents in 2D Cartesian coordinate system .

written as:

Ei = ∑
j

ajiE′
j = ∑

j

∂Ei

∂E′
j
E′

j (9)

Thus, we infer that a Cartesian vector is an
invariant physical quantity that transforms
from the S coordinate system to the S′ co-
ordinate system according to the Cartesian
tensor transformation law given by Eq. (9),
and by Eq. (11) for vice-versa. If we gen-
eralise this definition, then we have the fol-
lowing definition of a rank n tensor:
A Cartesian tensor of rank n is a set of Nn

quantities Tij...m, which transform under ro-
tations according to the rule:

Tij...m = ∑
p

∑
q
· · ·∑

t
Tpq...taipajq . . . amt (10)

where, aipajq . . . amt are the cosines of the an-
gles between the new and old coordinates.

4 Tensor Features

Though the ability to express invariance[6]
is a fundamental property of tensors, be-
sides this main property, four other innate
potentialities possessed by tensors come in

handy to express various aspects of physi-
cal reality in science. These aspects/features
or characteristics are namely: Anisotropic-
ity, Many-particle quantum states, Entangle-
ment, and Big data storage capacity.

4.1 Invariance (Covariance of Physical

Laws)

The main characteristic of a tensor is that its
representations in different coordinate sys-
tems depend only on the relative orienta-
tions and scales of the coordinate axes at that
point, and not on the absolute values of the
coordinates. Tensors serve to seclude the
intrinsic geometric and physical properties
from the coordinate dependent ones. So if
two tensors of the same type are equal in one
coordinate system, then they are equal in all
coordinate systems. Therefore it can be said
that the central principle of tensor analysis
amounts to the simple fact that tensors re-
main invariant with coordinate transforma-
tions. This implies that equations written in
tensor form are valid in any coordinate sys-
tem as tensor equations look the same in all
coordinate systems. This is why the absolute
position vector pointing from the origin to a
particular object in space is not a tensor be-
cause the components of its representation
depend on the absolute values of the coordi-
nates.
The physical reality encoded in the laws of
physics is universal that is independent of
reference frames under appropriate symme-
try transformations. So this means it de-
pends on what laws one is talking about,
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as for instance Newton’s laws are invari-
ant with respect to the Galilean transfor-
mations and Standard model is invariant
with respect to Lorentz transformations. In
both these theories there is a preferred set of
frames called inertial frames. The theories
or the laws are invariant only with respect
to which inertial frame one is using. In con-
trast, general relativity is invariant with re-
spect to general coordinate transformations.
And as remarked above, the main charac-
teristics of objects called tensors is that they
remain invariant under certain coordinate
transformations. So it should be clear that
invariance of tensors is subject to transfor-
mation rules. One should first talk about the
transformations under which one is asking
for invariance. Only then, logically speak-
ing, can one talk about tensors. The same
object could have different transformation
properties with respect to different transfor-
mations. For example, Higgs boson (before
electroweak symmetry breaking) is an SU(2)
doublet while Lorentz scalar. So, as a ten-
sor it will have only one SU(2) index and no
Lorentz index.

This entails that if laws of physics are ex-
pressed using tensors they become form in-
variant under appropriate transformations
and hence tensors provide the best means
to objectively represent the physical reality
independent of coordinate systems or ob-
servers. In the language of physics if the
equations of physics possess the same form
in different coordinate systems they are said
to be covariant, though the word covariant

BOX 3. Illustration of the invariance of Tensor

equation.

in tensor analysis has different meaning too.
The Box 3 illustrates with an example the co-
variant nature of a tensor equation. This de-
mand of covariance, that all physical laws
should be invariant under transformation
between inertial systems led Einstein to the
formulation of his theory of special relativ-
ity. Also, the need that the Maxwell’s equa-
tions should be invariant under transforma-
tions, and the failure of Galilean transforma-
tions to do it, led to the Lorentz transfor-
mations. In Table 2 we present few famil-
iar equations (Newton’s 2nd law, Maxwell’s
equations and Dirac equation) in their usual
scalar/vector form and the same in tensorial
form.

4.2 Anisotropy (in properties of

Material, Fields and Manifolds)

When materials are subjected to some stim-
ulus like mechanical force, electric field,
magnetic field, temperature field, etc., they
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subsequently respond, which respectively
may be reflected in some property change
such as elongation/deformation, electric
current or polarization in dielectrics, mag-
netization, heat flow, etc. But these re-
sponses may also be associated with some
other cause/stimulus. For instance, the ap-
plication of pressure may lead to the polar-
ization of the crystal (Piezo-electric effect)
or the influence of a magnetic field may
lead to strain in the material (magnetostric-
tion), or the presence of temperature differ-
ence can cause electrical potential difference
(pyroelectricity). In all such cases, a mate-
rial/physical property connects the stimu-
lus to the response, like, P = p · ∆T, M =

χ · H, σ = c · ε, etc., where the symbols are
defined in Table 3. These material properties
can be measured in experiments or can be
calculated from more fundamental proper-
ties.
In reality, the stimulus and response are usu-
ally direction dependent or anisotropic and
hence are tensors, and therefore the material
properties are also tensors of some rank. The
equations mentioned above take the follow-
ing look in tensorial notation:

Pα = pα∆T, Mα = χαβHβ, σαβ = cαβγδεγδ

The physical property connecting a stimulus
of rank-m to a response of rank-n will be of
rank (m + n). In the first equation listed, the
stimulus ∆T is of rank zero and the response
Pα is of rank one; hence the property pα is of
rank one, in the second equation, the stim-
ulus Hβ is of rank one and the response Mα

is also of rank one; hence the property ten-

sor χαβ is of rank two, in the last equation,
the stimulus εαβ is also of rank two and the
response σαβ is also of rank two; hence the
property tensor cαβγδ is of rank four. Few
of These material properties in tensorial and
usual representations, along with their cor-
responding stimulus, response, and ranks,
are tabulated in Table 3.
As mentioned above, apart from the mate-
rial properties, tensors are also used to de-
scribe fields and manifolds. Similar to prop-
erty tensors, these tensors can be of various
ranks. For example, the temperature field
T(x, y, z) is a scalar field, where each point
in space is described by one number at that
point. Hence, scalar fields are tensor fields
of rank zero. On the other hand, electric and
magnetic fields are vector fields or tensor
fields of rank one, and their specification re-
quires three numbers at each point in three-
dimensional space. These three numbers are
the components along the coordinate axes
and give the direction and magnitude of
the vector. The electromagnetic field ten-
sor, introduced after the four-dimensional
tensor formulation of special relativity in
Minkowski space-time, is a second-rank ten-
sor, and the electric and magnetic fields can
be obtained from the components of the
electromagnetic tensor.

Another example of a tensor field is the
Riemann curvature of a manifold. A mani-
fold is a topological space that locally resem-
bles Euclidean space near each point. When
distances and angles can be measured on
the manifold, then it is called Riemannian.
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TABLE 2. Few familiar undergraduate

scalar/vector equations in Physics in their

tensorial attire.

More distinctly, a Riemannian manifold is a
differentiable manifold in which each tan-
gent space is equipped with an inner prod-
uct in a manner which varies smoothly from
point to point. In tensor analysis, the Rie-
mann curvature tensor is the most common
way to express the curvature of Riemannian
manifolds. It assigns a tensor to each point
of a Riemannian manifold (i.e., it is a tensor
field) that measures the extent to which the
metric tensor is not locally isometric to that
of Euclidean space. It is the sophistication
or elegance of tensor analysis that it is able
to capture the invariance aspect as well as
the spatial peculiarities in one go. This, at
once, can be seen from the general formula
for the invariant line element in any space,
ds2 = gij dxi dxj, where gij is the metric ten-
sor encoding the properties of the space.

4.3 Many System Quantum States

In quantum mechanics, a tensor product is
used to describe a system that is made up
of multiple quantum subsystems. The sim-
ple reason that tensor product is required
to build the joint space is because the di-
mension of joint vector space of two sepa-
rate quantum systems magnifies multiplica-
tively and not additively, and is equa to the
product of dimensions of the two separate
system vector spaces, i.e., dim(V ⊗ V) =

(dim V)(dim V). If V is the vector space of
one system and V is the vector space of an-
other system then the quantum state of both
the systems is V ⊗V, where the symbol rep-
resents tensor product.
Now it is well known in tensor analysis
that the rank of a tensor can be increased
through the outer or tensor product. If
we take Cartesian product of the two vec-
tor spaces V × V then the resultant dimen-
sion is just the direct sum of V and V i.e.,
dim(V × V) = dim V + dim V, because the
vectors are ordered pairs of vectors (V, V) ∈
V × V. The cartesian product space V × V
is a space whose states are the states of sys-
tem V or system V or both, whereas V ⊗ V
is the vector space whose basic states are
pairs of states, one from V and one from
V. So the Cartesian product cannot account
for a large Hilbert space constructed from
the smaller sub Hilbert spaces but this large
Hilbert space is accounted by tensor prod-
uct space which is a much larger space than
Cartesian space. Hence the tensor prod-
uct is the fundamental building operation
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of quantum systems that occupies a central
place in the subject of many body quantum
mechanics.

TABLE 3. Few material property tensor

coefficients with their stimulus and response

relation.

4.4 Entanglement

A major concept setting quantum reality
apart from the classical one is the notion of
entanglement. The fact that physical sys-
tems can be correlated in ways that exceed
shared randomness of classically correlated
systems is an important asset in the field of
quantum computation. Quantum computa-
tion is a fast developing field, at the interface
of Quantum mechanics, Computer science
and Information theory, that tries to har-
ness this weird aspect of quantum reality for
technological purposes. Quantum comput-
ers are not limited to two states like present
day computers which work by manipulat-
ing bits that exist in one of two states, |0⟩ or
|1⟩. Quantum computers encode informa-
tion as quantum bits or qubits that can ex-

ist in superposition of both |0⟩ and |1⟩ states
at the same time. The tensor product suc-
cinctly captures this same distinct quantum
behavior as has been discussed in the above
section.
But if the states of two distinct quantum sys-
tems cannot be factorised as a tensor prod-
uct of a wave function from one space with
that from the other then the state is said to
be ”entangled”. Thus the tensor product for-
malism comes into picture whenever entan-
glement is in consideration. The essence of
quantum entanglement lies in the fact that
there exist states in the tensor product space
of physically separate systems that cannot
be decomposed as tensor product of states
from separate systems. In other words there
exist states of the combined system that can-
not be expressed in terms of definite states
of the individual systems.
For example, suppose both VA and VB are
two dimensional Hilbert spaces describing
spin-1/2 degrees of freedom of two quan-
tum particles. Each space can be spanned
by an orthonormal basis of couple of states
|vAi⟩ ≡ |vBi⟩ = {|0⟩ , |1⟩}, representing
spin-up and spin-down states. Then the ten-
sor product space V = VA ⊗ VB is a four
dimensional space spanned by pairwise ba-
sis of vectors drawn from VA and VB bases,
that is {|vAi⟩ ⊗ |vBi⟩} = {|0⟩ ⊗ |0⟩ , |0⟩ ⊗
|1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩}. That is any state
of the combined system is completely spec-
ified by |vAi⟩ ⊗ |vBi⟩ ∈ VA ⊗ VB. But as
remarked above the opposite is not always
true, that there exist states of the combined
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states which cannot be expressed as the ten-
sor product of individual systems. For ex-
ample consider the following quantum state
of two spin 1/2 systems, |Φ⟩ = 1√

2
(|0⟩ ⊗

|1⟩ − |1⟩ ⊗ |0⟩). There is no choice of ba-
sis that allows this state to be expressed in
terms of separate individual particle states,
i.e., |Φ⟩ ̸= 1√

2
(|Φ⟩ ⊗ |Φ⟩). In such a case the

two particles are in entangled state.

4.5 Data Storage and Mining

A big reason as to why tensors have now
become ubiquitous in pure and applied sci-
ences is because of the fact that they pro-
vide a means to organize multi-dimensional
data, as tensors of higher rank can be rep-
resented as multi-dimensional arrays or ma-
trices. Matrices are versatile objects that can
be used for storing and accessing informa-
tion in a systematic way. So in context of ma-
chine and deep learning tensors can be re-
garded as huge multi-dimensional contain-
ers having natural representation for data
storage and data mining. It should be noted
that though a tensor is often construed as a
generalized matrix but every matrix is not
a tensor. For instance any tensor of rank 2
can be cast in a matrix of order 2× 2, but the
converse that every matrix of 2× 2 order is a
rank-2 tensor is not true. The numerical val-
ues of the components of a tensor in its ma-
trix representation depend on the transfor-
mation rules employed. The numerical val-
ues change when a transformation is made.
Though the tensor remains invariant on co-
ordinate transformation but its component

do not and hence tensor despite appearing
as an static entity are dynamical objects in
essence. This dynamical aspect of tensors is
what that distinguishes it from a mere ma-
trix.
The Figure 2 shows tensors of zero, first,
second and third rank as single and multi-
dimensional arrays or matrices. The avail-
ability of cheap and high computational
power and storage devices has enabled ex-
tensive computations on vast amounts of
data. Data mining is the process of ex-
tracting valuable knowledge or information
from a large set of data. If tensor product is
a useful operation for building large quan-
tum states from sub quantum systems then
tensor decomposition is a highly important
tool for summarization and analysis of data.
Much of the literature on data mining deals
with tensor decomposition methods which
are outside the scope of this article.

4.6 Non-Tensors

Finally, a brief note on non-tensors will be
in order. Not every physical/mathematical
quantity represented in symbols adorned
with indices is a tensor. A trivial example
is the components of a vector which is co-
ordinate dependent. The individual compo-
nents are not tensors because under vector
transformation the components of the vector
vary from system to system but in a way that
the vector itself remains intact. Sometimes
an entity is called a qualified tensor because it
behaves as a tensor under a certain subclass
of coordinate transformations. For instance,
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the differential element dxi containing spa-
tial components is a tensor in all the three
dimensional Euclidean spaces but not in the
four dimensional Minkowski space. Simi-
larly the coordinates {xi} are not tensors as
it makes no sense to add coordinates, for in-
stance, adding the spherical coordinates of
two points. In contrast to coordinates, the
differentials dxi are tensors. Also the Ja-
cobian, Ji

j =
{

dxi

dxj

}
, used to quantify the

changes in the infinitesimal lengths, areas,
volumes, etc., that occur when changing the
basis of a coordinate system, is also a non-
tensor. This is because the Jacobian matrix is
not defined per se, but is only defined with
reference to two chosen coordinate systems.
A tensor is an abstract entity which exists
even if no basis has been referred to. The
other obvious examples of non-tensors are
the partial derivatives and also the Christof-
fel symbols. The partial/ordinary deriva-
tive does not in general yield a tensor be-
cause the derivative has no meaning out-
side the reference frame in which it is dif-
ferentiated. For instance, if the derivative
of a tensor in a coordinate system is zero,
then it is not necessarily zero in other coor-
dinate systems too. But the same does not
hold for covariant derivatives, as the covari-
ant derivatives are tensors, and if the covari-
ant derivative vanishes in one frame, then
it necessarily vanishes in all frames. Com-
plete differentiation or covariant differenti-
ation requires taking not only the compo-
nent term but also the base vectors which
are also spatially dependent, except in the

case of orthonormal Cartesian coordinate
system. The additional term that is added
to the usual partial derivatives to make it
covariant are called the Christoffel symbols.
Not to mention the Christoffel symbols van-
ish in Cartesian coordinates.

5 Conclusions

Tensors are in essence abstract mathemati-
cal objects with deep and profound impli-
cations. Soon after the formulation of gen-
eral theory of relativity the subject became
popular and developed further rapidly in as
much that it now appears in all branches of
science and engineering. The key attribute
of tensors is the facility to express invari-
ance under appropriate transformation laws
in either mathematical or physical proper-
ties/laws. But besides this fundamental
property of invariance four other innate po-
tentialities possessed by tensors comes in
handy to express various aspects of phys-
ical reality in science namely anisotropic-
ity, many particle quantum states, entangle-
ment and big data storage capacity. Two
extremely useful operations on tensors are
tensor product and tensor decomposition.
While tensor products are immensely rele-
vant in quantum mechanics and quantum
computation, tensor decomposition meth-
ods are highly needed in machine learning
and deep learning. Therefore the bottom
line is tensor is an incredibly important sub-
ject with fascinatingly significant features
and amazingly wide implications.
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Abstract

Ordinary differential equations are expressed

using a novel operator. A new type of poly-

nomial algebra is introduced that is seen to

occur in a wide number of ordinary differential

equations. We use the novel approach to

classify differential equations. Deformations of

the underlying algebra are also investigated.

1 Introduction

A single variable Linear Differential Equa-
tion can be cast in the form [1]

[F(D) + P(x,
d

dx
)]y(x) = Q(x) (1)

where

F(D) = ∑nanDn (2)

where
D = x d

dx is a novel operator that we
shall be using

Q(x) gives the ’source term’ of the dif-
ferential equation

an are some x-independent constants
and

P is an arbitrary operator/polynomial
of x (denoted as ∑k Pk, k=1,2,....) comprising
of powers of x, derivatives with respect to
x and other operators not expressible in the
form F(D). In general we indicate by Pk an
operator that has net index ’k’ (i.e the value
by which the power of the variable is raised
after the operator acts on a monomial). For
instance x4or 3x5 d

dx both are P+4 or P4 terms.
As a concrete example if we consider Her-
mite’s differential equation

[x
d

dx
− n − 1

2
d2

dx2 ]Hn(x) = 0 (3)

we can define

F(D) = x d
dx − n = D − n and

P(x, d
dx ) = −1

2
d2

dx2 .
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1.1 A Specific Case

Let us concentrate on a specific case of the
type of polynomial algebra where the expo-
nent of the monomial is changed at the most
by unity, Hence we need to have three type
of terms

P+ in which the exponent is increased
by +1

P0 in which the exponent is left unal-
tered and

P−1 in which the exponent is decreased
by +1

We denote the algebra as {P+, P−, P0}.
The rationale for restricting ourselves to

this kind of algebra is that most differential
equations of physical systems are of at most
second order.

The polynomial algebra is defined by
the two relations:

[P0, P±] = ±P±
[P+, P−] = f (P0)

(4)

Here f (P0) is a polynomial in P0 and P± de-
note terms in P that increase or decrease the
power of x by unity. We can obtain a second
function g (P0) such that

f (P0) = g (P0)− g (P0 − 1) (5)

This equation clearly suggests that g (P0)

has order one higher than f (P0). As we
shall see, this relation is fundamental in
defining the order of the algebra. In view
of differential equations and the present al-
gebra that we just postulated, let us put for-
ward a new algebra that we see in certain
classes of differential equations.

1.2 The New Algebra: {P+, P−, P0}

We now focus on the new type of algebra
that we had mentioned. It occurs in some
specific differential equations. As we shall
see this type of algebra occurs quite natu-
rally for some well known class of differen-
tial equations (like the Heun class).

We consider the solutions to differential
equations to be in the form of monomials.
By monomials we mean an algebraic expres-
sion that has only one term. Some common
examples of monomials are x4, 3x2, 5x4y9

etc.
Let the differential equation that we are

studying be of the form:[
f1(x)

d2

dx2 + f2(x)
d

dx
+ f3(x)

]
y(x) = 0

(6)
Keeping in mind the underlying algebra of
the operators we have to take the fi(x) as

f1(x) = a0x3 + a1x2 + a2x + a3

f2(x) = a4x2 + a5x + a6

f3(x) = a7x + a8

(7)

which needs to be farther restricted to avoid
’unwanted’ terms. In order to have the spe-
cific algebra and no other term, we must im-
pose a3 = 0. This gives three types of terms

P+ = a0x3 d2

dx2 + a4x2 d
dx + a7x

P0 = F(D) = a1x2 d2

dx2 + a5x d
dx + a8

P− = a2x d2

dx2 + a6
d

dx

(8)

We rewrite 8 using

P0 = x
d

dx
= D (9)
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Rewriting P± in terms of P0 we obtain

[P+, P−] = α1P3
0 + β1P2

0 + γ1P0 + δ1 = f (P0)

(10)
A Casimir operator is defined as an operator
that commutes with all the generators. It is
defined by

C = P−P+ + g(P0) (11)

Explicitly working out the Casimir operator
it comes out to be

C = a6a7 + e (12)

We obtain

α1 = −4a0a2

β1 = 6a0a2 − 3a2a4 − 3a0a6

γ1 = (−2a0a2 + 3a0a6 − 2a4a6 − 2a2a7 + a2a4)

δ1 = −a6a7
(13)

2 Deformations of Polynomial

Algebras

As we saw in the last Section, general second
order differential equations yield an alge-
bra of {P+, P0, P−} type under specific con-
ditions. In the present section we shall delve
deeper into this type of algebra.

We now restrict ourselves to differential
equations of the form

[P+ + P0 + P−] y(x) = 0 (14)

Here g(P0) = g(D) is such that

f (D) = g(D)− g(D − 1) (15)

where
f (D) = [P+, P−] (16)

It is hence clear that g(D) must have an or-
der one higher than that of f (D).

When P+and P−do not commute we get
f (D) ̸= 0 and we say that the algebra is de-
formed. Depending upon the highest power
of D we define the degree of deformation of
the algebra.

For instance, if we obtain

[P+, P−] = f (P0) = aP2
0 + bPo + c (17)

where a, b, c are constants, we say that it is a
quadratic deformation of the algebra.

Since f (D) is quadratic in D, clearly
g(D) must be cubic in D.

Taking g(D) = αD3 + βD2 + γD + δ we
obtain upon comparison with 17 and insert-
ing into 11

C = P−P+ + h1(P0) (18)

where

h1(P0) =
a
3

P3
0 +

a + b
2

P2
0 +

a + 3b + 6c
6

P0 + δ

(19)
Substituting for P± we obtain the

Casimir, though it is not of interest to us
presently.

For the next higher order, if we obtain

[P+, P−] = f (P0) = aP3
0 + bP2

o + cP0 + d
(20)

where a, b, c, d are constants, we say that it is
a cubic deformation of the algebra.

As before, explicitly working out the
Casimir one obtains

C = P−P+ + h2(P0)
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where

h2(P0) =
a
4

P4
0 +

(
b
3
+

a
2

)
P3

0+

(
a
4
+

b
2
+

c
2

)
P2

0 +

(
b
6
+

c
2
+ d

)
P0

(21)

For higher order deformations we can
explicitly work out following the same
technique.

3 Conclusion

We find applications of the novel approach
to differential equations in different cases
like the Harmonic Oscillator [1], the Sex-
tic Oscillator [1], the Heun differential
equation[2][3] to name a few. The deforma-
tions that we have explored in this article

seem to be novel results and possibly can be
helpful in areas where algebraic structures
of differential equations are dealt with.
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Abstract

This article describes a very simple demonstra-

tion experiment of understanding Amplitude

Modulation. Even though ICs are available for

amplitude modulation, but this article shows

that how one can understand the concept of am-

plitude modulation by using basic components

and instruments available in any Undergraduate

Physics laboratory.

1 Introduction

In Radio transmission, the audio signal (20
Hz to 20 kHz) is to be transmitted from a
broadcasting station over a great distance to
a receiver. However, the audio signal can-
not be sent directly over the air for apprecia-
ble distance, even if the audio signal is con-
verted into electrical signal, it cannot be sent
very far without employing large amount of

power. As, the radiation of electrical energy
is practicable only at high frequencies, high
frequency signals can be sent thousands of
miles with small power. [1, 2]. Therefore,
if an audio signal is to be transmitted to a
longer distance, some methods must be de-
vised which will allow transmission to oc-
cur at high frequencies and at the same time
also carry the audio signal along with it.
This is achieved by superimposing the low
frequency electrical audio signal on a high
frequency wave. The high frequency wave
is called as the “Carrier” as it carries the
low frequency audio signal. The resultant
waves are known as modulated waves or ra-
dio waves and the process is called modula-
tion as shown in Figure 1 [3, 4].

Modulation is the process of chang-
ing some characteristics (for example
amplitude, frequency, phase) of the high
frequency (carrier) wave in accordance with
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Figure 1: Modulation (Amplitude Modulation)

the intensity of the audio signal. Basically,
there are three types of modulation:

• Amplitude modulation

• Frequency modulation

• Phase modulation

When the amplitude of high frequency
carrier wave is changed in accordance with
the intensity of the audio signal, it is called
amplitude modulation as shown in Figure
1. Referring to Figure 1, in Amplitude Mod-
ulation only the amplitude of the high fre-
quency carrier wave changes in accordance
with the intensity of the audio signal, but the
frequency of the modulated wave remains
as that of the carrier waveform.

Whereas, when the frequency of the car-
rier wave is changed in accordance with the
intensity of the audio signal, it is called Fre-
quency Modulation (FM) as shown in Figure
2. In FM only the frequency of carrier wave

is changed in accordance with the audio sig-
nal, however the amplitude of the carrier
wave remains the same.

Figure 2: Frequency Modulation

2 The experimental set-up

In order to design a simple amplitude
modulator circuit, we first design a basic
Common Emitter Amplifier circuit having a
certain voltage gain (Av) as shown in Figure
3. In the circuit, R1 and R2 are used as
potential divider to apply a smaller ac input
voltage to the amplifier. The input applied
has a voltage of 50mV and frequency, f =
7.6kHz. The output observed is 180◦ out
of phase with respect to the input signal as
shown in Figure 4.

Now, we shall introduce another ac
signal which is to be transmitted, to the
emitter of the transistor as shown in Figure
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Figure 3: Common Emitter Amplifier (R1= 10
kΩ, R2 = 1 kΩ, R3 = 22 kΩ, R4 = 10 kΩ, RC =15
kΩ, RE =10 kΩ, Cin = 0.1 µF, Cout = 0.01µF, C =
1µF, Q = BC147).

Figure 4: Input Output Waveform of CE Ampli-
fier

5. This ac signal should be of low frequency.
In this set-up we have kept 100Hz. Since
this low frequency signal is now a part of
the biasing circuit, hence it produces low
frequency voltage variations in the emitter
circuit.

As the voltage at the emitter varies, the
Gain ‘Av’ of the amplifier also varies. Hence
the amplitude of the amplified output varies
in accordance with the intensity of the low
frequency signal as shown in Figure 6a and

Figure 5: Low Frequency Signal applied to
Emitter

6b. The output waveform observed at the
Common Emitter amplifier looks like an
amplitude modulated waveform, whereas
the input signal applied to the input of
the CE amplifier is the Carrier Waveform
and the low frequency signal applied to
the emitter of the transistor is the audio or
modulating signal. So, when the amplitude
of high frequency carrier wave is changed
in accordance with the intensity of the audio
signal it is called amplitude modulation.
The frequency of the modulated signal is
same as that of the Carrier frequency as
shown in Figure 7.

One can also study the Modulation
factor, which describes the depth of modu-
lation i.e., the extent to which the amplitude
of the carrier wave is changed by the audio
signal. This can be done by varying the
amplitude of the low frequency modulating
signal. When the amplitude of the modulat-
ing signal (low frequency signal) is less than
the amplitude of the high frequency carrier
signal then it results in ‘Under Modulation’.
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Figure 6a: Modulated Waveform and Modulat-
ing Signal

Figure 6b: Modulated Waveform and Modu-
lating Signal

Figure 7: Frequency of Modulated Waveform
same as Carrier Waveform

When the amplitude of the modulating
signal (low frequency signal) is more than

the amplitude of the high frequency carrier
signal then it results in ‘Over Modulation’ as
shown in Figure 8. The entire experimental
set-up is shown in Figure 9.

Figure 8: Over- Modulation

Figure 9: Entire Experimental Set-up
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