


39/1 2 www.phyedn.in 

 

 

Physics Education                                                                   January-March 2025 

 

Volume 39, Number 1 

 

In this Issue: 

 

 Editorial 

1. Semi-magic Numbers from Sub-shell Closures in 

Shell Model Energy Levels 

     Shikha Awasthi, O.S.K.S Sastri & Vandna Luthra……1-22 

2. Gravity in Undergraduate Thermal Physics Courses 

                                                                                                                                            

         Kartik Tiwari………………………………………….1-9 

3. SOL-GEL: A simple method of Thin film deposition and  

     Nano-particle growth 

Sharmistha Lahiry .......................................................... 1-14 

4. Some Applications of Lorentz Oscillator Model  

Vishwamittar………………………………………….1-22 

 



Editorial

Navigating the Intersections of Physics Education and Innova-

tion

Welcome to the first issue of Physics Education in 2025—a fresh beginning in our shared
pursuit of nurturing minds, questioning assumptions, and unlocking the wonders of na-
ture through the lens of physics.

As the discipline continues to grow in complexity and relevance, this journal em-
braces its role as a platform where educators and learners alike can explore the edges of
knowledge and pedagogy. Our contributors this quarter exemplify this spirit of explo-
ration, presenting articles that blend theoretical depth with practical teaching relevance:

Semi-Magic Numbers from Sub-shell Closures in Shell Model Energy
Levels: Shikha Awasthi, O.S.K.S Sastri & Vandna Luthra

This article offers a compelling exploration of nuclear structure, illuminating how sub-
shell closures lead to the emergence of semi-magic numbers. The findings not only
expand theoretical physics but also offer fresh classroom narratives about nuclear sta-
bility and shell model symmetry.

Gravity in Undergraduate Thermal Physics Courses: Kartik Tiwari

Tiwari’s contribution challenges conventional curriculum boundaries by integrating grav-
ity into thermal physics discussions. By highlighting gravitational influence on thermo-
dynamic systems—often overlooked at the undergraduate level—it opens pedagogical
avenues that foster deeper interdisciplinary engagement.

SOL-GEL: A Simple Method of Thin Film Deposition and Nano-particle
Growth: Sharmistha Lahiry

With lucid exposition and rich context, Lahiry brings the sol-gel technique into focus—a
gateway to hands-on experimentation in materials science. The work strikes a balance
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between theoretical grounding and experimental accessibility, making it especially valu-
able for physics educators venturing into nanoscience.

Some Applications of Lorentz Oscillator Model: Vishwamittar

This article revisits the Lorentz oscillator model with renewed vigor, detailing its appli-
cations in fields ranging from optics to quantum electronics. Its clarity and instructional
value make it a standout resource for educators seeking to link historical models with
contemporary insights.

Looking Beyond the Pages

As educators, researchers, and students continue to push boundaries and challenge
norms, Physics Education is proud to offer a canvas for ideas that empower and en-
lighten. Whether you’re in a classroom, a lab, or simply curious about the nature of
things, this issue is an invitation to expand your horizons, question deeply, and teach
boldly.

Let us make 2025 a year where physics doesn’t just describe the universe—but helps
us understand our place in it.

Prof. OSKS Sastri
Chief Editor
Physics Education (IAPT)
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Abstract

The magic numbers associated with shell
closures at the β-stability line are a well-
established concept. The experimental
observation of highly neutron-rich nuclei,
such as 24O, 42Si, and 54Ca, exhibiting re-
markable stability has inspired a search for
new magic and semi-magic numbers based
on sub-shell closures. The purpose of this
work is to guide graduate-level students in
analyzing possible sub-shell closures that
could result in magic and semi-magic num-
bers [1], based on the single-particle energy
states of the nuclear shell model. The analy-
sis focuses on doubly magic nuclei near the
β-stability line, ranging from 16

8 O to 310
126X,

by classifying them into various categories-
light, medium, heavy, and super-heavy
nuclei; to deduce potential magic and
semi-magic numbers for neutron number
(N) and proton number (Z) [2]. The stability
of nuclei with N = 14, 34, 40 and Z = 14, 34

has been confirmed, while nuclei with
N = 6, 16, 18, 32, 58, 64, 92, 100, 136, 164,
and 172, as well as Z = 18, 58, and 76, are
predicted to exhibit stability. This analysis
is particularly helpful for undergraduate
(UG) students to understand why gaps
exist between energy levels according to the
single-particle shell model scheme.

Keywords: Magic and Semi-magic num-
bers, Doubly magic nuclei, Shell model,
Central Divided Difference (CDD) Method,
Gnumeric.

1 Introduction

It is a well-known fact that the atomic nu-
clei exhibit similar shell structure as that
of atomic shells with neutrons and protons
forming the shells. These discrete shells are
the quantum states of neutrons and protons
which are most important in understand-
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ing the structure of a nucleus. The large
gaps between these single particle energy
states exists when there is a shell closure
at N or Z equal to 2, 8, 20, 28, 50, 82, 126
and 184 (for neutrons only) i.e the so called
‘magic numbers’. The nuclei which have ei-
ther proton or neutron equal to magic num-
ber are known as ‘magic nuclei’ and the nu-
clei which have both proton and neutron
equal to magic number are known as ‘dou-
bly magic nuclei’. Due to the shell gaps
in energy states for filled shells at differ-
ent magic numbers, the nucleons are more
tightly bound to the nucleus causing extra
stability to the nucleus as compared to the
adjacent nuclei [3]. Also magic nuclei are
less deformed as compared to their neigh-
bouring nuclei. This results in abundance of
elements with neutron number (N) = magic
number. But in recent years, the studies
have revealed that in some cases the usual
shell closures disappear and the new shell
closures appear [4], [5]. The appearance
and disappearance of these Magic numbers
may depend on different mass regions un-
der consideration. The discovery of new
magic numbers [6] may help in deciding
the existence limit of Superheavy nuclei [7].
Many Magic and Semi-Magic numbers are
predicted theoretically [ptu] and experimen-
tally e.g 24

8 O, 42
16Si, 54

20Ca etc. [8, 9, 10] by many
groups using separation energy plots, pair-
ing energy plots, binding energy investiga-
tions and by using different methods such
as Hartree-Fock-Bogoliubov methods [11].
The syllabus of graduate level [12, 13, 14] in-

cludes Nuclear Shell model and magic num-
bers, but it will be easy for students to grasp
the essence of how energy levels of different
nuclei are formed and how are magic num-
bers obtained from them. In this work, we
are trying to deduce magic and semi-magic
numbers using single particle energy states
of neutron and proton [1] for doubly magic
nuclei from 16

8 O to 310
126X in quite an easy man-

ner which is within the approach of gradu-
ate level students. This will provide a better
understanding for graduate level students
about how the single particle energy lev-
els are formed within a nucleus according
to nuclear Shell model and also how the
magic numbers can be realised from them.
Neutron and proton single-particle energy
states were determined by solving the time-
independent Schrödinger equation, with the
Woods-Saxon potential [15] serving as the
mean-field. The obtained energy states for
neutrons and protons are used to predict the
Magic and Semi-Magic numbers by calculat-
ing the gaps between the states. The Shell
model [3] is very effective model to obtain
the ground state energies for all nuclei. The
motivation behind this work is how many
Magic and Semi-Magic numbers can be de-
duced by using the single particle energy
states for various neutron number (N) and
proton number (Z).
In the following section, we present a brief
overview of the simulation methodology
proposed by D. Hestenes [16], which utilizes
the numerical matrix diagonalization tech-
nique [17] to determine the single-particle
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energy states of neutrons and protons in
doubly magic nuclei [18]. Section 3 provides
the simulation results along with a detailed
discussion. Finally, Section 4 summarizes
our conclusions.

2 Simulation Methodology

2.1 Modeling the interaction using

Woods-Saxon (WS)potential:

The interaction between nucleons is mod-
elled using a mean field potential i.e Woods-
Saxon potential or a simple rounded square
well potential. The Woods-Saxon potential
is able to predict some magic numbers, but
inclusion of Spin-orbit potential is necessary
to obtain the entire magic numbers. The
Spin-orbit potential is proportional to the
derivative of the mean field potential.
The modeling aids in the reduction of the
two-body problem to a one-body problem,
with the reduced mass of the system ac-
quired as a bound state of the central po-
tential, which is best expressed in spheri-
cal polar co-ordinates. The central equation
governing the dynamics at the microscopic
domain is the Time-Dependent Schrödinger
Equation (TDSE) which through separa-
tion of variables in and t results in Time-
Independent Schrödinger Equation (TISE)
[18]. The radial equation governing the sys-
tem for ℓ = 0 is given by

− h̄2

2µ

d2u(r)
dr2 + Ve f f (r)u(r) = Eu(r) (1)

Now the effective potential experienced by
a neutron or a proton is given by:

Ve f f (r)u(r) = Vc f (r) + Vi(r) (2)

Where, Vc f (r) is the centrifugal potential
given by:

Vc f (r) =
ℓ(ℓ+ 1)h̄2c2

2µc2r2 (3)

Here, µ denotes the reduced mass [1], which
varies between the neutron and the proton.
The constant h̄c has a value of 197.327 MeV-
fm.

µ =


mn×(Z×mp+(N−1)×mn)

(Z×mp+N×mn)
, for neutron

mp×((Z−1)×mp+N×mn)

(Z×mp+N×mn)
, for proton

(4)

Here, mp = 938.272 and mn = 939.565 are
masses of proton and neutron respectively,
in units of MeV/c2. Vi(r) is the net inter-
action potential; for a neutron, Vn(r) and a
proton, Vp(r) respectively given as:

Vn(r) = VWS(r) + Vℓs(r) (5)

Vp(r) = VWS(r) + Vℓs(r) + VC(r) (6)

The mean-field potential is modeled as [1]:

• Woods-Saxon potential (rounded
square-well potential) given by

VWS(r) =
V0

1 + exp
( r−R

a
) (7)

where V0 is the depth of the well.

V0 =


−51 + 33((N − Z)/A) MeV,

for neutrons

−51 − 33((N − Z)/A) MeV,

for protons

(8)
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Where, R = R0A1/3 (R0 = 1.28) is the
radius of the nucleus, a is surface dif-
fuseness parameter (taken = 0.66) [19]

• The Spin-orbit potential is given by

Vls(r) = V1

( r0

h̄

)2 1
r

d
dr

[
1

1 + exp
(

r−R
a

)](L.S)

(9)

Here, the spin-orbit coupling term is
given by L · S = [j(j + 1) − ℓ(ℓ + 1) −
3/4], h̄2, where ℓ is the orbital angular
momentum quantum number, j = ℓ+ s
represents the total angular momentum
quantum number and s is spin angular
momentum quantum number (= 1/2
for nucleons). V1 and r0 (V1 = −0.44V0

and r0 = 0.90 [1]) are the proportional-
ity constants.
For protons, the Coulomb interaction is
included given by:

Vc(r) =


(Z−1)e2

4πϵ0r , for r ≥ Rc
(Z−1)e2

4πϵ0Rc

[
3
2 −

r2

2R2
c

]
, for r ≤ Rc

(10)
Here, Rc denotes the nuclear charge ra-
dius, which is assumed to be ≈ radius
of the nucleus. This potential is multi-
plied and divided by electron rest mass
energy, mec2 = 0.511 MeV to rephrase it
in MeV units. The rephrased potential
is given by:

Vc(r) =



(Z−1)∗2.839∗0.511
r ,

for r ≥ Rc

(Z−1)∗2.839∗0.511
Rc

[
3
2 −

r2

2R2
c

]
,

for r ≤ Rc

(11)

Equation 1 represents the Time-
Independent Schrödinger Equation in
the form of an eigenvalue problem,
Hu(r) = Eu(r), where H denotes the
Hamiltonian operator. The radial wave
function u(r) must satisfy the boundary
condition u(0) = 0 and decay to zero as
r → ∞ to ensure it is properly normalized.

2.2 Numerical Technique used :

When deciding to choose a numerical tech-
nique for implementaion, there are three
crucial factors to consider i.e stability, ac-
curacy, and efficiency. The choice of these
techniques also depends on computational
efforts and computational time required.
In current work, we chose to work with
Central divided difference technique (CDD).
Due to the truncation of Taylor series to two
terms, the accuracy of CDD method is of
order O(h4). CDD method is the simplest
and most appealing matrix diagonalisation
method which can be easily implemented by
students in computer.
So, the main idea behind choosing CDD
technique is that we want these calculations
accessible to UG level students. Working in
free open source software (FOSS) like Gnu-
meric worksheets is a best way to make stu-
dents understand the problem easily [20].
Also Gnumeric has an additional advantage
as compared to other worksheet environ-
ments, to obtain eigen values by giving a
simple formula ‘eigen()’.
Unlike other numerical techniques like Ma-
trix Methods (MM) [17] using Sine basis
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which can not be solved in Gnumeric wor-
sheets due to inabilty to solve complex inte-
grals and Numerov Matrix Method (NMM)
[21], which requires more computational
time and effort, CDD is simple method with
three easy steps and can be easily imple-
mented in spreadsheets. Also, since the
steps to obtain eigenvalues for both MM and
NMM methods are more, therefore these
methods have a slightly lengthier algorithm
as compared to CDD method. Hence ob-
taining solution through CDD method re-
quires less computational time and effort,
and therefore is a good choice for implemen-
tation in UG lab projects.

2.2.1 Central Divided Difference (CDD)

Method for second order

derivative:

The Taylor series expansion of a function
U(x) about the point xj is expressed as fol-
lows:

f (x) = f (xj) + f ′(xj)(x − xj)+

1
2!

f ′′(xj)(x − xj)
2 + . . . (12)

If the point x lies sufficiently close to xj, the
Taylor series converges rapidly, allowing us
to retain only the leading terms. By setting
x = xj + h, where h is a small step size, the
series can be re-expressed in terms of h as:

f (xj + h) = f (xj) + f ′(xj)h +
1
2!

f ′′(xj)h2

+ O(h3) + . . . (13)

Similarly, the Taylor Series for a point x =

xj − h would be

f (xj − h) = f (xj)− f ′(xj)h +
1
2!

f ′′(xj)h2

− O(h3) + . . . (14)

Adding Eqns.(13) and (14), we get

f (xj + h) + f (xj − h) = 2 f (xj) + f ′′(xj)h2

+ O(h4) + . . . (15)

So, expressing xj + h as xj+1 and xj − h as
xj−1, second derivative for the function at
point xj is obtained as

f ′′(xj) =
f (xj−1)− 2 f (xj) + f (xj+1)

h2 (16)

accurate to O(h2).
Substituting Eq.(16) in Eq.(12) and rearrang-
ing, the wave function ψ can be determined
at points xj+1 in au as:

ψ(j + 1) = 2ψ(j)− ψ(j − 1)

− 2h2(E − V(j))ψ(j), j = 2, 3, ...N.
(17)

The wavefunction ψ(j) at all values of xj (j =
3, 4, . . . , N) can be determined by choosing
appropriate values for ψ(1) and ψ(2), for a
particular value of energy E.

2.2.2 CDD Method by taking TISE as

Matrix equation:

TISE can also be expressed as a tridiagonal
matrix equation by writing N − 2 simulta-
neous equations that are the result of ap-
plying Eq. (16) to all N − 2 intermediate
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points, j = 2, 3, ..., N − 1, within the poten-
tial well. Expressing the second derivative
of the wave function for intermediate points
xj, as

d2

dx2 ψ(xj) =
ψ(xj−1)− 2ψ(xj) + ψ(xj+1)

h2
(18)

and substituting into Time Independent
Schrödinger Equation written as eigen-
value equation

Hψ(x) = − h̄2

2m
d2ψ(x)

dx2 +V(x)ψ(x) = Eψ(x)
(19)

We obtain,

− h̄2

2mh2 ψ(xj−1) +

(
h̄2

mh2 + V(xj)

)
ψ(xj)

− h̄2

2mh2 ψ(xj+1) = Eψ(xj).

(20)

where E denotes the eigenvalues and ψ(x)
represents the corresponding eigenfunc-
tions. By letting V(xj) = Vj, ψ(xj) = ψj,
and introducing

f j =
h̄2

mh2 + Vj = f + Vj,

g = − h̄2

2mh2 = − f /2, (21)

the equation simplifies to:

gψj−1 + f jψj + gψj+1 = Eψj,

j = 2, 3, . . . , N − 1. (22)

Also, ψ1 = 0 and ψN = 0, the following
equations result for j = 2, 3, . . . , N − 1 as:

f2ψ2 + gψ3 + 0ψ4 + . . . + 0ψN−3 + 0ψN−2+

0ψN−1 = Eψ2, j = 2,

gψ2 + f3ψ3 + gψ4 + . . . + 0ψN−3 + 0ψN−2+

0ψN−1 = Eψ3, j = 3,

...
...

0ψ2 + 0ψ3 + 0ψ4 + . . . + gψN−3 + fN−2ψN−2+

gψN−1 = EψN−2, j = N − 2,

0ψ2 + 0ψ3 + 0ψ4 + . . . + 0ψN−3 + gψN−2+

fN−1ψN−1 = EψN−1, j = N − 1.

Rewriting these equations in matrix form :
f2 g 0 . . . 0 0 0
g f3 g . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . g fN−2 g
0 0 0 . . . 0 g fN−1




ψ2

ψ3
...

ψN−2

ψN−1



= E


ψ2

ψ3
...

ψN−2

ψN−1


which may be concisely expressed as

H(N−2)×(N−2)ψ(N−2)×1 = Eψ(N−2)×1 (23)

In Eq. (23), the Hamiltonian matrix is a tridi-
agonal symmetric matrix and is solved to
obtain (N − 2) eigen functions and their cor-
responding eigen functions.
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2.3 Implementation in Gnumeric

worksheet :

While implementing in Gnumeric work-
sheet, the step by step procedure to solve
Woods-Saxon potential using CDD method
is required. An algorithm which will help
students to understand the procedure, how
to obtain single particle energy states is
given below in Fig.(1). In supplementary
material (Appendix 1), the procedure to
solve the given Algorithm for proton states
of doubly magic nucleus 56

28Ni is given in
Gnumeric worksheet, which can be easily
reproduced. The energy level sequence for
all doubly magic nuclei starting from 16

8 O to
310
126X can be obtained by following the pro-
cedure given in Appendix 1.

3 Computational Results and

Interpretation

The model parameters have been obtained
earlier by our group [1] by using Varia-
tional Monte Carlo (VMC) technique in tan-
dem with Matrix method [17] and are uni-
versally applicable to all the nuclei from
lighter to heavy region. The energy level se-
quence for all the doubly magic nuclei have
been obtained by solving TISE using CDD
method and is in very good agreement with
our previous results using matrix Numerov
method [21] and also with experimentally
available data [22]. To validate our process,
the comparison of numerical results (using
CDD method) with our previuos results [23]
along with experimental results of doubly

magic nucleus 40
20Ca are given in Table (2).

3.1 Categorizing the nuclei

The gap between energy levels varies de-
pending on the mass region under consid-
eration. For lighter nuclei, the lower magic
numbers exhibit larger energy gaps. As we
move toward heavier nuclei, the energy gap
between the same energy levels decreases,
as demonstrated in the plot of energy dif-
ferences between neutron states of various
doubly magic nuclei for a specific magic
number (Fig. 2). This trend occurs because,
in heavier nuclei, the lower energy levels be-
come inert and are thus suppressed, reduc-
ing the gap between filled shells.
To determine the magic and semi-magic
numbers from the individual single-particle
energy states of protons and neutrons, the
doubly magic nuclei have been categorized
into distinct mass ranges: light, medium,
heavy, and super-heavy. This categorization
ensures that the magic numbers are derived
appropriately according to the specific mass
region under investigation.

A key observation from Fig. 2 is the pres-
ence of pronounced energy gaps between
consecutive single-particle states, which are
crucial for identifying magic numbers. Ac-
cording to the nuclear shell model frame-
work [19], such gaps, typically exceed-
ing approximately 1 MeV; indicate shell
closures that correspond to magic num-
bers. These significant energy separations
reflect enhanced nuclear stability arising

39/1/1 7 www.physedn.in
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Initialisation of Parameters

Physical System Parameters Algorithm Parameters

Defining Potential 
V(r) = VWS + VC + VCF + VLS

using above parameters

Solve TISE using numerical 
method

Obtain Eigen value for TISE 
HѰ = EѰ

Change step size hNo

Generate the 
energies for different 

values of l & j

Obtain the single particle 
energy sequence for a 

particular nucleus

Yes

Matching  with 
experimental data for 

ground state 
configuration

Object variables
Interaction variables

Input variables
Other Variables

Parameters used to 
proceed algorithm.

e.g. limiting the region of 
interest and step size h

Figure 1: Algorithm to obtain single particle energy states

from filled nucleon shells, as nucleons in
closed shells require a substantial amount of
energy to be excited to higher states.
The energy differences between states have
been calculated for both neutron and pro-
ton levels and are presented in Appendix

2. The plots of energy differences (in MeV)
with respect to the energy level sequence for
various doubly magic nuclei clearly demon-
strate that at magic and semi-magic num-
bers, the gap between filled shells is sig-
nificantly larger compared to adjacent lev-
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Table 1: Comparison of single-particle energy levels (in MeV) for protons and neutrons in
the doubly magic nucleus 40

20Ca, as obtained in the present study (via the CDD method), with
corresponding experimental data [22] and previously reported numerical results from our
group [23] (using the Matrix Numerov method)

States Proton states (MeV) States Neutron states (MeV)
Exp. Numerical values Exp. Numerical values

Ref[22] NMM[21] Present work Ref[22] NMM[21] Present work
1d5/2 −15.07 −12.19 −12.19 1d5/2 −22.39 −19.54 −19.52
2s1/2 −10.92 −8.14 −8.17 2s1/2 −18.19 −15.54 −15.54
1d3/2 −8.33 −6.85 −6.85 1d3/2 −15.64 −14.28 −14.26
1 f 7/2 −1.09 −2.33 −2.33 1 f 7/2 −8.36 −9.15 −9.12
2p3/2 0.69 1.00 0.98 2p3/2 −5.84 −5.42 −5.42
2p1/2 2.38 2.94 2.93 2p1/2 −4.20 −3.10 −3.09
1 f 5/2 4.96 5.37 5.37 1 f 5/2 −1.56 −1.20 −1.17

Figure 2: Energy difference vs number of neutrons for magic numbers
2, 8, 20, 28, 50, 82, 125, 184

els. This graphical representation helps stu-
dents develop a clearer understanding of
the structural gaps in the energy level se-
quence, offering critical insights into the
single-particle shell model framework.

3.2 Light nuclei : 16
8 O to 56

28Ni

Doubly magic nuclei i.e 16
8 O, 40

20Ca, 48
20Ca and

56
28Ni in lighter mass region are very effective
to study the magic numbers 2, 8, 20 and 28.

39/1/1 9 www.physedn.in
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3.2.1 16
8 O :

If we take the case of 16
8 O which is at N =

Z = 8 i.e the β-stability line, the magic num-
bers 2 and 8 are clearly visible for N and Z
as the states 1s1/2 and 1p1/2 show the filled
shells with neutron and proton equal to 2
and 8. Along with these, there is also a sig-
nificant energy gap (although smaller than
gap for 2 and 8) for state 1p3/2 showing 6
as the promising contender for semi-magic
number.

3.2.2 40
20Ca :

For 40
20Ca, along with magic numbers 2,8,20

for N and Z at energy states 1s1/2, 1p1/2

and 1d3/2 respectively the state 1d5/2 shows
14 as the candidate for magic number, since
the energy gap is comparable to the energy
gap for magic number 20. After extrapo-
lating our data, we can also observe magic
number 28 at energy level 1 f7/2 for neutron
states. Levels 1p3/2, 2p3/2 and 2p1/2 also
shows energy gap approximately half the
gap for magic numbers and predict 6 (inter-
polation), 32 and 34 (extrapolation) as semi-
magic numbers.

3.2.3 48
20Ca :

48
20Ca is another isotope of Ca having 28 neu-
trons and 20 protons. The magic numbers
2, 8, 20 and 28 are obtained at states 1s1/2,
1p1/2, 1d3/2 and 1 f7/2 respectively for both
N and Z. The state 1d5/2 shows the shell
gap comparable to the state 1 f7/2, again sup-
porting 14 to be the magic number. On ex-

trapolating the data for proton and neutron
states, we get 32 as the semi-magic number
with shell gap comparable to the state 1p3/2

showing 6 as the possible semi-magic num-
ber.

3.2.4 56
28Ni :

56
28Ni is at the β-stability line with N = Z =

28. The magic numbers obtained for both
neutrons N and protons Z states 1s1/2, 1p1/2,
1d3/2 and 1 f7/2 are respectively 2, 8, 20 and
28. 14 is again showing its magic charac-
ter at state 1 f7/2. On extrapolating our data
for neutron states, we get 32 as semi-magic
numbers and 40 and 50 as magic number.
Semi-magic behaviour of number 6 is again
visible here at state 1p3/2.

3.3 Medium range nuclei : 100
50 Sn to 132

50 Sn

3.3.1 100
50 Sn :

100
50 Sn is again at β-stability line with N =

Z = 50. On observing the energy gaps
between filled shells for neutrons and pro-
tons, we get different magic and semi-magic
numbers for N and Z. Magic numbers for Z
= 2, 8, 18, 20, 28 and 34 are observed at states
1s1/2, 1p1/2, 1d3/2, 2s1/2, 1 f7/2 and 1 f5/2 re-
spectively. For N, the magic numbers ob-
served are 2, 8, 14, 20, 28, 50 and after extrap-
olation 82 magic number was also observed.
Along with magic numbers, few semi-magic
numbers are also observed for N = 16, 38,40,
64 and 90 and for Z = 14.
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Figure 3: Separation in energy between consecutive single-particle states of 16
8 O

Figure 4: Separation in energy between consecutive single-particle states of (i) 40
20Ca and (ii)

48
20Ca

Figure 5: Separation in energy between consecutive single-particle states of 56
28Ni

3.3.2 132
50 Sn :

For 132
50 Sn, along with already existing magic

numbers 2.8. 20, 28, 50 and 82 (extrapola-
tion), Magic number for N = 40 is observed

at state 2p1/2. Semi-magic numbers for N
and Z equal to 14 and 64 are observed at
states 1d5/2 and 2d5/2 respectively. 18, 34
and 38 are observed semi-magic numbers
for Z at states 1d3/2, 1f5/2 and 2p3/2 respec-
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tively.

3.4 Heavy and Super-heavy range nuclei
208
82 Pb and 310

126X :

3.4.1 208
82 Pb :

The single particle neutron and proton en-
ergy states for 208

82 Pb show some new magic
numbers. For heavy and super-heavy range,
the already observed magic and semi magic
numbers in the light and medium mass re-
gion are also observed for both N and Z.
But here, large energy gaps are observed for
magic numbers Z= 34 and 114 and N = 34,
40, 64, 100 and 126. Semi-magic numbers
are observed for Z= 18, 58 and N= 18, 58,
148 and 164 (extrapolation).

3.4.2 310
126X :

For 310
126Sn, Z= 18, 34, 58,92, 114 show large

energy gaps along with already existing
magic numbers. Some new magic numbers
are observed at filled shells 1h9/2, 1j15/2 and
3d3/2 and 1k17/2 for N= 92, 164, 184 and 228
along with 34, 58 and 126. Semi-magic num-
bers are observed for Z= 76 and N=100, 136
and 172.

4 Conclusions

In this paper, an effort have been made to
provide a simple procedure for students at
graduate level, to understand the concept of
magic and semi-magic number by analysing
the energy gap between consecutive states
of doubly magic nuclei (16

8 O to 310
126X). A step

wise procedure to calculate single particle
energy states have also been given. Study-
ing energy levels of doubly magic nuclei
in various mass regions within the Shell
model, enables to explain some of the ob-
served sub-shell closures leading to stabil-
ity in neutron rich nuclei. By calculating
the energy difference or energy gap between
consecutive energy states, we can deduce
magic and semi-magic numbers by consid-
ering that the energy difference between
two consecutive states must be greater than
1 MeV. It is observed that few numbers can
be considered as the magic numbers e.g. N
= 14, 34, 40, 164, 184 and 228, Z = 14, 34, 92
and 114 along with already defined magic
numbers and some new semi-magic num-
bers can also be deduced e.g. N = 6, 16, 18,
32, 40, 58, 64, 92, 100, 136, 164 and 172, Z=
18, 58 and 76 by analysing the energy gaps
between filled shells of the doubly magic
nuclei. The results presented here depends
only on the study done for doubly magic nu-
clei. The study can be further enhanced by
taking more nuclei in different mass region.

39/1/1 12 www.physedn.in



Physics Education January-March 2025

Figure 6: Separation in energy between consecutive single-particle states of 100
50 Sn

Figure 7: Separation in energy between consecutive single-particle states of 132
50 Sn

Figure 8: Separation in energy between consecutive single-particle states of 208
82 Pb

5 Appendix 1

The various steps involved to implement
Central divided difference method (CDD)

in Gnumeric spreadsheets, to obtain sin-
gle particle energy states of 56

28Ni nucleusare
given below. The Woods-Saxon potential
have been taken as the as the interaction po-
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Figure 9: Separation in energy between consecutive single-particle states of 310
126X

tential along with spin-orbit coupling.

1. Initialisation of parameters: In order to
initialise, we will first describe two set
of parameters:
(a) Physical system parameters:
Object and interaction variables will be
the inputs and state variables are the
outputs, which we want to determine.
Figure (1) shows object variables, in-
teraction variables, algorithm variables,
input variables and other variables re-
quired for the calculations.
(b) Algorithm parameters The discretiza-

tion of continuous variables and the re-
duction of infinitely large amounts to fi-
nite values, such as region of interest,
provide algorithmic parameters. The
step size is chosen as h = 0.1 and is
given in cell F16, shown in Figure (10).

2. Potential Definition:
The values of ’r’ are generated from 0.1
to (3 ∗ R) with step-size h = 0.1 from
A21 to A167, and to get the expected
results, corresponding matrix size is
144 × 144. Then, four potentials are de-

termined using the following formulae
for a particular ℓ and j values. The sam-
ple sheet has been given in Figure (11)
(a) Centrifugal potential VCF, in cell B21
type the formula:

=($I$7*($I$7+1)*$I$13^2*

($A21^(-2)))/(2*$I$12)

(b) Woods-Saxon potential VWS, in cell
D21 by typing the formula:

=$F$8*(1+$C21)^(-1)

(c) L.S potential VLS, in cell F21 by typ-
ing formula:

=-$F$13*$F$12^2*$I$15*$C21*

$E21*($F$9*$A21)^(-1)

where, the L.S term in cell I15 is calcu-
lated by formula:

=$I$8*($I$8+1)-$I$7*($I$7+1)-3/4

(d) Coulomb potential, for proton, is
given by typing formula:
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Figure 10: Initializing the parameters for the system

Figure 11: Defining potentials:

=$B$13*0.511*2.839*

(3*$B$14^2-$A21^2)/(2*$B$14^3)

in cell G21 up-to radius ’R’ of the nu-
cleus. After that in cell G64, type the
formula:

=0.511*2.839*$A64^(-1)*$B$13

which gives the Coulomb potential out-
side the range of nuclear radius.
(e) In cell H21, the net potential is deter-
mined by typing the formula as:

=$B21+$D21+$F21+$G21

3. Obtaining Hamiltonian matrix:
To obtain Hamiltonian matrix, we will
first define two functions f j and g: (a)
The functions

f j =
h̄2

mh2 + Vj = f + Vj,

g = − h̄2

2mh2 = − f /2, (24)

are defined as

=$H21+(($I$13^2)/($I$12*$F$16^2))

and

=-(($I$13^2)/(2*$I$12*$F$16^2))
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Figure 12: Initializing the parameters for the system

in cell I21 and J21 respectively.
(b) Now in Sheet 2; named ’Matrix’,
generate index values for rows and
columns as 1 to 144 from A4:A147 and
B3:EO3.
(c) In cell B4, type:

=if($A4=B$3,Initialization!$J21,

if($A4=B$3-1,Initialization!$K21,

if($A4=B$3+1,Initialization!$K21,0)))

(d) After that drag the formula along the
row till EO3 and then downwards up-to
EO147 to obtain the tridiagonal Hamil-
tonian matrix as shown in Figure (12).

4. Obtaining Eigen values and Eigen vec-
tors:
(a) In Sheet 3, named ’Eigenvalues’,
generate index values for rows and
columns as 1 to 145 from A4:A148 and 1
to 144 from B3:EO3 to obtain matrix of
size 145 × 144. The extra row has been
incorporated for eigen values. Below
each of the eigen values in the first row,
a corresponding eigen vector of size 131
1 will be obtained.
(b) In cell B4, type formula

=eigen(‘Matrix’!B4:EO147)

After that, press three keys
Ctrl+Shift+Enter altogether to ob-
tain the required Eigen values. The
result for d3/2 state has been shown in
Figure (13). The eigen value obtained is
= −10.461.

5. Eigen values for different states:
The bound state energies (i.e. the en-
ergies for which eigen values are neg-
ative), are obtained for different values
of ℓ and j as:
(a) For s-state, ℓ = 0 and j = 0.5 corre-
sponds to 1s1/2 state.
(b) For p-state, ℓ = 1 and j = 0.5, 1.5
corresponds to states 1p1/2 and 1p3/2.
The same procedure is repeated for
d, f , g, h, i etc. states to obtain all energy
states till any bound state is available.
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Figure 13: Initializing the parameters for the system

6 Appendix 2

In this section, the energy difference corre-
sponding to neutron and proton states of
doubly magic nuclei from 16

8 O to 310
126X are

given in tabular form.

• 16
8 O, 40

20Ca :

• 48
20Ca, 56

28Ni :

• 100
50 Sn, 132

50 Sn :

• 208
82 Pb and 310

126X :
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Table 2: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 16

8 O and 40
20Ca

16
8 O 40

20Ca
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
. . . . . . . . . . . . . . . . . . 1 f 5/2 −1.20 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2p1/2 −3.10 1.90 . . . . . .
. . . . . . . . . . . . . . . . . . 2p3/2 −5.42 2.32 . . . . . .
. . . . . . . . . . . . . . . . . . 1 f 7/2 −9.15 3.73 1 f 7/2 −2.33 . . .
. . . . . . . . . . . . . . . . . . 1d3/2 −14.28 5.13 1d3/2 −6.85 4.52
2s1/2 −3.03 . . . 2s1/2 −0.21 . . . 2s1/2 −15.54 1.26 2s1/2 −8.17 1.30
1d5/2 −5.25 2.22 1d5/2 −2.11 1.90 1d5/2 −19.54 4.00 1d5/2 −12.19 4.04
1p1/2 −12.74 7.49 1p1/2 −9.14 7.04 1p1/2 −26.99 7.45 1p1/2 −19.04 6.86
1p3/2 −17.85 5.11 1p3/2 −14.23 5.09 1p3/2 −29.55 2.56 1p3/2 −21.68 2.64
1s1/2 −30.73 12.88 1s1/2 −26.68 12.45 1s1/2 −38.90 9.35 1s1/2 −30.49 8.81

Table 3: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 48

20Ca and 56
28Ni

48
20Ca 56

28Ni
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
. . . . . . . . . . . . . . . . . . 3s1/2 −0.94 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2d5/2 −1.70 0.76 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1g9/2 −5.25 3.55 . . . . . . . . .
1 f 5/2 −1.87 . . . 1 f 5/2 −1.71 . . . 2p1/2 −8.32 3.07 . . . . . . . . .
2p1/2 −3.00 1.12 2p1/2 −2.38 0.66 1 f 5/2 −8.41 0.09 . . . . . . . . .
2p3/2 −4.90 1.90 2p3/2 −4.98 2.60 2p3/2 −10.56 2.15 2p3/2 −1.56 . . .
1 f 7/2 −8.33 3.43 1 f 7/2 −9.75 4.77 1 f 7/2 −14.96 4.40 1 f 7/2 −5.89 4.33
1d3/2 −13.58 5.26 1d3/2 −14.55 4.80 1d3/2 −20.35 5.39 1d3/2 −10.60 4.70
2s1/2 −14.19 0.61 2s1/2 −15.18 0.63 2s1/2 −20.51 0.16 2s1/2 −10.71 0.11
1d5/2 −17.75 3.56 1d5/2 −19.57 4.39 1d5/2 −24.33 3.82 1d5/2 −14.72 4.01
1p1/2 −24.78 7.03 1p1/2 −26.48 6.90 1p1/2 −31.32 6.99 1p1/2 −21.06 6.34
1p3/2 −26.76 1.98 1p3/2 −28.85 2.37 1p3/2 −33.14 1.83 1p3/2 −22.99 1.93
1s1/2 −35.08 8.32 1s1/2 −37.31 8.46 1s1/2 −41.18 8.04 1s1/2 −30.42 7.43
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Table 4: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 100

50 Sn, 132
50 Sn

100
50 Sn 132

50 Sn
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
1h9/2 −0.21 . . . . . . . . . . . . 3p1/2 −0.57 . . . . . . . . . . . .
3p1/2 −0.31 0.10 . . . . . . . . . 1h9/2 −0.94 0.37 . . . . . . . . .
3p3/2 −1.36 1.05 . . . . . . . . . 3p3/2 −1.34 0.40 . . . . . . . . .
2 f 7/2 −3.08 1.72 . . . . . . . . . 2 f 7/2 −2.61 1.28 2 f 7/2 −1.18 . . .
1h11/2 −8.70 5.62 . . . . . . . . . 1h11/2 −6.83 4.22 2d3/2 −6.43 5.25
2d3/2 −8.72 0.02 . . . . . . . . . 2d3/2 −7.74 0.91 3s1/2 −6.56 0.13
3s1/2 −9.27 0.55 . . . . . . . . . 3s1/2 −7.99 0.24 1h11/2 −7.32 0.76
1g7/2 −11.08 1.81 . . . . . . . . . 2d5/2 −9.76 1.78 2d5/2 −9.10 1.78
2d5/2 −11.63 0.55 . . . . . . . . . 1g7/2 −9.79 0.02 1g7/2 −9.37 0.26
1g9/2 −17.13 5.50 1g9/2 −3.06 . . . 1g9/2 −14.01 4.22 1g9/2 −14.77 5.40
2p1/2 −18.87 1.74 2p1/2 −4.23 1.17 2p1/2 −16.06 2.05 2p1/2 −15.58 0.81
2p3/2 −20.44 1.57 2p3/2 −5.05 0.83 2p3/2 −17.15 1.09 2p3/2 −16.97 1.39
1 f 5/2 −21.22 0.79 1 f 5/2 −8.14 3.09 1 f 5/2 −18.07 0.93 1 f 5/2 −18.24 1.27
1 f 7/2 −25.09 3.87 1 f 7/2 −10.39 2.25 1 f 7/2 −20.78 2.71 1 f 7/2 −21.70 3.47
2s1/2 −29.17 4.08 2s1/2 −12.76 2.37 2s1/2 −24.46 3.68 2s1/2 −24.61 2.91
1d3/2 −30.36 1.19 1d3/2 −15.66 2.89 1d3/2 −25.57 1.11 1d3/2 −26.11 1.50
1d5/2 −32.48 2.11 1d5/2 −16.95 1.29 1d5/2 −27.06 1.49 1d5/2 −28.04 1.93
1p1/2 −38.29 5.81 1p1/2 −21.94 4.99 1p1/2 −32.10 5.04 1p1/2 −32.83 4.78
1p3/2 −39.16 0.88 1p3/2 −22.52 0.58 1p3/2 −32.72 0.62 1p3/2 −33.65 0.83
1s1/2 −44.97 5.81 1s1/2 −26.81 4.29 1s1/2 −37.63 4.90 1s1/2 −38.33 4.68
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Table 5: Single particle energies (in MeV) and Energy difference (ED) in MeV for neutron
and proton states of doubly magic 208

82 Pb and 310
126X

208
82 Pb 310

126X
Neutron states Proton states Neutron states Proton states

States Energy (MeV) ED States Energy (MeV) ED States Energy ED States Energy (MeV) ED (MeV)
. . . . . . . . . . . . . . . . . . 3 f 5/2 −1.40 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 4p1/2 −1.43 0.03 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 4p3/2 −2.00 0.58 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2h9/2 −2.43 0.42 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 3 f 7/2 −3.05 0.62 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1k17/2 −4.83 1.78 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 2h11/2 −5.57 0.74 . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1j13/2 −5.90 0.33 . . . . . . . . .
3d3/2 −0.82 . . . . . . . . . . . . 3d3/2 −7.83 1.93 . . . . . . . . .
2g7/2 −1.01 0.20 . . . . . . . . . 4s1/2 −7.88 0.05 . . . . . . . . .
4s1/2 −1.41 0.40 . . . . . . . . . 3d5/2 −9.07 1.19 . . . . . . . . .
3d5/2 −2.07 0.67 . . . . . . . . . 2g7/2 −9.21 0.14 . . . . . . . . .
1j15/2 −2.24 0.16 . . . . . . . . . 1j15/2 −10.76 1.55 . . . . . . . . .
1i11/2 −3.49 1.25 . . . . . . . . . 2g9/2 −11.59 0.83 . . . . . . . . .
2g9/2 −4.04 0.55 . . . . . . . . . 1i11/2 −12.75 1.16 . . . . . . . . .
3p1/2 −7.55 3.51 . . . . . . . . . 3p1/2 −14.64 1.89 . . . . . . . . .
2 f 5/2 −8.36 0.81 3p3/2 −0.28 . . . 3p3/2 −15.33 0.69 . . . . . . . . .
3p3/2 −8.45 0.09 2 f 5/2 −0.37 0.09 2 f 5/2 −15.85 0.51 2 f 5/2 −0.31 . . .
1i13/2 −8.90 0.45 1i13/2 −2.95 2.58 1i13/2 −16.40 0.55 2 f 7/2 −2.36 2.04
2 f 7/2 −10.64 1.74 2 f 7/2 −3.26 0.31 2 f 7/2 −17.48 1.08 1i13/2 −3.05 0.69
1h9/2 −11.28 0.64 1h9/2 −4.26 1.00 1h9/2 −19.10 1.62 1h9/2 −4.68 1.63
1h11/2 −15.24 3.96 3s1/2 −7.57 3.32 3s1/2 −21.61 2.51 3s1/2 −5.63 0.95
3s1/2 −15.44 0.21 2d3/2 −8.09 0.52 1h11 −21.70 0.09 ih11/2 −6.52 0.88
2d3/2 −15.76 0.32 1h11/2 −9.29 1.20 2d3/2 −22.16 0.46 2d3/2 −7.75 1.24
2d5/2 −17.20 1.44 2d5/2 −9.89 0.61 2d5/2 −23.14 0.98 2d5/2 −8.13 0.37
1g7/2 −18.50 1.30 1g7/2 −11.71 1.81 1g7/2 −24.91 1.76 1g7/2 −10.41 2.28
1g9/2 −21.20 2.70 1g9/2 −15.18 3.47 1g9/2 −26.63 1.73 2p1/2 −12.21 1.80
2p1/2 −22.87 1.67 2p1/2 −15.36 0.18 2p1/2 −28.05 1.41 1g9/2 −12.77 0.57
2p3/2 −23.59 0.72 2p3/2 −16.25 0.89 2p3/2 −28.52 0.47 2p3/2 −12.81 0.03
1 f 5/2 −25.07 1.49 1 f 5/2 −18.37 2.12 1 f 5/2 −30.12 1.61 1 f 5/2 −15.45 2.64
1 f 7/2 −26.74 1.66 1 f 7/2 −20.56 2.19 1 f 7/2 −31.16 1.04 1 f 7/2 −16.95 1.50
2s1/2 −29.67 2.94 2s1/2 −22.26 1.70 2s1/2 −33.54 2.37 2s1/2 −17.47 0.53
1d3/2 −30.90 1.22 1d3/2 −24.16 1.89 1d3/2 −34.70 1.16 1d3/2 −19.73 2.26
1d5/2 −31.78 0.88 1d5/2 −25.37 1.21 1d5/2 −35.24 0.54 1d5/2 −20.57 0.84
1p1/2 −35.89 4.11 1p1/2 −28.95 3.59 1p1/2 −38.59 3.35 1p1/2 −23.17 2.60
1p3/2 −36.25 0.36 1p3/2 −29.47 0.52 1p3/2 −38.80 0.21 1p3/2 −23.55 0.37
1s1/2 −40.03 3.78 1s1/2 −32.70 3.23 1s1/2 −41.78 2.97 1s1/2 −25.70 2.15
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Abstract

A pedagogical aid is proposed for undergraduate

thermal physics courses to introduce students

to how the inclusion of gravity challenges the

conventional formulations of the laws of ther-

modynamics. The aim is to stimulate deeper

interest in thermal physics by revealing its

conceptual overlap with general relativity—an

intersection often overlooked in standard curric-

ula.

1 Introduction

From cosmology to information theory, ther-
mal physics has quietly shaped some of
the most profound developments in mod-
ern science. Yet one of its most surprising
intersections—that between thermodynam-
ics and gravity—remains largely inaccessi-
ble to undergraduate students, obscured by
the technical prerequisites of general relativ-
ity.

This paper proposes a pedagogical aid
that can be incorporated into standard un-
dergraduate thermal physics courses shortly

after the introduction of the second law.
Building on a reformulation by Santiago and
Visser [2], which casts the Tolman–Ehrenfest
effect in the language of special relativity,
this framework opens a window into deep
conceptual terrain without requiring a for-
mal background in general relativity.

I present three interconnected argu-
ments that invite students to rethink ther-
mal equilibrium in the presence of grav-
ity. The first is a classical argument, at-
tributed to Maxwell, which shows that tem-
perature gradients at equilibrium lead to a
violation of the second law. The second ar-
gument, from Santiago and Visser, demon-
strates that such gradients must in fact ex-
ist in gravitational fields—a result consis-
tent with relativistic effects, not classical in-
tuitions. The third considers whether elec-
tric fields might also induce equilibrium
temperature gradients, ultimately revealing
that while electromagnetism is not univer-
sal, its effects can influence equilibrium in-
directly—through gravity itself.
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2 Maxwell’s Argument

Maxwell argued, on purely physical
grounds, that temperature gradients cannot
exist within bodies at thermal equilibrium
[1].

Figure 1: The hypothetical two column setting
for Maxwell’s argument

Imagine two vertical columns placed
atop a thermally conducting surface. The
base of each column is in thermal contact
with this surface, ensuring equilibrium at
z = 0 (see Fig. 1). Now suppose, hypothet-
ically, that despite the system being in ther-
mal equilibrium, both columns exhibit tem-
perature gradients along the z-axis.

If, at any height z, we find that T1(z) >
T2(z) (or vice versa—the labeling is arbi-
trary), we could insert a horizontal conduct-
ing rod between the two columns at that
level. Heat would then flow from the hot-
ter to the cooler column. Part of this heat
would descend through column 2 to its base,

and from there conduct laterally through the
shared surface, eventually heating the base
of column 1. That in turn drives heat up-
ward through column 1—completing a cycle
(see Fig. 2).

Figure 2: Inequality in temperature gradient
creating a perpetual motion engine

We may now place a heat engine on
the conducting rod at height z. The
columns, under our assumption, act perpet-
ually as thermal reservoirs at different tem-
peratures—even while the system is nom-
inally in equilibrium. This would allow
us to extract work indefinitely, constructing
a perpetual motion machine of the second
kind—an absurdity that directly violates the
second law of thermodynamics. Therefore,
our initial assumption that T1(z) ̸= T2(z)
must be false.

Maxwell reinforces this theoretical ar-
gument with an empirical observation:
since we do not observe temperature gradi-
ents in columns of ideal gas at equilibrium,
no substance ought to exhibit such gradi-
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ents. If such a gradient existed, one could
exploit the difference to violate Clausius’s
formulation of the second law (and, because
Clausius’ and Kelvin’s formulations are log-
ically equivalent, students are encouraged
to reflect on how the same hypothetical ap-
paratus would violate Kelvin’s version as
well).

3 (Modified) Santiago-Visser’s

Argument

I now present a modified version of a
proof—originally due to Santiago and Visser
[2]—demonstrating the existence of temper-
ature gradients in a photon gas column.
In their foundational work[4], Tolman and
Ehrenfest showed that temperature at ther-
mal equilibrium need not remain constant
in curved spacetime, but instead varies with
gravitational potential. Their derivation,
however, relied on the machinery of gen-
eral relativistic hydrodynamics—well be-
yond the scope of most undergraduate ther-
mal physics curricula.

Santiago and Visser offered a more ac-
cessible approach, using only the concept of
gravitational redshift to reach the same con-
clusion. Since redshift can be derived within
the framework of special relativity, students
already familiar with undergraduate elec-
tromagnetism should be able to grasp the
argument with minimal additional back-
ground.

In adapting their proof, I depart slightly
from the original treatment: instead of as-

suming a uniform gravitational field, I con-
sider a spherically symmetric one. This
choice streamlines the transition to the third
argument in this paper, which addresses
electromagnetic contributions to equilib-
rium gradients.

Let us now outline the setup. Con-
sider a photon gas column situated within
a spherically symmetric gravitational field,
offset slightly from the radial direction (see
Fig. 3). Suppose an observer located far
from the column measures the spectral radi-
ance of each segment and finds that the peak
wavelength remains constant over time and
position. By Wien’s displacement law, the
observer concludes that the system is in
thermal equilibrium: the temperature of the
column appears spatially and temporally
uniform.

Figure 3: An observer observing the pho-
tons leaking from a photon gas column near
a massive body

However, it is well known that as pho-
tons traverse a gravitational well, they lose
energy and undergo a redshift in wave-
length. In the case of a static, spher-
ically symmetric gravitational field—that
is, Schwarzschild geometry—the expression
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for gravitational redshift is well established
and takes the form:

λ∞

λe
=

(
1 − Rs

r

)−1/2

where λe is the wavelength at emission, λ∞

is the wavelength observed at infinity, Rs =

2GM/c2 is the Schwarzschild radius of the
massive body and r is the radius at which
the photon was initially emitted. For our ob-
server situated a large distance away from
the body, λo = λ∞ is given by -

λo = λe

(
1 − 2GM

c2r

)−1/2

From Wien’s Displacement Law, we know
λomax To = λemax Te. Therefore, the tempera-
ture recorded by the observer would be off
by a factor of -

Te =
To√

1 − 2GM
c2r

In our hypothetical scenario, however, dif-
ferent segments of the photon column reside
at varying distances from the center of the
massive body. As a result, photons origi-
nating from different heights should experi-
ence differing amounts of gravitational red-
shift. This variation would manifest in the
observed blackbody spectra: rather than a
uniform spectral distribution, the observer
would detect intensity peaks shifted differ-
ently along the column.

This presents a clear contradiction. The
assumption of thermal equilibrium implies
a spatially constant temperature, yet the dif-
ferential redshift demands otherwise. The

only resolution is that the column must pos-
sess a temperature gradient—one that pre-
cisely compensates for the gravitational red-
shift. Only then would the observer per-
ceive a consistent peak wavelength and, by
extension, a constant temperature.

Thus, we are led to the conclusion that
although the temperature of the photon gas
is constant in time, it must vary with posi-
tion. The locally measured temperature is,
in equilibrium, a spatial function shaped by
the geometry of the gravitational field.

T(r) =
To√

1 − 2GM
c2r

We were working in the Schwarzschild Ge-
ometry, the metric (gµν) for which is

ds2 = −αc2dt2 + α−1dr2 + r2(dθ2 + sin2 θdϕ2)

where,

α(r) =
(

1 − Rs

r

)
On comparing with our expression for lo-
cally measured temperature, it becomes
clear that the Temperature gradient of the
photon gas column follows the expression -

T(r) =
To√

−gtt(r)
(1)

where To is constant as described earlier (gtt

is the component of the metric tensor that
serves as the coefficient of c2dt2 term). It is
important to note that the temperature gra-
dient derived here is independent of time.
This result is deeply counter-intuitive: al-
though a spatial temperature gradient exists
within the photon gas column, no heat flows
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from the hotter to the cooler regions. Ther-
mal equilibrium is preserved—not through
uniform temperature, but through a pre-
cise balance between thermal variation and
spacetime curvature.

As is often the case in relativity, one
must be attentive to the distinction between
what is measured locally and what is de-
fined globally. Just as notions of length
and time differ between frames, so too
must we distinguish between local temper-
ature—measured by an observer comov-
ing with the system—and coordinate tem-
perature, which describes the system in a
broader geometric frame. While not stan-
dard terminology, this distinction helps clar-
ify why a temperature gradient does not, in
this context, imply thermal disequilibrium.

3.1 Connecting the Two Pieces

Earlier, using Maxwell’s argument, we es-
tablished that the presence of unequal tem-
perature gradients between two columns
at equilibrium would enable the construc-
tion of a perpetual motion machine—an out-
come forbidden by the second law of ther-
modynamics. Separately, we showed that a
photon gas must exhibit a temperature gra-
dient in a gravitational field in order to re-
main in thermal equilibrium with respect to
an external observer. By connecting these
two observations, we arrive at a general re-
sult: the temperature gradient described by
Eq.1 must hold for all materials in static
spacetimes—not just photon gases.

The proof follows the same logic as be-

fore. Suppose, hypothetically, that only the
photon gas column exhibits a temperature
gradient, while a second column—say, one
composed of an ideal gas—maintains uni-
form temperature at equilibrium. Placing
the two columns parallel and in close prox-
imity (see Fig. 4), and thermally connect-
ing their bases, we recreate the conditions
described in Fig. 2. Once again, a horizon-
tal conducting rod between the two at some
height would permit continuous heat flow
and indefinite work extraction—a direct vi-
olation of the second law.

Figure 4: An observer observing the pho-
tons leaking from a photon gas column near
a massive body

3.2 Universality of Gravity

To avoid the paradox of perpetual mo-
tion, we must conclude that all temperature
gradients at thermal equilibrium within a
given geometry must obey the same rela-
tion—namely, that described by Eq. 1. It
is important to note, however, that this ex-
pression holds only in static spacetimes. The
gradient itself arises from spacetime curva-
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ture: gravity alters the conditions of ther-
mal equilibrium, and therefore any form of
matter or radiation that couples to gravity
must experience the same temperature gra-
dient. In the non-relativistic limit c → ∞
the gradient would be indeed in the limit
∇T(r) → 0. This convergence reaffirms
what we may now call the universality of
gravity—its unique role in shaping equi-
librium without violating thermodynamic
laws.

Having established gravity’s universal-
ity and its influence on equilibrium temper-
ature distributions, we now turn to a natural
question: can other fields, such as electro-
magnetism, give rise to similar temperature
gradients? This next argument, adapted
from [2], builds again on Maxwell’s two-
column setup. We consider a similar appa-
ratus as described earlier with a few minor
adjustments. Suppose one of the columns
is filled with very low density electron gas
and the entire apparatus is subjected to an
Electric Field E⃗ as in Fig. 5. Does E⃗ produce
a temperature gradient at thermal equilib-
rium? Let us begin, as before, by assuming
that it does—and follow the consequences.

If there is a temperature gradient pro-
duced due to the electric field then it must
only affect those particles that interact with
E⃗ to have any causal relationship in the first
place. If the adjacent column is made of non-
interacting particles (such as Neutron Gas)
then E⃗ has no causal influence over the sec-
ond column. We are thus led to an unset-
tling situation: one column (electron gas)

Figure 5: Electron Gas and Neutron Gas
Columns Exposed to E⃗

exhibits a temperature gradient at thermal
equilibrium, while the other (neutron gas)
does not. Having now invoked Maxwell’s
argument twice, this should raise immedi-
ate concern. But to make the contradiction
explicit: if, at any given height in the ap-
paratus, the two columns maintain unequal
temperatures while in thermal equilibrium,
one could insert a heat engine between them
and extract work ad infinitum. This would
violate the second law of thermodynamics.

The lesson generalizes: any force that
does not act universally cannot produce
temperature gradients at thermal equilib-
rium. Gravity alone satisfies this condi-
tion—coupling to all forms of energy and
matter—and thus gives rise to the Tol-
man–Ehrenfest effect. The electric field, by
contrast, is selective in its coupling, and
therefore cannot reshape thermal equilib-
rium in this way.
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4 Influence of Electric Fields on

Temperature Gradients

It is important to note that in the preced-
ing argument, the influence of gravity was
deliberately set aside in order to isolate the
effect of the electric field. Let us now rein-
troduce gravity and ask: Does the presence
of an electric field modify the temperature
gradient at thermal equilibrium once gravi-
tational effects are taken into account?

Santiago and Visser have argued that
electric fields do not directly contribute to
the development of temperature gradients.
However, to probe this question more care-
fully, we must turn our attention to how
electric fields and gravity are intertwined in
relativistic physics. Specifically, let us recall
two of Maxwell’s equations.

∇.E⃗ =
ρ

ϵ0
and ∇× E⃗ = −∂B⃗

∂t

To sustain an electric field, there must ex-
ist either a charge density or a time-varying
magnetic field. In other words, electric
field lines must either terminate on electric
charges or form closed loops governed by
Faraday’s law.

4.1 Reissner–Nordström Geometry

In general relativity, any entity possessing
energy and momentum contributes to the
curvature of spacetime. This includes not
only massive particles, but also fields—such
as the electromagnetic field. The simplest
setting in which to study the gravitational

influence of a massive, charged object is the
Reissner–Nordström metric: a static, spher-
ically symmetric solution to the Einstein-
Maxwell equations. The spacetime geome-
try around such an object—a charged, non-
rotating black hole—is described by the fol-
lowing line metric element:

ds2 = −∆c2dt2 +∆−1dr2 + r2(dθ2 + sin2 θdϕ2)

where the coefficient ∆ is

∆(r) =

(
1 − Rs

r
+

R2
Q

r2

)

Like earlier, Rs = 2GM/c2

is the Schwarzschild radius and
RQ = (Q2G)/(4πϵ0c4) is a characteris-
tic length defined by the net charge content
of the body. Clearly, when we set Q = 0, we
simply get a Schwarzschild geometry. If the
black hole is also spinning, the geometry
generalizes to the Kerr–Newman solution.

4.2 Are temperature gradients affected

by E⃗?

We now return back to the original question
- are temperature gradients at equilibrium
(in static spacetime) affected by the presence
of electric field? If the electric field could in-
fluence the temperature gradient at thermal
equilibrium then it would allow for the exis-
tence of perpetual motion machines. There-
fore, we rule out the possibility of a contri-
bution by the electric field at thermal equi-
librium. However, in static spacetimes, elec-
tric fields do not exist in isolation—they re-
quire a source, namely, electric charge. And
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the presence of charge, as we have seen,
alters the spacetime geometry. Since the
metric affects the temperature gradient, the
presence of E⃗ does indeed contribute to the
temperature gradient-indirectly, through its
gravitational imprint on spacetime.

In routine thermodynamic contexts, the
resulting temperature gradients are extraor-
dinarily small—whether or not charge is
present. For all practical purposes, they can
be neglected. But for the sake of logical con-
sistency—and for the coherence of thermo-
dynamics in curved spacetime—the Tolman
gradient must exist. It is a quiet but essential
feature of any complete theory.

5 Conclusion

This paper proposed a pedagogical aid to
help early undergraduate students engage
with the limitations of the conventional
formulations of thermodynamic laws. It
also offered a conceptual clarification re-
garding the causal relationship between
temperature gradients at thermal equilib-
rium and the presence of electric fields.
Upon carefully analyzing the role of elec-
tric fields—while keeping the universality of
gravity in view—it was shown that electric
fields can influence temperature gradients,
but only indirectly, through their effect on
spacetime geometry. Since this influence is
mediated by gravity itself, the conclusion re-
mains consistent with the broader principle:
gravity is the only force capable of produc-
ing temperature gradients at equilibrium.

Although the magnitudes of these gra-
dients are negligible in routine experiments,
their very existence requires a reconsidera-
tion of the foundational statements of ther-
modynamics. The zeroth law’s definition
of temperature is not compatible with rela-
tivity, and the second law’s prescription for
the direction of heat flow is challenged by
the possibility of stable gradients in equi-
librium. Fortunately, the field of relativis-
tic thermodynamics is mature, and such
foundational tensions have been addressed
within its framework.

6 Discussion

Talks based on this work that were deliv-
ered to undergraduate physics audience re-
ceived encouraging feedback, particularly
in stimulating interest in relativistic ther-
modynamics and introducing concepts not
typically covered in undergraduate thermal
physics courses. While a structured assess-
ment (such as a short quiz following a dedi-
cated lecture) could offer insight into the ac-
cessibility and comprehension of these ideas
at the undergraduate level, a detailed data-
driven pedagogical analysis lies outside the
scope of the present paper.

Nonetheless, any effective teaching
module should invite both forward and
backward modes of self-directed learning.
A forward approach builds on results pre-
sented in class, encouraging students to ap-
ply newly acquired tools to extended prob-
lems. This might involve reformulating
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standard textbook exercises to include equi-
librium temperature gradients, or explor-
ing the role of relativistic thermodynamics
in cosmology. A backward approach, by
contrast, challenges foundational premises
introduced without proof, prompting stu-
dents to seek deeper theoretical grounding.
This could involve studying Einstein’s field
equations to understand the gravitational
role of the stress-energy tensor, or general-
izing the Tolman result to stationary space-
time. The material presented here sup-
ports both trajectories, offering students an
accessible yet conceptually rich path into
the deeper structure of thermodynamics in
curved spacetime.
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Abstract

Recent trend of miniaturization has emphasized

the importance of thin films. This has led to

development of various methods of thin film

deposition. In this paper, Sol-Gel method of

thin film deposition is discussed. It is a chemical

method and does not require heavy or expensive

equipments for thin films deposition. Moreover,

it provides easy compositional control and

modification, excellent control of stoichiometry,

room temperature deposition with relatively low

annealing temperature and possibility of film

deposition on large area substrates. Interest-

ingly, sol-gel method is being extensively used in

preparing nano-particles of various compounds.

Thin films, nano-particles, ceramics prepared by

this method find industrial applications.

1 Introduction

Historically, sol-gel processing started with
studies on silica gel way back in mid-1800s
[1, 2]. This method had been widely used to
prepare glass and poly-crystalline ceramics

both as pellets and fibres. This method was
also used to deposit films such as ITO (In-
dium Tin Oxide) and other similar composi-
tions deposited on glass panes for insulation
[3, 4]. The trend toward thin films began,
in earnest, during 1970’s but has recently ac-
celerated, partly because newer techniques
for producing high quality films have been
developed and also because of a wide va-
riety of applications of thin films. Thin
films of different materials have some im-
portant advantages, such as, large capaci-
tance, low switching voltage and the possi-
bility of forming films directly on integrated
semiconductor driving circuits [5, 6].

A detailed discussion of one of the fab-
rication method, namely, sol-gel technique,
is presented here. Easy composition con-
trol and requirement of simple equipment
makes it attractive for thin films fabrication.
Recently, nano-particles of various materi-
als have also been successfully prepared by
this method. This method has been widely
used to prepare oxide films of various ma-
terials for various applications like memory
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devices, optical sensors, gas sensors, etc. [7].
The objective of this paper is to describe

various steps of sol-gel process.

2 Fabrication Techniques

The various techniques used for thin film
fabrication can broadly be classified into two
categories: [5, 8]

1. Physical methods

2. Chemical methods

• Various Physical methods are:

1. Thermal evaporation

2. Sputtering : which can be high
electric field (DC) sputtering,
radio-frequency field (rf) sputter-
ing and Magnetron sputtering

3. Pulsed Laser Deposition (PLD)

4. Molecular Beam Epitaxy (MBE)

• Various Chemical methods are

1. Spray Pyrolysis

2. Chemical vapour deposition
(CVD). Some variations of this are
Metal-Organic chemical vapour
deposition (MOCVD) and Plasma
enhanced metal-organic chemical
vapour deposition (PE-MOCVD).

With the exception of sputtering method, all
other fabrication techniques generally pro-
duce polycrystalline films which have prop-
erties more similar to ceramics than to single
crystal.

Sol-Gel process has some important ad-
vantages which makes it quite attractive for
thin film deposition as well as for form-
ing powders for pellet or ceramic forma-
tion.These are :
(i)The excellent control of stoichiometry,
(ii) ease of compositional modifications,
(iii) relatively low annealing temperature,
(iv) possibility of film deposition on large
area substrates
(v) simple and inexpensive equipments are
required to deposit films on different sub-
strates. The sol-gel method would allow the
coating of more complex shapes and forms.
(vi) powders can easily be formed by dry-
ing the gel at suitable temperature which
can then be pressed into ceramics. This can
be accomplished at a lower temperature as
compared to traditional ceramic processing
methods and glass melting processes.
However, there are some disadvantages also
such as substrate sensitive crystallization of
films and difficulty of producing high qual-
ity films with thickness greater than 1µm or
less than 100nm [9].

Now, we discuss the various steps of
sol-gel process.

3 Sol-Gel Process

Let’s first define a few terms used in this
process, namely, Colloid, Sol and Gel. Col-
loids are solid particles that range in size
from 1 to 100 nanometers. Colloidal parti-
cle are dispersed in the solvent to form Sol.
Gel represents a colloidal or polymeric solid

39/1/3 2 www.physedn.in



Physics Education January-March 2025

containing fluid component which has in-
ternal network structure such that both the
solid and the liquid components are highly
dispersed. [10, 11]

Three methods are generally used to
make sol-gel monoliths: (a) gelation of a col-
loidal powder solution, (b) hydrolysis and
polycondensation of metal-nitrate or metal-
alkoxide precursors solution. And then the
gel is dried, (c) hydrolysis and polyconden-
sation of a solution of metal-alkoxide pre-
cursor [10]. The solution is then aged and
dried at an ambient condition.

3.1 Brief outline of steps

In the sol-gel technique, synthesis of an
inorganic network is carried out by a chem-
ical reaction of precursors in solvent and
the solution so formed, at a comparatively
lower temperature. The sol-gel process
includes several steps [12], [10, 13] as given
below:

(i) Solution preparation : In the first
step, the solutes are dissolved in a suitable
solvent to make a solution. The solutes may
be inorganic nitrates, inorganic chlorides or
a wide variety of metal-organic molecular
compounds. The solvent can be water, a
short chain aliphatic-alcohol, or an organic
acid. For a multi-component composition,
this step allows easy composition control.

(ii) Formation of the sol : When the
solution is allowed to stand for some time
sol is formed. Viscosity of the sol is more

than that of a clear solution. If colloidal
powders are available, they can be dis-
solved at a suitable pH which prevents
precipitation so that a sol is formed di-
rectly as in the case of Silica gel [14, 15].
A solution of metal-alkoxide precursors is
subjected to hydrolysis and condensation
reactions in the solution. These then result
in the formation of sufficient number of
interconnected bonds which then behave as
colloidal particles or sol.

(iii) Gelation of the sol :When the sol is
allowed to stand for sufficient time, hydrol-
ysis and condensation reactions continue
resulting in the formation of gel. This pro-
cess is called aging. An inorganic network
can be formed by these reactions. The extent
of cross-linking and the size of the particles
affect the physical characteristics of the
gel network. Viscosity increases sharply at
gelation. Precipitation occurs when the size
of the gel network is sufficiently large.

(iv) Shaping of the gel: Final gel shapes
include spheres, fibres, powders, cubes, thin
films etc. The gel can be given different
shapes by controlling the time-dependent
variation of the viscosity of the sol [16]. It
has been shown that fibres can be drawn
from a sol only for a range of viscosity
greater than 1 Pa-sec [17, 18]. Films can be
deposited only when the viscosity is much
lower [4, 17, 18] . This is the key step in the
sol-gel process.
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(v) Drying and firing of the gel: The
process of removing the solvent phase from
the gel is called drying. The liquid in the
pores are removed by evaporation. This
results in shrinkage. The gel is dried by
removing the physically adsorbed solvent.
Firing refers to the conversion of the gel to a
dense ceramic through pyrolysis. Powders
can be formed at this stage which can be
pressed to form ceramics. The resulting
inorganic solid usually has an amorphous
structure.

(vi) Densification: A post fired heat
treatment of the gel results in further re-
moval of the pores. This is required for
further densification, grain growth and to
obtain crystalline structure. In the case of
thin films, annealing at higher temperatures
results in the formation of crystallized films.

Now we discuss the steps enumerated
in Section 3.1 a little extensively.

3.2 Solution Preparation

The starting chemicals which are com-
pounds of the relevant components, acting
as solutes in the sol-gel process are called
precursors. The common compounds
such as metal- chlorides, nitrates, acetates,
acrylates, amines, hydroxides, if soluble
in a solvent like water, aliphatic alco-
hols like methanol, ethanol, isopropanol,
2-methoxyethanol, etc., can be used as
precursors. The requirement of sol-gel
precursor is that they are soluble in the

solvent and reactive enough to participate
in the gel formation process [19].
Now, depending on the nature of the
precursors, there are several preparation
techniques available for the synthesis of
materials by sol-gel processing technique.
Some of the techniques are listed below [19].

3.2.1 All Metal Alkoxide Method

Metal alkoxides are regarded as the best pre-
cursors for sol-gel processing technique [19,
20, 21, 22]. Almost all metals form alkoxides,
which have the general formula: M(OR)x ,
where M is the metal, R is the alkyl group of
the relevant alcohol and x is the valence state
of the metal. Alkoxides are very reactive
and readily hydrolyze to the corresponding
hydroxides or oxides. The steps of hydroly-
sis can be represented as follows:

M(OR)x + xH2O → M(OH)x + xROH (1)

Usually the product of hydrolysis is
a polymeric gel which is formed through
hydrolysis and condensation. Once the
hydroxides are formed, condensation reac-
tion may start through dehydration and de-
alcoholisation:

M(OH)x + M(OH)x → M2Ox + H2O (2)

M(OR)x + M(OH)x → M2Ox + xROH (3)

However, all the above reactions tend to oc-
cur simultaneously, so that it is impossible
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to describe the process by separate and in-
dependent hydrolysis and condensation re-
actions. The subsequent gelation can be
achieved through a cross linking of M2Ox

of the polymer specimen thereby increasing
the viscosity, either by removal of the sol-
vent, or aging of the solution [12]. There is
also a limited class of compounds known as
double alkoxides. These contain two differ-
ent metals in the same compound and have
the general formula : M′

x M′′
y (OR)z. M′

x and
M′′

y are metals, R is an alkyl group and x,
y, z are integers. The physical properties of
the metal alkoxides can be varied by chang-
ing the alkyl group and for most metals,
soluble products which can in some cases
even be liquid, can be obtained. In addi-
tion, many alkoxides are volatile and there-
fore can easily be purified by distillation to
get very pure products. Double alkoxides
have the added advantage of not only being
volatile but maintaining the exact molecu-
lar stoichiometry within the metals [12]. The
fabrication of a multicomponent system in-
volves the preparation of a solution using all
the metal components as the precursors in
a suitable organic solvent and then reacting
with water to form the oxide complex. The
reaction can be represented for a three com-
ponent system as follows [23, 3, 4]:

M(OR)a + M′(OR)b + M′′(OR)c →
MOa/2 + M′Ob/2 + M′′Oc/2 + yROH

(4)

As the number of components in-
creases, the mechanism of the hydrolysis
and condensation reactions become more

complex.

3.2.2 Alkoxide-Salt Method

Alkoxides of some metals are not commer-
cially available due to some preparation
problems. In these cases, the metal salts pro-
vide an alternative as they can be readily
converted to the oxide by thermal or oxida-
tive decomposition and are perfectly soluble
in organic solvents. Thomas et.al.[19] found
that some metal-acetates react with some
metal-alkoxides to form metallometaloxane
derivatives with the liberation of alkyl ac-
etate:

M(OR)n + M′(OAc)m → (OR)n−1M−
O − M′(OAc)m−1 + ROAc

(5)

where Ac represents the group
−COCH3. The reaction then continues with
further reaction of acetate and alkoxide
groups resulting in an increase molecular
weight of the product[24].

Sol-gel technique involving salts are
usually more complex than those with
only alkoxides because the hydrolysis of
the alkoxides is more easily accomplished
than the thermal or oxidative degradation
required of the metal salts[24].

Rate of hydrolysis and condensation re-
actions can be controlled by addition of var-
ious catalysts. Generally catalysts used are
acid, base and acid-base catalysts [25, 26, 27,
28, 29, 30, 31, 32] .
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3.3 Shaping of the gel

The gel formed can be used in various
forms. Thin films are usually formed by
spin coating onto various substrates. The
smoothness of the film is controlled by the
spin rate and the viscosity of the solution.
Thin films can also be formed by dip coating
of the gel. At an appropriate viscosity of the
solution, the uniformity and the thickness
of the film are maintained by controlling the
rate at which the film is pulled out of the
gel. The gel can also be dried and formed
into powders which can be shaped into
ceramic discs.

3.4 Thin film Deposition

Spin coating is one of the most commonly
used method of sol-gel film deposition.
This method is used in deposition of
nano-scale or micro-scale thickness films
on various substrates like glass, quartz,
single crystal substrates, Silicon, Platinized
silicon, etc. using a Spinner. It’s widely
used in photolithography to deposit one-
micrometre-thick layers of photoresist and
planar photonic structures of polymers [30].

Using a nozzle or a dropper, a little
amount of the solution is poured onto the
substrate. At this point, an extra amount of
coating solution must be put over the sub-
strate in comparison to the final amount of
solution necessary for coating, so that the so-
lution completely wets the surface and the

substrate is fully covered. The substrate is
then spun at speeds up to 10, 000 rpm with a
spinner to disperse the coating material by
centrifugal force. Thickness of the film is
dependent on the concentration and viscos-
ity of the solution as well as on the speed
of rotation of the spinner. Thinner films
are obtained at a higher speed. As the ro-
tational speed of the substrate is increased
from zero to the final required speed, the ro-
tational motion causes aggressive fluid ex-
pulsion from the substrate. Spiral vortices
can occur briefly as a result of the twisting
motion generated by the inertia exerted by
the top of the fluid layer as the substrate
beneath rotates faster and faster. The fluid
eventually thins out to the point where it can
entirely co-rotate with the wafer, and any
sign of a fluid thickness difference vanishes.
The substrate eventually reaches the appro-
priate speed, and the fluid is thin enough
that the rotating accelerations are perfectly
balanced by the viscous shear drag. Fluid
viscous forces dominate fluid thinning be-
haviour when the substrate spins at a con-
stant pace, which is slow and generally uni-
form. Interference colours spinning off can
be visible at this point in solutions contain-
ing volatile liquids. Since the fluid flows
uniformly outward it must form droplets at
the edge to be tossed off, and edge effects
are also visible at this stage. When the sub-
strate is rotating at a steady speed after this
stage, solvent evaporation takes precedence
over coating thinning. The evaporation of
any volatile solvent becomes the dominat-
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ing process in the coating at this time. The
coating effectively gels at this point because
the residual solution’s viscosity rises as the
solvents are withdrawn, thus freezing the
film in place. The coating thickness is de-
pendent on the rate of spinning, viscosity of
the solution [33].

Figure 1: Scanning electron micrographs
of Barium-Strontium Titanate Ba0.4Sr0.6TiO3

films (A) amorphous (B) annealed at 700◦C,
(C) annealed at 800◦C, (D) cracked films,
deposited by sol-gel method on Pt/Si sub-
strate.

The consistency of the film thickness
is an important advantage of spin coating
thin films. Thickness does not change by
more than 1 % due to self-levelling. How-
ever while coating thicker sols of polymers
or photoresist films,large edge beads can be
formed.
Figure 1 shows the scanning electron mi-
crographs (SEM) of the Barium-Strontium
Titanate Ba0.4Sr0.6TiO3 films deposited by
sol-gel method on Platinized-Silicon (Pt/Si)

substrate [34]. Films shown in figure 1(A),
(B),(C) had a thickness of 50nm. Figure
1(A) shows that the as-deposited/as-fired
films were amorphous in nature. Crystalline
films were obtained by annealing the films
at higher temperature. Figure 1(B),(C) show
films annealed at 700◦C and 800◦C respec-
tively. Well formed grains can be seen in
both these cases.

3.4.1 Cracking behaviour of Sol-Gel
films

A major problem in the sol-gel process is
cracking and delamination of films during
drying [35]. Cracking occurs mainly due to
large shrinkages which occur during dry-
ing. And, the shrinkage can occur in two
dimension only since the films must attach
to the substrate.Viscosity of the solution and
thickness of the films are other major fac-
tors resulting in cracking. Multiple coating
followed by firing of films is done to avoid
cracking. Figure 1(D) shows cracked film.
The film was 1.2µm thick.

3.5 Synthesis of Nano-particles by

Sol-Gel Method

Sol-gel method is one of the industrial
methods of preparing nano-particles. When
the sol is allowed to stand for sufficient
time, a gel is formed. This is also called wet-
gel.Depending on the drying conditions
of the wet-gel two types of dried-gels can
be obtained, namely aerogel and xerogel
[36]. If the pore-liquid is removed from the
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wet gel under special drying conditions,
a highly porous and a low density gel is
formed called aerogel [10] [36]. Aerogels
have nano-meter scale pores, high internal
area and very low density [37] [25]. Drying
of wet gel to form areogels is generally
done by supercritical method, subcritical
method or by sublimation process [25]. In
super-critical method the wet gel is dried
under critical temperature and pressure to
remove the solvent from the system as gas.
This process can also be carried out at low
temperature or at high temperature. When
the process is carried out at low temperature
the pore-liquid is first replaced with a liquid
such as CO2 which is then removed at an
ambient temperature and pressure [38].
In case of high temperature super-critical
drying the solvent is directly removed from
the wet-gel at critical temperature and
pressure. The pressure and temperature are
adjusted in such a way that the network
does not collapse and the structure is main-
tained. Chemical additives like glycerol,
formaldehyde, oxalic acid, tetramethylam-
monium hydroxide are used to control the
drying process. In the sublimation or freeze
drying method, the liquid inside the gel is
first frozen and then dried by sublimation.
Drying at ambient pressure is generally
used on an industrial scale [36]. Xerogels
are formed by drying the gels under normal
conditions. The main difference between
aerogel and xerogel are in the size and
number of the cavities. Aerogels have very
low thermal conductivity due to highly

porous structure of these nano-materials.
Nano-scale powders are formed by this
method. Usually the powders so formed
are amorphous in nature which can be
crystallized by annealing or sintering them
at higher temperature.

Wet chemical method has long been
used to prepare mixed ferrites. Recently,
the method has been specifically used to
prepare nano-particles of mixed ferrites.
The method is also called co-precipitation
method. The method, in brief, involves the
preparation of solutions of different metal
salts such as sulphates, chlorides, nitrates,
etc., in appropriate ratios, which are then
mixed to form a solution. An alkali solution
of sodium hydroxide or potassium hydrox-
ide or a base like ammonia is prepared in
appropriate concentration. For simultane-
ous or co-precipitation of metal-hydroxides,
the prepared metal solution is added drop-
wise to the alkaline solution.The suspension
of metal hydroxides, so obtained, is usually
heated to a temperature of 60 − 80◦C and
oxygen gas is bubbled through the suspen-
sion along with mechanical stirring to con-
vert ferrous iron into ferric state. The precip-
itate is filtered, washed repeatedly and dried
at 130◦C. The dried material is sintered at
approximately 700◦C to obtain the desired
mixed ferrites. The nano scale powders of
ferrites can be obtained by this method [39,
40, 31, 41, 42, 43]. Jadhav et.al. [39, 40] made
a detailed study of the ferrite nano-materials
so prepared. A series of substituted ferrites
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of composition Co1−xZnxFe2O4 with x vary-
ing from 0.0 to 0.7 was prepared by them
by wet chemical or co-precipitation method.
the samples were characterized by X-ray
diffraction and magnetization studies. Re-
sults revealed nano size of the ferrites pre-
pared. Jadhav et.al.[26] also reported ferrite
nano-particles prepared by sol-gel autocom-
bustion method in which nitrates of suitable
metal ions and a suitable chelating agent
or fuel, such as citric acid, urea, glycine,
etc., were used as starting material. Ammo-
nium hydroxide was added to the aqueous
solution of metal nitrates and the chelating
agent. Detailed preparation method is given
by Shirsath et.al.[26] Singh et.al.[31]. Parti-
cle size, magnetic properties depends on the
chelating agent to nitrate ratio and type of
chelating agent used [26, 44]. Nanoparticles
of mixed and simple ferrites were prepared
and studied by this method.

3.6 Applications of Sol-Gel Deposited

films and nano-particles

Historically sol-gel method was used to
make silica gel glasses [1, 2]. Indium TinOx-
ide (ITO) films deposited by sol-gel method
were used as anti-reflection coatings [3, 4].

This method has been extensively
used to deposit dielectric and ferroelectric
films. Those films have found a wide
range of applications using the ferroelectric,
piezoelectric, pyroelectric, electro-optic
properties of these materials [6]. Ferroelec-
tric films in the paraelectric phase at room

temperature have been used in large capac-
itors for DRAM (Dynamic random access
memory) and the films in the ferroelectric
phase as memory capacitors [6, 5, 45]. These
films have applications in tunable phase
shifters, integrated microwave devices,
optical applications, infra-red detectors,
gas sensors, light sensors as photodiode,
solar cells, glucose sensors[46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56]. Materials like
alumina prepared by sol-gel method has
been used in medical field as carriers for
drug delivery [57, 58, 59]. Recently Barium-
Strontium-titanate films have been used as
glucose-sensor [53].

Recent interest in nano particles makes
sol-gel attractive as the particle size is
generally in the nano-meter range. Ease of
composition control and variation makes
sol-gel an attractive method for uniform
and ultra-fine ceramic powders. These
nano-scale sized particle find applications
in biomedical and dental applications, her-
bicides, agrochemicals, powder abrasives
for finishing operations [60]. Also ease of
assimilation of various particles makes it
easy to incorporate nano-particles in the
material modifying the characteristics of the
material.

Sol-gel method is used to fabricate var-
ious ceramic membranes for microfiltration,
nanofiltration, ultrafiltration, reverse osmo-
sis. By drying the gel under suitable condi-
tion it is possible to obtain porous solid ma-
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trices which can be used as membranes. In
1950’s sol-gel process was used to make ra-
dioactive powders of UO2 and ThO2 for nu-
clear fuels.
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Abstract 

This article is devoted to the description of the 
Lorentz oscillator model, which refers to the 
classical concept that electrons in an atom behave 
as forced damped harmonic oscillators under the 
influence of an oscillating electric field. This idea 
has been used to derive expressions for complex 
dielectric function, complex refractive index and 
normal incidence reflectivity and their detailed 
analysis. These quantities have also been discussed 
for the Drude model for metals, which can be 
considered as a special case of the Lorentz model. 
Some typical applications of these models and 
their combination have also been dealt with. The 
fascinating thing about these models is that despite 
being classical in nature they lead to reasonably 
reliable results for otherwise quantum mechanical 
systems. An effort has been made to present the 
material in a pedagogical manner so that it can be 
easily followed by undergraduate students. 

 

  
1  Introduction   
 
The 1902 physics Nobel laureate Lorentz (July 
18,1853 – Feb. 4, 1928) became a cynosure in the  
 

 
 
history of physics by ‘completing what was left 
unfinished by his predecessors and preparing the 
ground for the fruitful reception of new ideas based 
on the quantum theory’ [1]. His outstanding 
contributions are refinement of Maxwell’s 
electromagnetic theory including works in optics; 
general theory of electrical and optical phenomena 
of moving bodies; derivation of Lorentz force law 
which describes dynamics of a charged particle in 
the presence of electric and magnetic fields; 
insightful conceptualization of electron, its 
mathematical theory and use to explain Zeeman 
effect (the splitting of atomic spectral lines in the 
presence of magnetic field); and ingenious idea of 
local time and derivation of Lorentz 
transformations (which can be used to calculate the 
earlier proposed 
Lorentz-Fitzgerald length contraction) that 
constitute the natural outcome of Einstein’s special 
theory of relativity. Even before the discovery of 
electron in 1897, he argued that atoms are 
composed of charged particles and that the light 
originated from their oscillations in an atom. Later, 
he proposed the so-called Lorentz oscillator model 
(LOM) to account for the anomalous dispersion in 
dielectric substances in the framework of classical 
physics. Besides, he published research papers on 
general theory of relativity and delivered lectures 
on Schrödinger’s wave mechanics. Interestingly, 
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he spent nearly eight years in developing 
mathematical models for flood control dams in his 
country, the Netherlands, and his findings have 
been recognized  
as one of the greatest works in hydraulic 
engineering. In fact, the dictum ‘talent hits a target 
that others miss, and genius hits a target that others 
do not even see’ by the celebrated 19th century 
German philosopher Schopenhauer appropriately 
describes spectacular creative work carried out by 
the legendary Lorentz. 
   In the end of 1905, when the structure of atoms 
was not yet established, Lorentz in his paper 
entitled ‘The absorption and emission lines of 
gaseous bodies’, put forward the idea that in the 
presence of an oscillating electric field, electrons in 
an atom behave as driven velocity-dependent-
damped harmonic oscillators – the LOM [2]. The 
formulae derived by using the time-dependent 
position vector of these electrons quite well 
describe the electric polarization and, hence, 
dielectric function and optical properties of various 
types of materials [3-12]. In other words, the LOM 
provides a classical theory for understanding 
interaction between electromagnetic (e.m.) 
radiation and matter. It is indeed amazing that 
despite being a completely classical concept, in 
later works, this model fitted adequately in the 
realm of quantum mechanics and has been 
fruitfully used in analyzing various electrical and 
optical properties of insulators, undoped as well as 
doped semiconductors, and ionic crystals 
[3,6,9,10,12]. In fact, strictly speaking all these 
features of solids are properly explained in terms 
of band structure, which is an outcome of their 
quantum mechanical description.  
   Recently, with a view to incorporating some 
quantum mechanical aspects in the formalism of 
this model, the oscillator has been quantized using 
the Bohr and the Bohr-Sommerfeld theories and 
quantum mechanical selection rules, establishing 
relationship between the oscillator impedance and 
the energy eigenvalues of hydrogen-like atoms 
[13,14]. Model so obtained has been named 
quantum impedance Lorentz oscillator by the 
authors - Zhao and coworkers. They have shown 

that their modified model can be used to analyze 
linear and nonlinear properties of many dielectric 
materials containing hydrogen-like atoms.    
However, prior to introduction of LOM, Drude 
(1900, just 3 years after the discovery of electron), 
in his publication on ‘electron theory of metals’, 
assumed that a metal is composed of positively 
charged immobile particles submerged in a sea of 
mobile negatively charged electrons. He treated the 
motion of electron gas as classical entities under 
the influence of constant uniform electric field in 
the framework of kinetic theory, with positive 
particles as scattering centers and obtained an 
expression for DC conductivity of metals. In fact, 
the Drude model (DM) can be treated as a special 
case of LOM and has been found to be very useful 
in getting insight into the optical properties of 
metals. 
   It is interesting to note that despite their 
numerous shortcomings, a combination of DM and 
LOM is quite commonly used to analyze 
experimental data for optical properties of 
conducting materials. It is usually referred to as 
Drude-Lorentz Oscillator Model (DLOM). 
Besides, some improved versions making use of 
the concepts of these models and even including 
confining potentials have also been developed. 
These are applicable not only to bulk materials but 
also to nanoparticles and systems falling under the 
purview of nonlinear optics. Of course, these have 
their own merits and demerits. Some of the 
relevant references have been well summarized in 
[15]. It may also be mentioned that some softwares 
based on the LOM and DLOM are available for 
analysis of optical spectra of solids.   
   The principal purpose of this article is to 
delineate upon LOM and derivation of expressions 
for different electric and optical quantities, and to 
discuss the DM for metals (as a special case of 
LOM). In fact, both these models provide fairly 
good qualitative results for some solids and are, 
therefore, quite useful in making preliminary 
predictions. Some illustrative examples of these 
models and DLOM have also been included.    
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2  The Lorentz Oscillator and its Solution 
 
Following Lorentz, we take an atom to be 
composed of an electron of electric charge −𝑞 and 
mass 𝑚 bound to an infinitely massive stationary 
nucleus / positive ion core by a hypothetical spring 
characterized by force constant 𝑘 . On being 
slightly displaced from its equilibrium position, the 
classically treated electron executes simple 
harmonic motion of natural or free angular 

frequency 𝜔଴ = ඥ𝑘 𝑚⁄  . Sometimes, the 
characteristic frequency 𝜔଴ is referred to as 
fundamental or resonant frequency. This 
oscillatory motion experiences a velocity-
dependent viscous resistance or damping, with 
coefficient 𝛾, caused by collisions, radiative losses, 
etc. In the presence of an external harmonic 
electric field of angular frequency Ω , 𝑬(𝑡) =
𝑬𝟎𝑒ି௜ஐ௧(as it occurs in the description of travelling 
e.m. waves), the electron becomes a driven 
damped harmonic oscillator described by the 
following equation of motion, 
 
     �̈�(𝑡) +  𝛾�̇�(𝑡) + 𝜔଴

ଶ𝒓(𝑡) = −
௤

௠
𝑬𝟎𝑒ି௜ஐ௧.     (1) 

 
Here,  𝒓(𝑡) is the instantaneous displacement of the 
electron from its equilibrium position. Note that 𝛾 
has dimension of inverse time and is, therefore, 
also called damping rate. It may be pointed out that 
the Lorentz force arising from the interaction of 
electronic charge with the magnetic field of an e.m. 
wave has been omitted because the electron 
velocity is very small as compared to the speed of 
light.  
As demonstrated in the Appendix, for sufficiently 
large times the complementary solution of Eq. (1) 
giving rise to transients will vanish and only the 
particular integral, is left. Thus, the steady state 
solution can be written as   
 

       𝒓(𝑡) =  −
௤

௠

ଵ

൫ఠబ
మିஐమ൯ି௜ఊஐ

𝑬𝟎𝑒ି௜ஐ௧ 

               = −
௤

௠
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝑬𝟎𝑒ି௜ஐ௧.         (2)  

 

We have not used any subscript with 𝒓(𝑡)  to 
indicate steady state, for convenience. Note that in 
this state the electron oscillates with the angular 
frequency Ω  of the field. In fact, explicit 
dependence of 𝒓(𝑡)  on Ω is quite clear from Eq. 
(2). Furthermore, it is implicitly assumed that the 
motion of the electron is such that it is always 
associated with the same nucleus / ion core. 
   Writing (𝜔଴

ଶ − Ωଶ) = 𝐴 cos 𝜃  and 𝛾Ω = A sin  𝜃 
so that 𝐴 = {(𝜔଴

ଶ − Ωଶ)ଶ + (𝛾Ω)ଶ}ଵ/ଶ  and 
𝜃 = 𝑡𝑎𝑛ିଵ{𝛾Ω (𝜔଴

ଶ − Ωଶ)⁄ }, Eq. (2) becomes 
 

  𝒓(𝑡) = −
௤

௠

ଵ

ቄ൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మቅ

భ/మ 𝑬𝟎𝑒ି௜(ஐ௧ିఏ).   (3) 

 
It may be noted that the complex nature of the 
amplitude in Eq. (2) has been taken care of by 
introducing the phase angle 𝜃 . Furthermore, Eq. 
(3) shows that at any time 𝑡, the displacement of 
the oscillating electron lags behind the driving 
electric field 𝑬(𝑡) by an angle 𝜃. In other words, 
there is a time delay between the applied field and 
the resulting motion of the electron. Obviously, the 
phase difference 𝜃  is quite small when Ω ≪
𝜔଴ (Ω → 0) , rises to 𝜋 2⁄  for Ω  close to 𝜔଴  and 
further increases to 𝜋  when Ω ≫ 𝜔଴(Ω → ∞) . 
Also, for a specific value of 𝛾 , the denominator in 
the expression in Eq. (3) is minimum and the 
amplitude is maximum when Ω = 𝜔଴ . This 
justifies 𝜔଴ being called the resonant frequency. 
 
3     Dielectric Materials in the Framework of 

LOM  
 

Recall that an electric dipole is an arrangement of 
two equal and opposite charges (±𝑄) separated by 
a distance 𝑟. It has dipole moment   𝒑 = 𝑄𝒓, where 
𝒓 and, hence, 𝒑 is a vector directed from negative 
charge to the positive one. When an atom is 
subjected to an external static uniform electric 
field, the electron orbits (particularly those of the 
valence electrons) get distorted and the otherwise 
coincident centers of positive and negative charges 
(the nucleus and the electron cloud, respectively) 
get shifted relative to each other because these 
experience forces in opposite direction. These so 
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displaced charges create an electric dipole whose 
moment is aligned along the field and the atom is 
said to be polarized. In other words, the applied 
electric field induces a dipole moment in the atom. 
If the applied electric field is oscillatory in nature, 
then the separation between the centres of positive 
and negative charges will also be oscillatory and 
this will lead to an electric dipole with oscillatory 
moment. In the LOM, since the electron is taken as 
a classical particle it can be assumed to be located 
at the position of maximum probability of the 
electron cloud. Furthermore, as the nucleus has 
been assumed to be infinitely heavy, the applied 
electric field 𝑬(𝑡)  causes a shift only in the 
electron (which now behaves as a forced 
oscillator). In the present discussion, 𝒓(𝑡) has been 
assumed to be directed from the stationary positive 
nucleus / ion core to the negatively charged 
electron, which is opposite to the sign convention 
for the electric dipole. Accordingly, the 
instantaneous electric dipole moment induced by 
the displaced electron in the associated atom (in 
the framework of LOM) will be given by − 𝒑(𝑡) =
𝑞𝒓(𝑡). Substituting for 𝒓(𝑡) from Eq. (2) and using 
𝑬(𝑡) in place of 𝑬𝟎𝑒ି௜ஐ௧ there, we have  
 

                  𝒑(𝑡) =
௤మ

௠
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝑬(𝑡).       (4)     

  
Note that 𝒑(𝑡) is also given by 𝜀଴𝛼(Ω)𝑬(𝑡), where 
𝜀଴ = 8.85 × 10ିଵଶ F m-1 is electric permittivity of 
vacuum and 𝛼(Ω)  is atomic polarizability 
determined by the exact structure of the atom. 
Equating these two expressions for 𝒑(𝑡) , we get 
Lorentz polarizability for an atom as  
 

                  𝛼(Ω) =
௤మ

௠ఌబ
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ.          (5) 

 
Thus, both 𝒑(𝑡) and 𝛼(Ω) are complex quantities. 
   If the number of such electrons per unit volume 
(in some material) is 𝑁 , then instantaneous 
complex electric polarization (which is dipole 
moment per unit volume) of the collection will be   
 

   𝑷(𝑡) = 𝑁𝒑(𝑡) =
ே௤మ

௠
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝑬(𝑡).   (6) 

 
Here, we have assumed that response of all the 
electrons in the solid is identical so that all of these 
have the same 𝒑(𝑡). Once again, 𝑷(𝑡) , which is 
macroscopic property of the substance, also 
depends upon Ω and is out of phase with respect to 
𝑬(𝑡) as discussed at the end of section 2. Now, 
polarization is related to electric susceptibility 
𝜒(Ω) , sometimes referred to as first-order 
susceptibility, through 𝑷(𝑡) = 𝜀଴𝜒(Ω) 𝑬(𝑡) so that   
 

        𝜒(Ω) = 𝑁𝛼(Ω) =
ே௤మ

௠ఌబ
൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ.    (7) 

 
While writing the preceding expression for 𝑷(𝑡), it 
is presumed that the material is isotropic in nature. 

Note that ඥ𝑁𝑞ଶ 𝑚𝜀଴⁄  has dimensions of angular 
frequency and is called plasma frequency, which is 
characteristic of the material. Denoting this by 𝜔௣ , 
we have    
     

                 𝜒(Ω) = 𝜔௣
ଶ ൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ,             (8)   

                                                               
which too is complex.  
   Next, electric permittivity of a dielectric material 
is given by 𝜀 = 𝜀଴𝜀௥, where 𝜀௥  (= 1 + 𝜒) is known 
as relative electric permittivity of the medium. 
Thus, 
 

              𝜀௥(Ω) = 1 + 𝜔௣
ଶ ൜

൫ఠబ
మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ.        (9) 

 
Obviously, 𝜀௥(Ω) too is a complex quantity and is 
also referred to as dielectric function. For Ω → 0, 
the so-called DC limit or static value of the 
external electric field, Eq. (9) gives 𝜀௥(0) ≡

𝜀௥(Ω → 0) = 1 + (
ఠ೛

ఠబ
)ଶ . Similarly, at the other 

extreme, when Ω → ∞, we have 𝜀௥(∞) ≡ 𝜀௥(Ω →
∞ = 1. Note that both 𝜀𝑟0 and 𝜀𝑟∞ are real and 
independent of damping coefficient 𝛾. Combining 
these two results, we get  
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                      𝜔௣
ଶ = 𝜔଴

ଶ{𝜀௥(0) − 𝜀௥(∞)}.         (10) 
 
Hence, Eq. (9) can also be written as  
 

𝜀௥(Ω) = 𝜀௥(∞) + ൤
ఠబ

మ{ఌೝ(଴)ିఌೝ(ஶ)}൛൫ఠబ
మିஐమ൯ା௜ ఊஐൟ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

൨.  

                                                                         (11) 
 
   Now, writing 𝜀௥(Ω) = 𝜀௥

ᇱ (Ω) + 𝑖𝜀௥
ᇱᇱ(Ω), and thus  

separating the real and imaginary parts in Eq. (9), 
we have  
 

             𝜀௥
ᇱ (Ω) = 1 +

ఠ೛
మ൫ఠబ

మିஐమ൯

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

                (12)   

    
and 
 

             𝜀௥
ᇱᇱ(Ω) =

ఠ೛
మఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

 .                    (13) 

 
We can also use Eq. (10) to eliminate 𝜔௣

ଶ in these 
expressions. Note that for a particular value of 
other parameters, both 𝜀௥

ᇱ (Ω)  and 𝜀௥
ᇱᇱ(Ω)  will 

decrease with increase in the value of 𝛾 . It may 
also be pointed out that 𝜀௥

ᇱᇱ(Ω)  vanishes when 
either Ω = 0  or 𝛾 = 0 . This implies that the 
imaginary part of dielectric function is intimately 
associated with oscillatory nature of applied 
electric field and damping. Thus, it is an outcome 
of dissipation of energy of the oscillatory external 
field in the medium.  
   It may be noted that the sign of the term added to 
unity in Eq. (12) will be positive or negative 
depending on whether Ω is smaller or larger than 
𝜔଴. Thus, this term is antisymmetric with respect 
to 𝜔଴ . It must be emphasized that 𝜀௥

ᇱ (Ω)  will 
certainly be positive for Ω < 𝜔଴, while its sign for 
Ω > 𝜔଴  will be determined by the relative 
magnitudes of the second term and unity. On the 
other hand, Eq. (13) is always positive whether 
Ω < 𝜔଴  or Ω > 𝜔଴  implying that 𝜀௥

ᇱᇱ(Ω)  is 
symmetric about 𝜔଴  and it will never become 
negative. 
   As a follow up of the statement made after Eq. 

(9), we note that 𝜀௥
ᇱ (0) = 1 + (

ఠ೛

ఠబ
)ଶ , 𝜀௥

ᇱ (∞) = 1 , 

and 𝜀௥
ᇱᇱ(0) = 𝜀௥

ᇱᇱ(∞) = 0 . We now look at the 
physical aspects of the result pertaining to the 
imaginary part of the dielectric function in the light 
of the statements made after Eq. (13). In the DC 
limit, all the dipoles are essentially aligned along 
the applied electric field (which is basically static), 
and these do not undergo any movement as there is 
no change in the field. Therefore, there is no 
energy loss at all and 𝜀௥

ᇱᇱ(0) = 0 . On the other 
hand, when the electric field frequency Ω  is 
extremely large, the oscillations of the induced 
dipoles fail to keep pace with this because their 
natural frequency is quite small as compared to Ω 
and again there is no movement. The consequent 
absence of energy dissipation results in 𝜀௥

ᇱᇱ(∞) =
0.        
   However, if Ω has a nonzero finite value then we 
consider the following cases. 
(i) If interaction of the oscillating electrons with 
their surroundings is negligible so that damping 
can be taken as zero for all values of Ω , then 
substituting 𝛾 = 0 into Eqs. (12) and (13), we get  
 

                     𝜀௥
ᇱ (Ω) = 1 +

ఠ೛
మ

൫ఠబ
మିஐమ൯

                   (14) 

 
and 
 
                            𝜀௥

ᇱᇱ(Ω) = 0.                           (15) 
 
Clearly, 𝜀௥

ᇱ (Ω)  will tend to + ∞ when Ω  
approaches 𝜔଴ from below and it will be − ∞ for 
Ω  approaching 𝜔଴  from above, with a 
discontinuity at Ω = 𝜔଴ (the resonance frequency). 
Furthermore, 𝜀௥

ᇱᇱ(Ω) = 0  implies no energy loss, 
which is a consequence of 𝛾 being zero. 
(ii) From Eq. (12), it is clear that 𝜀௥

ᇱ (Ω) will be 
zero, if 𝜔௣

ଶ(𝜔଴
ଶ − Ωଶ) = −{(𝜔଴

ଶ − Ωଶ)ଶ + (𝛾Ω)ଶ} . 
Solving this quartic equation in Ω , we find that 

𝜀௥
ᇱ (Ω) = 0 , when Ω଴ = ට

ଵ

ଶ
{𝐴 ± √𝐵}  , where 

𝐴 = 𝜔௣
ଶ + 2𝜔଴

ଶ − 𝛾  and 𝐵 = 𝜔௣
ସ − 𝛾ଶ(2𝜔௣

ଶ +

4𝜔଴
ଶ − 𝛾ଶ) . Since angular frequency cannot be 

negative, we have considered only the positive root 
for Ω଴ . Thus, 𝜀௥

ᇱ (Ω)  versus Ω plot will cross the 
Ω −axis twice. However, if  
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 𝛾 > ൜2𝜔଴
ଶ + 𝜔௣

ଶ − 2𝜔଴ට𝜔଴
ଶ + 𝜔௣

ଶ ൠ

ଵ/ଶ

, then 𝐵 

becomes negative making Ω଴  a complex quantity 
meaning thereby that 𝜀௥

ᇱ (Ω)  never becomes zero 
and remains positive for all values of Ω . 
Furthermore, for negligibly small values of 𝛾 , 
𝐴 ≈ 𝜔௣

ଶ + 2𝜔଴
ଶ  and 𝐵 ≈ 𝜔௣

ସ  so that  Ω଴ ≈ 𝜔଴  and 

ට𝜔଴
ଶ + 𝜔௣

ଶ . In fact, these cross overs of 𝜀௥
ᇱ (Ω) can 

be used to guess values of 𝜔଴ and 𝜔௣ for fitting the 
experimental data to this model. 
(iii) If the applied field frequency Ω  is 
reasonably smaller than 𝜔଴ and 𝛾 is also such that 
(𝛾Ω)ଶ can be neglected as compared to  (𝜔଴

ଶ −
Ω22, then Eqs. (12) and (13) become 

𝜀௥
ᇱ (Ω ≪ 𝜔଴) ≈ 1 +

ఠ೛
మ

൫ఠబ
మିஐమ൯

  and 𝜀௥
ᇱᇱ(Ω ≪ 𝜔଴) ≈ 0. 

To look at, these are the same expressions as 
obtained in Eqs. (14) and (15) but here Ω ≪ 𝜔଴ 
(very low applied-field frequency limit). Also, 𝛾 
and 𝜀௥

ᇱᇱ have nonzero but extremely small values. 
(iv) For Ω = 𝜔଴ , 𝜀௥

ᇱ (𝜔଴) = 1  and 𝜀௥
ᇱᇱ(𝜔଴) =

𝜔௣
ଶ 𝛾𝜔଴⁄ . Thus, the former is unity for all 𝛾, while 

the latter varies inversely as 𝛾. 
(v)  When the driving field frequency Ω  is 
significantly larger than 𝜔଴ so that (𝜔଴

ଶ − Ωଶ) ≈
−Ωଶ  and 𝛾  is nonzero but small enough that 
(𝛾Ω)ଶ ≪ (𝜔଴

ଶ − Ωଶ)ଶ,  then from Eqs. (12) and 
(13), we have  
 

                   𝜀௥
ᇱ (Ω ≫ 𝜔଴) ≈ 1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
             (16) 

 
and  
 
                      𝜀௥

ᇱᇱ(Ω ≫ 𝜔଴) ≈ 0.                       (17)  
 
Thus, for sufficiently large Ω,  𝜀௥

ᇱ < 0 for Ω < 𝜔௣ 
and it becomes positive when Ω > 𝜔௣.  
   The preceding considerations reveal that for Ω 
away from 𝜔଴, 𝜀௥

ᇱᇱ(Ω) is quite small as compared 
to 𝜀௥

ᇱ (Ω) and it becomes more important when the 
value of Ω  is close to that of 𝜔଴ . Thus, the 
dielectric function will behave as a complex 
quantity (implying energy losses) mainly for 

applied field frequencies near the natural 
frequency. 
   Next, extrema in 𝜀௥

ᇱ  as function of Ω occur when 
ௗఌೝ

ᇲ (ஐ)

ௗஐ
= 0. Simplifying the expression so obtained, 

we finally get the relevant physically meaningful 

values of Ω  as Ωଵ
ᇱ = 𝜔଴ඥ1 − (𝛾 𝜔଴⁄ )  and 

Ωଶ
ᇱ = 𝜔଴ඥ1 + (𝛾 𝜔଴⁄ )   with the restriction that 

𝛾 < 𝜔଴ . Thus, in the presence of damping, 
Ωଵ

ᇱ < 𝜔଴  and Ωଶ
ᇱ > 𝜔଴. The corresponding values 

of 𝜀௥
ᇱ (Ω) are found to be  

                     𝜀௥
ᇱ (Ωଵ

ᇱ ) = 1 +
ఠ೛

మ

ఊ(ଶఠబିఊ)
                (18) 

 
and 
 

                     𝜀௥
ᇱ (Ωଶ

ᇱ ) = 1 −
ఠ೛

మ

ఊ(ଶఠబାఊ)
 .              (19) 

 
Obviously, the former is local maximum (peak) 
while the latter is local minimum (dip). Also, since 
𝛾 < 𝜔଴ , 𝜀௥

ᇱ (Ωଵ
ᇱ )  will always be positive 

irrespective of the value of 𝛾. On the other hand, 

𝜀௥
ᇱ (Ωଶ

ᇱ ) will be negative if 
ఠ೛

మ

ఊ(ଶఠబାఊ)
> 1, which is 

so if  𝛾 < 𝜔଴ ቆට1 + ቀ
ఠ೛

ఠబ
ቁ

ଶ
− 1ቇ . For higher 

values of 𝛾, 𝜀௥
ᇱ (Ωଶ

ᇱ ) will be positive.  
   To make the above-mentioned aspects visually 
clear, we have plotted 𝜀௥

ᇱ (Ω) vs Ω for Eq. (12) in 
Figs. 1 and 2. Note that the parameters 𝜔଴, 𝜔௣, and 
𝛾 appearing in this equation have units rad s-1 and 
their magnitudes are ~10ଵହ  or so. However, we 
shall express these in energy units, eV, by 
multiplying with ℏ = 6.58 × 10ିଵ଺  eV s-1. Thus, 
strictly speaking 𝜔଴ , 𝜔௣,  and 𝛾  as used hereafter 
are ℏ𝜔଴ , ℏ𝜔௣, and ℏ𝛾 , respectively. Accordingly, 
Ω too is taken in eV and refers to photon energy. It 
may be mentioned that Ω  lies between 1.65 and 
3.26 eV for the visible region. 
   Guided by the fact that for a good number of 
dielectric materials 𝜔௣ and 𝜔଴ lie between 10 and 
15 eV, and between 8 and 13 eV, respectively, we 
have taken 𝜔௣ = 13.5 eV and 𝜔଴ = 10 eV. In fact, 
these are the values we have later used for fitting 
the experimental data for silica in Section 5. Note 
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that both the chosen values are in the extreme 
ultraviolet region. The 𝛾 values used in Fig. 1 are 
0, 0.05 and 0.2 eV while these are 1.0, 4.0 and 7.0 
eV for Fig. 2. In Fig.1, the Ω  values have been 
taken from 9 eV to 11 eV and 𝜀௥

ᇱ (
−300 to 300 rather than the actual values obtained, 
to make the plots for non-zero 𝛾
noticeable. Consequently, the Ω values higher than 
𝜔଴ , for which 𝜀௥

ᇱ (Ω)  undergoes change from 
negative values to positive ones are not visible. In 
all the cases depicted in Fig. 1, 𝜀௥

ᇱ (Ω
at Ω ≈ 16.8 eV, which is 
 

 
Fig. 1. Plots showing angular frequency 
dependence of 𝜀௥

ᇱ (Ω)  for 𝜔௣ = 13

10 eV, and 𝛾 = 0 (black dash-dot line), 
eV (red dashed line), and 
𝛾 = 0.2 eV (blue solid line).  
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that both the chosen values are in the extreme 
values used in Fig. 1 are 

eV while these are 1.0, 4.0 and 7.0 
values have been 

(Ω) values from 
rather than the actual values obtained, 

𝛾  to be clearly 
values higher than 

undergoes change from 
negative values to positive ones are not visible. In 

(Ω) changes sign 

 

Fig. 1. Plots showing angular frequency 
13.5 eV,  𝜔଴ =

dot line), 𝛾 = 0.05 
eV (red dashed line), and 

 
 Fig. 2. 𝜀௥

ᇱ (Ω)  vs Ω

𝜔଴ = 10 𝑒𝑉 , and 𝛾 =
𝛾 = 4.0  eV (red dash
7.0 eV (blue dash-dash line). 
 
 
consistent with the value determined from 

ට𝜔଴
ଶ + 𝜔௣

ଶ  found earlier.

of 𝛾 are concerned, in Fig. 2 
at Ω଴ = 16.61 eV for 𝛾
eV for 𝛾 = 4.0 eV. However, sign does not change 
for 𝛾 = 7.0 eV.  
   Coming to the expression for 
the condition for occurrence of 
which is always positive, as function of 
local maximum (peak) at
 

    Ωᇱᇱ = ൤
ଶఠబ

మିఊమ

଺
൜1 + ට

 
For very small value of 
close to 𝜔଴ and decreases slightly with increase in 
𝛾; in fact, Ωᇱᇱ= 0.97 𝜔଴

   The above consideration shows that the peak in 
𝜀௥

ᇱᇱ(Ω) essentially occurs for 
Now, for Ω ≈ 𝜔଴ , 𝜔଴

ଶ

≈ 2𝜔଴(𝜔଴ − Ω). Accordingly, Eq. (13) for 
can be written as 

March 2025 
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Ω  plots for 𝜔௣ = 13.5 𝑒𝑉,  
= 1.0  eV (black solid line), 

eV (red dash-dot line), and 𝛾 =
dash line).  

consistent with the value determined from Ω଴ = 

found earlier. As far as higher values 

are concerned, in Fig. 2 the crossover occurs 
𝛾 = 1.0 eV, and at Ω଴ =16.0 

. However, sign does not change 

the expression for 𝜀௥
ᇱᇱ(Ω), Eq. (13), 

the condition for occurrence of extrema in 𝜀௥
ᇱᇱ , 

which is always positive, as function of Ω leads to 
local maximum (peak) at 

൜ ට1 +
ଵଶఠబ

ర

൫ଶఠబ
మିఊమ൯

మ ൠ൨
ଵ/ଶ

.   (20) 

For very small value of 𝛾 (≪ 𝜔଴) , Ωᇱᇱ  is quite 
and decreases slightly with increase in 

଴ when 𝛾 = 0.5 𝜔଴. 
The above consideration shows that the peak in 

essentially occurs for Ω reasonably near 𝜔଴. 

଴
ଶ − Ωଶ = (𝜔଴ + Ω)(𝜔଴ − Ω) 

Accordingly, Eq. (13) for 𝜀௥
ᇱᇱ(Ω) 
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      𝜀௥
ᇱᇱ(Ω ≈ 𝜔଴) ≈

ఠ೛
మ

ଶఠబ
ቊ

ം

మ

(ఠబିஐ)మାቀ
ം

మ
ቁ

         
Here, the expression in {… }  is 
Lorentzian function with peak at Ω
full width at half maximum. Therefore, 
plot (which is clearly symmetric with respect to 
𝜔଴) is usually said to have Lorentzian 
clear from Eq. (21) that the location
the 𝜀௥

ᇱᇱ(Ω)  graph is given by 𝜔଴

height is determined by 𝜔௣
ଶ/𝜔଴𝛾

represents dissipation of energy of the oscillatory 
field, its peak position 𝜔଴ is sometime
absorption angular frequency. Also, 
values for which magnitude of 𝜀௥

ᇱᇱ

referred to as region of resonant absorption. In 
contrast, if we substitute the preceding expression 
for 𝜔଴

ଶ − Ωଶ into Eq. (12), we get    
       

         𝜀௥
ᇱ (Ω) ≈ 1 +

ఠ೛
మ

ଶఠబ
 

(ఠబିஐ)

(ఠబିஐ)మା(ఊ/ଶ)

 

 
Fig. 3. Variation of 𝜀௥

ᇱᇱ(Ω)  with 
parameters and legends as used in Fig. 2.
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ቀ ቁ
మ ቋ .          (21)  

is 𝜋  times the 
Ω = 𝜔଴ and 𝛾 as 

Therefore, 𝜀௥
ᇱᇱ(Ω) vs Ω 

plot (which is clearly symmetric with respect to 
) is usually said to have Lorentzian shape. It is 

the location of the peak in 
 and the peak 
. Since 𝜀௥

ᇱᇱ(Ω) 
represents dissipation of energy of the oscillatory 

is sometimes called the 
frequency. Also, the range of Ω 

ᇱᇱ(Ω) is large is 
region of resonant absorption. In 

if we substitute the preceding expression 
     

)

( )మ .           (22)  

 

with Ω  for the 
parameters and legends as used in Fig. 2. 

This too brings out the fact that the second term in 
this expression is an odd function of 
hence, antisymmetric about 
   The variation of 𝜀௥

ᇱᇱ

frequency Ω has been projected in Fig. 
parameters used in Fig. 2 and it corroborates the 
observations made above
that the plots are peaked nearly around 
with little shift towards lower 
increases. Thus, energy absorption is maximum for 
Ω close to 𝜔଴. Also, from Fig
an increase in damping makes the peaks in 
and 𝜀௥

ᇱᇱ(Ω) vs Ω plots shorter and broader. 
in consonance with the fact that the
provides a measure of the width of these peaks.
   Having dwelt upon various aspects of 
come to some optical properties
Recall that if the phase velocity of
a medium is 𝑣௣௛, then its 

by 𝑛 = 𝑐 𝑣௣௛⁄ = ඥ𝜀𝜇

𝜇 (= 𝜇଴𝜇௥)  is magnetic permeability
substance and 𝜇௥  is its 
the paramagnetic and diamagnetic 
so-called non-magnetic materials),
unity by about 10-4 − 10

take 𝑛(Ω) = ඥ𝜀௥(Ω). Thus, the index of refraction 
of such a substance is a 
 

      𝑛(Ω) = ൤1 + 𝜔௣
ଶ ൜

൫

 
   Writing 𝑛(Ω) =  𝑛ᇱ(
fact that 𝑛ଶ(Ω) = 𝜀௥(
get 𝜀௥

ᇱ (Ω) = {𝑛ᇱ(Ω)}ଶ

2𝑛ᇱ(Ω)𝑛ᇱᇱ(Ω). Eliminating 
equations, and solving the resulting quadratic 
equation in {𝑛ᇱ(Ω)}ଶ, we 
 

     𝑛ᇱ(Ω) = ቐ
ට൛ఌೝ

ᇲ (ஐ)ൟ
మ

ା

 
Similarly, elimination of 
two equations yields  
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This too brings out the fact that the second term in 
this expression is an odd function of (𝜔଴ − Ω) and, 

antisymmetric about 𝜔଴.   
ᇱᇱ(Ω)  with the applied field 

has been projected in Fig. 3, for the 
parameters used in Fig. 2 and it corroborates the 

made above. It is pertinent to note 
that the plots are peaked nearly around Ω = 𝜔଴ 

towards lower Ω  values as 𝛾 
Thus, energy absorption is maximum for 

Also, from Figs. 1- 3, we note that 
an increase in damping makes the peaks in 𝜀௥

ᇱ (Ω) 
plots shorter and broader. This is 

in consonance with the fact that the value of 𝛾 
provides a measure of the width of these peaks. 

dwelt upon various aspects of 𝜀௥(Ω), we 
come to some optical properties of the material. 

phase velocity of an e.m. wave in 
then its refractive index is given 

ඥ𝜀𝜇 𝜀଴𝜇଴⁄ = √𝜀௥𝜇௥ , where 
is magnetic permeability of the 

is its relative permeability. For 
the paramagnetic and diamagnetic substances (the 

magnetic materials),  𝜇௥  differs from 
10-6 so that for these, we can 

( ). Thus, the index of refraction 
a complex quantity, given by 

൜
൫ఠబ

మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ൨
ଵ/ଶ

.        (23) 

(Ω) + 𝑖𝑛ᇱᇱ(Ω) and using the 
(Ω) = 𝜀௥

ᇱ (Ω) + 𝑖𝜀௥
ᇱᇱ(Ω) , we 

( ) ଶ − {𝑛ᇱᇱ(Ω)}ଶ  and 𝜀௥
ᇱᇱ(Ω) =

. Eliminating 𝑛ᇱᇱ(Ω) from these two 
and solving the resulting quadratic 

we finally get 

)ൟ ା൛ఌೝ
ᇲᇲ(ஐ)ൟ

మ
 ା ఌೝ

ᇲ (ஐ)

ଶ
ቑ

ଵ/ଶ

 .      (24) 

elimination of 𝑛ᇱ(Ω) from the preceding 
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     𝑛ᇱᇱ(Ω) = ቐ
ට൛ఌೝ

ᇲ (ஐ)ൟ
మ

ା൛ఌೝ
ᇲᇲ(ஐ)ൟ

మ
 ି ఌೝ

ᇲ (

ଶ

 
   These equations give exact relations for the real 
and imaginary parts of refractive index in terms of 
the real and imaginary parts of dielectric function.
From Eq. (25), we find that 𝑛ᇱᇱ(
nonzero depending on whether 𝜀௥

ᇱᇱ

not. Since Ω ≠ 0  for e.m. waves, in view of 
remarks made in the paragraph after
infer that imaginary part of the refractive index
has its origin in nonzero value of  
pertains to dissipation or absorption of energy of 
the e.m. radiation passing through the material.
Thus, 𝑛ᇱᇱ(Ω) is responsible for the attenuation of 
the incident beam. The real part
conventional refractive index we come across
while discussing transmission of light through a 
medium. The dependence of refractive index on 
the frequency of light indicates dispersion.
   It may be pointed out that for 𝛾 =
𝜀௥

ᇱᇱ(Ω)  are given by Eqs. (14) and (15), 
respectively, so that Eqs. (24) and (2
 

        𝑛ᇱ(Ω) = ඥ𝜀௥
ᇱ (Ω)  = ൜1 +

ఠ೛
మ

൫ఠబ
మିஐ

 
and 𝑛ᇱᇱ(Ω) = 0 . Thus, e.m. radiation passes 
through such an ideal medium without any 
absorption or attenuation.  
   However, if  𝛾  is nonzero but very small and 
Ω ≪ 
𝜔଴ , then, since  𝜀௥

ᇱᇱ(Ω ≪ 𝜔଴) ≈ 0
Eqs. (24) and (25), 𝑛ᇱᇱ(Ω ≪ 𝜔଴) ≈
𝜔0 ≈𝜀𝑟′Ω≪𝜔0 =1+𝜔𝑝2𝜔02−Ω

Ω ≪ 𝜔଴ , 
ଵ

൫ఠబ
మିஐమ൯

=
ଵ

ఠబ
మ ቄ1 −

ஐమ

ఠబ
మቅ

ିଵ

so that  

 

           𝑛ᇱ(Ω ≪ 𝜔଴) ≈ ቂ1 +
ఠ೛

మ

ఠబ
మ ቄ1 +
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ൟ (ஐ)
ቑ

ଵ/ଶ

.      (25) 

equations give exact relations for the real 
and imaginary parts of refractive index in terms of 
the real and imaginary parts of dielectric function. 

(Ω)  is zero or 
ᇱᇱ(Ω)  is zero or 

waves, in view of 
remarks made in the paragraph after Eq. (13), we 
infer that imaginary part of the refractive index too 
has its origin in nonzero value of  𝛾  . Hence, it 
pertains to dissipation or absorption of energy of 

radiation passing through the material. 
is responsible for the attenuation of 

The real part 𝑛ᇱ(Ω)  is the 
e come across 

while discussing transmission of light through a 
The dependence of refractive index on 

the frequency of light indicates dispersion. 
0, 𝜀௥

ᇱ (Ω) and 
are given by Eqs. (14) and (15), 

) and (25) yield 

൜
೛
మ

൫ ஐమ൯
ൠ

ଵ/ଶ

,     (26) 

radiation passes 
medium without any 

nonzero but very small and 

0 , we get from 
) ≈ 0 and  𝑛ᇱ(Ω ≪

Ω21/2. But for 

ቅ
ଵ

≈
ଵ

ఠబ
మ ቄ1 +

ஐమ

ఠబ
మቅ 

ஐమ

ఠబ
మቅቃ

ଵ/ଶ

.     (27)  

   Furthermore, for nonzero but very small 
Ω ≫ 𝜔଴ , which practically is the case for X
frequencies, we have on 
(17) into Eqs. (24) and (2
 

𝑛ᇱ(Ω ≫ 𝜔଴) ≈ ඥ𝜀௥
ᇱ (Ω

         
and 𝑛ᇱᇱ(Ω ≫ 𝜔଴) ≈ 0
𝑛ᇱ(Ω ≫ 𝜔଴). Note that, for 
imaginary implying that in the X
dielectric substances having small 
completely absorb radiation if 
for Ω > 𝜔௣ , the refractive index is 
than unity, which corresponds to the situation that 
phase velocity of the e.m. wave in the material is 
higher than the speed of light in vacuum.
Furthermore, it approaches unity when 
   The dependence of 
the parameters mentioned 
has been illustrated graphically
respectively. A look at
𝑛ᇱ(Ω) has peak close to 
value near Ω ≈ 𝜔௣  and then increase
relevant magnitudes depend on 
the flat part of the minimum decreases as 
increases. On 

 
Fig. 4. Spectral dependence of 
parameters and legends as described in Fig. 2.
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nonzero but very small 𝛾  and 
, which practically is the case for X-ray 

frequencies, we have on substituting Eqs. (16) and 
) and (25), 

ඥ ( ≫ 𝜔଴) = ට1 − ቀ
ఠ೛

ஐ
ቁ

ଶ
, (28)  

0 . Thus, 𝑛(Ω ≫ 𝜔଴) ≈
Note that, for 𝜔଴ ≪ Ω < 𝜔௣, 𝑛(Ω) is 

imaginary implying that in the X-ray region, the 
dielectric substances having small 𝜔଴  values 
completely absorb radiation if Ω < 𝜔௣ . However, 

, the refractive index is real but less 
corresponds to the situation that 

phase velocity of the e.m. wave in the material is 
than the speed of light in vacuum. 

Furthermore, it approaches unity when Ω ≫ 𝜔௣. 
dependence of 𝑛ᇱ(Ω)  and 𝑛ᇱᇱ(Ω)  on Ω  for 

mentioned in the caption for Fig. 2 
illustrated graphically in Figs. 4 and 5, 

look at these plots shows that 
peak close to 𝜔଴ and it attains minimum 

and then increases again. The 
magnitudes depend on 𝛾 and the width of 

the minimum decreases as 𝛾 

 

Fig. 4. Spectral dependence of 𝑛ᇱ(Ω)  for the 
parameters and legends as described in Fig. 2.    
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Fig. 5. Dependence of 𝑛ᇱᇱ(Ω)  
parameters and legends as listed in Fig. 2.
 
 
the other hand, 𝑛ᇱᇱ(Ω)  are maximum for 
between 𝜔଴  and 𝜔௣  and tend to zero for higher 
values of Ω. It may be mentioned that the rise in 
𝑛ᇱ(Ω) values with increase in Ω (i.e., decrease in 
incident wavelength of e.m. radiation)
normal dispersion because this is in accord with 
what we observe when white light passes through a 
prism. In contrast the sharp fall in 
increase in Ω is called anomalous dispersion. It is 
pertinent to note that anomalous dispersion occurs
over the range of Ω values for which 
peak (Fig. 5), i.e., the medium is highly absorbing.
Consequently, experimental observation of 
anomalous dispersion is not that easy.
   The fact that both 𝑛ᇱ(Ω)  and 𝑛
close to zero for small values of 𝛾 and 
Figs. 4 and 5 and Eq. (28)) needs special 
consideration. As mentioned earlier also
index is obtained by dividing speed of light in 
vacuum with the phase velocity 𝑣

where 𝜆 is wavelength of the relevant e.m. wave in 
the medium. Therefore, 𝑛(Ω) ≈ 0 implies 
and, hence, 𝜆 are infinitely large. The wavelength 
being infinite means that all the electrons in the 
solid are oscillating in phase. 
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( )  on Ω  for the 
parameters and legends as listed in Fig. 2. 

are maximum for Ω  lying 
and tend to zero for higher 

. It may be mentioned that the rise in 
(i.e., decrease in 

nt wavelength of e.m. radiation) is known as 
normal dispersion because this is in accord with 
what we observe when white light passes through a 
prism. In contrast the sharp fall in 𝑛ᇱ(Ω)  with 

is called anomalous dispersion. It is 
pertinent to note that anomalous dispersion occurs 

values for which 𝑛ᇱᇱ(Ω) has its 
peak (Fig. 5), i.e., the medium is highly absorbing. 
Consequently, experimental observation of 

is not that easy.  
𝑛ᇱᇱ(Ω)  are quite 
and Ω ≥ 𝜔௣ (see 

and Eq. (28)) needs special 
As mentioned earlier also, refractive 

index is obtained by dividing speed of light in 
𝑣௣௛ = 𝜆 Ω 2𝜋⁄ , 

is wavelength of the relevant e.m. wave in 
implies that 𝑣௣௛  

are infinitely large. The wavelength 
being infinite means that all the electrons in the 

   Another physically observable optical quantity of 
interest is the normal incidence reflection 
coefficient, reflectivity, or reflecta
medium. It gives the fraction of the power 
associated with the incident e.m. wave reflected 
from the surface of the material. For the air
boundary, it is defined as [3,5]
 

 𝑅(Ω) = ቚ
௡(ஐ)ିଵ

௡(ஐ)ାଵ
ቚ

ଶ

=
൛௡

{௡

  
As a special case, note that for 
for Ω ≫ 𝜔଴, 
 

                        𝑅(Ω) ≈

 
  With a view to bring out the dependence of 
on various parameters, we have shown 
function of Ω  in Fig. 6, for 
10 eV , and 𝛾 = 0 , 0.2
perusal of this figure reveals that the damping 
rounds out the corners of the plots and that an 
increase in 𝛾  decreases the maximum value of 
reflectance, which is unity or 100% for 
for a particular value of 
 

 
Fig. 6. Reflectivity 𝑅

13.5 eV,  𝜔଴ = 10 eV
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Another physically observable optical quantity of 
interest is the normal incidence reflection 
coefficient, reflectivity, or reflectance of the 
medium. It gives the fraction of the power 
associated with the incident e.m. wave reflected 
from the surface of the material. For the air-solid 
boundary, it is defined as [3,5] 

ቚ
൛௡ᇲ(ஐ)ିଵൟ

మ
ା൛௡ᇲᇲ(ஐ)ൟ

మ

{௡ᇲ(ஐ)ାଵ}మା{௡ᇲᇲ(ஐ)}మ .       (29)    

a special case, note that for Ω ≪ 𝜔଴ as well as 

) ≈
൛௡ᇲ(ஐ)ିଵൟ

మ

{௡ᇲ(ஐ)ାଵ}మ .                   (30) 

With a view to bring out the dependence of 𝑅(Ω) 
on various parameters, we have shown 𝑅(Ω)  as 

in Fig. 6, for 𝜔௣ = 13.5 eV,  𝜔଴ =

2 , 1.0 , 4.0 , and 7.0 eV . A 
perusal of this figure reveals that the damping 
rounds out the corners of the plots and that an 

decreases the maximum value of 
reflectance, which is unity or 100% for 𝛾 = 0. Also, 
for a particular value of 𝛾, 𝑅(Ω) is maximum when  

 

𝑅(Ω)  vs Ω  plots for 𝜔௣ =

, and 𝛾 = 0.0 (dark brown 
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dash-dot line), 𝛾 = 0.2 eV (green dash
𝛾 = 1.0  eV (black solid line), 𝛾
dash-dot line), and 𝛾 = 7.0 eV (blue dash
line). 
 
 
𝑛ᇱ(Ω) is minimum. This is understandable because 
for 𝑛ᇱ(Ω) → 0, Eq. (29) gives 𝑅(Ω)
its maximum possible value.    
   From a perusal of the plots in Figs. 4 
discussion of the expressions for 
and 𝑅(Ω), it can be inferred that for 
smaller than 𝜔଴  and significantly higher than 
the dielectric materials are transparent to the 
incident e.m. waves. However, for 
these show maximum absorption while they are 
strongly reflective when Ω values lie between 
and 𝜔௣  and are even somewhat higher than the 
latter. In order to make this conclusion clearer, we 
have shown in Fig. 7, dependence of 
𝑛ᇱᇱ(Ω) , and 𝑅(Ω)  on Ω  for an oscillator system 
with parameter values 𝜔௣ = 12 eV

and 𝛾 = 1 eV as a typical representative; here 
in the visible region and quite less than 
is at variance with the case depicted in Figs. 4 
 

 
Fig. 7. 𝑛ᇱ(Ω) (black solid line), 𝑛ᇱᇱ

dot line), and 𝑅(Ω)  (blue dash-

                                                               January-March 2025
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(green dash-dash line)  
= 4.0  eV (red 

(blue dash-dash 

is minimum. This is understandable because 
( ) → 1, which is 

From a perusal of the plots in Figs. 4 – 6 and the 
discussion of the expressions for 𝑛ᇱ(Ω) , 𝑛ᇱᇱ(Ω) ,  

, it can be inferred that for Ω reasonably 
and significantly higher than 𝜔௣ , 

the dielectric materials are transparent to the 
incident e.m. waves. However, for Ω close to 𝜔଴, 
these show maximum absorption while they are 

values lie between 𝜔଴ 
are even somewhat higher than the 

. In order to make this conclusion clearer, we 
have shown in Fig. 7, dependence of 𝑛ᇱ(Ω) , 

for an oscillator system 
eV , 𝜔଴ = 2.5 eV, 

as a typical representative; here 𝜔଴ is 
in the visible region and quite less than 𝜔௣, which 
is at variance with the case depicted in Figs. 4 – 6.  

 

ᇱᇱ(Ω) (red dash-
-dash line), as 

functions of Ω  for an oscillator with parameter 
values 𝜔௣ = 12 eV, 𝜔଴

 
 
   So far, we have assumed that all the Lorentz 
oscillators in a collection 
However, a substance can have Lo
of different types because the electrons experience 
different binding and damping forces or the atoms / 
ion cores with which the electrons are associated 
have different nature. Suppose that
unit volume are of one type represented by 
subscript 𝑗 . Denoting
frequency, and damping coefficient by
 𝛾௝ , respectively, the electric susceptibility of this 
group of Lorentz oscillators will be given by 
 

                𝜒௝(Ω) =
 ேೕ௤

௠ఌబ

 
(see, Eq. (7)). Representing the plasma frequency 
of this category by 
 𝑁௝𝑞ଶ 𝑚𝜀଴⁄  so that   
 

                𝜒௝(Ω) = 𝜔௣,
ଶ

Also, total electric susceptibility of the system 
comprising different types of oscillators such that 
𝑁 = ∑  𝑁௝௝  will be given by 
   Taking the fraction of Lorentz oscillators of type 
𝑗  to be  𝑓௝ =  𝑁௝ 𝑁⁄

Accordingly, the relative electric permittivity of 
this system will be given by
 
   𝜀௥(Ω) = 1 + ∑ 𝜒௝(Ω௝

             = 1 + 𝜔௣
ଶ ∑  𝑓௝

 
It may be mentioned that 
as oscillator strength. Also, a quantum mechanical 
treatment of the problem leads to an expression 
which looks like Eq. (33) but has different 
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for an oscillator with parameter 

଴ = 2.5 eV, and 𝛾 = 1 eV.  

far, we have assumed that all the Lorentz 
oscillators in a collection are completely identical. 
However, a substance can have Lorentz oscillators 
of different types because the electrons experience 
different binding and damping forces or the atoms / 
ion cores with which the electrons are associated 
have different nature. Suppose that 𝑁௝  of these in 

are of one type represented by 
. Denoting their natural angular 

frequency, and damping coefficient by  𝜔଴,௝  and 
, respectively, the electric susceptibility of this 

group of Lorentz oscillators will be given by  

௤మ

బ
ቊ

ቀఠబ,ೕ
మ ିஐమቁା௜ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ൯

మ
ቋ;    (31)  

(see, Eq. (7)). Representing the plasma frequency 
of this category by 𝜔௣,௝ , we have 𝜔௣,௝

ଶ =

,௝ ቊ
ቀఠబ,ೕ

మ ିஐమቁା௜ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ൯

మ
ቋ.    (32)  

Also, total electric susceptibility of the system 
comprising different types of oscillators such that 

will be given by 𝜒(Ω) = ∑ 𝜒௝(Ω)௝ .  
fraction of Lorentz oscillators of type 

, we have 𝜔௣,௝
ଶ =  𝑓௝𝜔௣

ଶ . 
relative electric permittivity of 

this system will be given by 

(Ω) 

𝑓௝ ቊ
ቀఠబ,ೕ

మ ିஐమቁା௜ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ൯

మ
ቋ     (33) 

It may be mentioned that  𝑓௝  is usually referred to 
as oscillator strength. Also, a quantum mechanical 
treatment of the problem leads to an expression 
which looks like Eq. (33) but has different 
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meaning of 𝜔଴,௝ as well as  𝑓௝  . 
imaginary parts of Eq. (33) are 
 

     𝜀௥
ᇱ (Ω) = 1 + 𝜔௣

ଶ ∑
 ௙ೕቀఠబ,ೕ

మ ିஐమ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊ

௝

  
and 
 

     𝜀௥
ᇱᇱ(Ω) = 𝜔௣

ଶ ∑ ቊ
 ௙ೕ ఊೕஐ

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫ ఊೕஐ

௝

 
respectively. These have been depicted
for a system comprising two types of oscillators 
with 𝜔௣ = 13.5 eV , 𝜔଴,ଵ = 10 eV,
eV,  𝛾ଵ = 𝛾ଶ = 1.0 eV, and  𝑓ଵ = 𝑓ଶ

   While using Eq. (34) for real systems, sometimes 
the factor 1 on the right-hand side has to be 
replaced by a greater number corresponding to the 
value of 𝜀௥

ᇱ (∞) to take care of the contrib
oscillators with higher 𝜔଴,௝ which are not covered 
in the summation.   
  The expression for complex index of refraction is 
now modified to read 
 

𝑛(Ω) = ቈ1 + 𝜔௣
ଶ ∑  𝑓௝ ቊ

ቀఠబ,ೕ
మ ିஐమቁା௜

ቀఠబ,ೕ
మ ିஐమቁ

మ
ା൫

௝
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. The real and 

మቁ

൫ ఊೕஐ൯
మ
         (34)  

൫ ൯
మ
ቋ ,          (35) 

depicted in Fig. 8 
for a system comprising two types of oscillators 

= 10 eV, 𝜔଴,ଶ = 12 

ଶ= 0.50. 
While using Eq. (34) for real systems, sometimes 

hand side has to be 
replaced by a greater number corresponding to the 

to take care of the contribution of 
which are not covered 

expression for complex index of refraction is 

ቁ ௜ ఊೕஐ

൫ ఊೕஐ൯
మ
ቋ቉

ଵ/ଶ

.(36)   

 

Fig. 8. Spectral dependence of 
line) and 𝜀௥

ᇱᇱ(Ω) (red dash
oscillator system with 
𝜔଴,ଶ= 12 eV,  𝛾ଵ = 𝛾ଶ

 
 
Similarly, Eqs. (24), (25), and (29) for 
𝑛ᇱᇱ(Ω), and 𝑅(Ω), respectively, too are recast for a 
many-oscillator system. Fig. 9 depicts dependence 
of these three quantities on 
system considered in Fig. 8. 
 
4 Drude Model for 

an Extension of LOM
 

According to the DM for
charged ion cores are fixed like those in the 
but the negatively charged electrons wander 
around like gas molecules without any constraint 
of being attached to a particular nucleus or ion 
core. As such, there is no restoring force acting on 
an electron and, thus, 
an electron is not 
hooked up to a specific core, we preferably 
describe its motion in terms of its instantaneous
velocity 𝒗(𝑡) . However, an electron in the 
conducting material does experience damping 
mainly due to its scattering caused by the 
interaction with the stationary cores, impurities, 
and crystal imperfections present and with other 
electrons. 
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Fig. 8. Spectral dependence of 𝜀௥
ᇱ (Ω) (black solid 

(red dash-dot line) for a two-
oscillator system with 𝜔௣ = 13.5 eV, 𝜔଴,ଵ= 10 eV, 

= 1.0 eV, and  𝑓ଵ = 𝑓ଶ= 0.5. 

Similarly, Eqs. (24), (25), and (29) for 𝑛ᇱ(Ω) , 
, respectively, too are recast for a 

oscillator system. Fig. 9 depicts dependence 
of these three quantities on Ω for the two-oscillator 
system considered in Fig. 8.  

Drude Model for Conducting Substances as 
an Extension of LOM 

the DM for a metal the positively 
are fixed like those in the LOM, 

but the negatively charged electrons wander 
around like gas molecules without any constraint 

to a particular nucleus or ion 
core. As such, there is no restoring force acting on 

thus, 𝜔଴ = 0. Furthermore, since 

hooked up to a specific core, we preferably 
describe its motion in terms of its instantaneous 

. However, an electron in the 
conducting material does experience damping 
mainly due to its scattering caused by the 

stationary cores, impurities, 
and crystal imperfections present and with other 
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Fig. 9.  Plots displaying 𝑛ᇱ(Ω) (black solid line), 
𝑛ᇱᇱ(Ω) (red dash-dot line), and 𝑅(Ω)  (blue dash-
dash line), as function of Ω for the two-oscillator 
system having parameter values mentioned in the 
caption of Fig. 8.  
 
  
Therefore, the differential equation governing the 
motion of such an electron under the influence of 
an applied harmonic electric field 𝑬(𝑡) = 𝑬𝟎𝑒ି௜ஐ௧, 
can be written as    
       
            �̇�(𝑡) +  𝛾𝒗(𝑡) = −

௤

௠
𝑬𝟎𝑒ି௜ஐ௧.             (37) 

 
   The homogeneous solution of this first-order 
nonhomogeneous linear differential equation 
contains 𝑒ିఊ௧  , which becomes zero for large 
values of 𝑡 . As in the case of LOM, this too 
represents transients. Finally, in this case also we 
are left with the nonhomogeneous solution, the so-
called steady state solution, which reads  
 

  𝒗(𝑡) =  −
௤

௠

ଵ

ఊି௜ஐ
𝑬𝟎𝑒ି௜ஐ௧ = −

௤

௠

ఊା௜ஐ

ఊమାஐమ 𝑬𝟎𝑒ି௜ஐ௧ .  

                                                                          (38) 
 
Proceeding as has been done in going from Eq. (2) 
to Eq. (3), it can be shown that 𝒗(𝑡), which also 
oscillates with angular frequency Ω, is out of phase 
with respect to the external electric field 𝑬(𝑡) by 
an angle 𝜑 = 𝑡𝑎𝑛ିଵ(Ω 𝛾⁄ ). Obviously, 𝜑 increases 
from 0 to 𝜋 2⁄  as Ω is varied from 0 to extremely 
large value. In fact, for DC electric field 𝑬𝟎 (Ω =
0), velocity is constant and from Eq. (38), it can be 

written as 𝐯(Ω = 0) = −
௤𝑬𝟎

௠ఊ
.  This is called the 

drift velocity of electrons.   
   The electric current density produced by all the 
free electrons with number density 𝑁 is given by 
 

          𝑱(𝑡) =  −𝑁𝑞𝐯(𝑡) =
ே௤మ

௠

ఊା௜ஐ

ఊమାஐమ 𝐄(𝑡).       (39) 

 
Since the current density is also given by  𝑱(𝑡) = 
𝜎 (Ω)𝐄(𝑡) , where 𝜎 (Ω)  is dynamic electrical 
conductivity of the material, we have  

 

           𝜎 (Ω) =
ே௤మ

௠

ఊା௜ஐ

ఊమାஐమ = 𝜀଴𝜔௣
ଶ ఊା௜ஐ

ఊమାஐమ .        (40) 

 
This is usually called Drude conductivity and is, 
obviously, frequency-dependent complex quantity. 
Here too the solid is taken to be isotropic. 
   If the applied electric field is constant 𝑬𝟎 (Ω =
0), then steady or DC electric current density and 
corresponding electric conductivity are, 

respectively, given by 𝑱 (Ω = 0) =
ே௤మ

௠ఊ
 𝑬𝟎  and 

𝜎 (Ω = 0) =
ே௤మ

௠ఊ
. Note that this is nothing but 

Ohm’s law with resistivity 𝜌 = 𝑚𝛾 𝑁𝑞ଶ⁄ . It may 
also be pointed out that in this model, all the free 
electrons contribute to 𝑱 . However, this is in 
violation of their quantum description, according 
to which under the influence of applied electric 
field only a small fraction of electrons in the 
occupied states below the Fermi level acquire 
sufficient energy to get excited to the empty energy 
levels above this to participate in electrical 
conduction.   
   Furthermore, the dielectric function 𝜀௥(Ω)  is 
related to electrical conductivity 𝜎 (Ω) 

through 𝜀௥ = 1 + 𝑖
ఙ (ஐ)

ఌబஐ
  so that the Drude complex 

dielectric function for a conducting material is 
given by    
            

                 𝜀௥,஽(Ω) = 1 −
ఠ೛

మ

ஐ
ቀ

ஐି୧ఊ

ஐమାఊమቁ.               (41)   

This is the same result as we obtain by putting 
𝜔଴ = 0 in Eq. (9) for 𝜀௥(Ω) in LOM implying that 
the DM can be considered as a special case of the 
Lorentz model. The real and imaginary parts of 
𝜀௥,஽(Ω) are 
  

𝜀௥,஽
ᇱ (Ω) = 1 −

ఠ೛
మ

ஐమାఊమ  and 𝜀௥,஽
ᇱᇱ (Ω) =

ఊ

ஐ

ఠ೛
మ

ஐమାఊమ,  (42) 

 
respectively. Note that like 𝜀௥

ᇱᇱ(Ω) ,  𝜀௥,஽
ᇱᇱ (Ω) = 0 

when 𝛾 = 0, meaning thereby that 𝜀௥,஽
ᇱᇱ (Ω)  too is 

related to damping and, hence, to absorption of 
energy associated with the applied electric field.  
   Next, the refractive index of a conducting 
nonmagnetic material will be given by  
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  𝑛஽(Ω) = ඥ𝜀௥,஽(Ω) = ቄ1 −
ఠ೛

మ

ஐ
ቀ

ஐି୧ఊ

ஐమାఊమ
ቁቅ

భ

మ
 ,     (43) 

 
with relevant expression for the real and imaginary 
parts 𝑛஽

ᇱ (Ω) and 𝑛஽
ᇱᇱ(Ω). Also, Eqs. (24), (25), and 

(29) too hold good for 𝑛஽
ᇱ (Ω), 𝑛஽

ᇱᇱ(Ω), and normal 
incidence reflectance 𝑅஽(Ω)  with appropriate 
replacement of 𝜀௥

ᇱ (Ω), 𝜀௥
ᇱᇱ(Ω), 𝑛ᇱ(Ω), and 𝑛ᇱᇱ(Ω).   

   It may be mentioned that in the case of 
conducting materials, generally, 𝛾 is quite small as 
compared to 𝜔௣. Now, we consider the following 
five situations. 
(i) For the ideal case 𝛾 = 0 , Eqs. (42) and (43) 
yield  
 

        𝜀௥,஽
ᇱ (Ω) = 1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
 ,  𝜀௥,஽

ᇱᇱ (Ω) = 0;       (44) 

 

  𝑛஽
ᇱ (Ω) = ൜1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
ൠ

భ

మ

,   and  𝑛஽
ᇱᇱ(Ω) = 0.    (45) 

  
As expected, the expressions for 𝜀௥,஽

ᇱ (Ω)  and 
𝑛஽

ᇱ (Ω) are special cases of relevant expression in 
Eqs. (14) and (26) with 𝜔଴ = 0. Note that 𝜀௥,஽

ᇱ (Ω) 
is negative for Ω < 𝜔௣  having quite large 
magnitude for low values of Ω. It becomes zero 
when Ω = 𝜔௣  and increases with increase in Ω 
value, becoming unity when Ω ≫ 𝜔௣ . 
Furthermore, 𝑛஽

ᇱ (Ω)  and, hence, 𝑛஽(Ω)  is 
imaginary when Ω < 𝜔௣  implying that the ideal 
metal is completely opaque to the relevant e.m. 
radiation. It is less than unity for Ω > 𝜔௣, and for 
Ω  much larger than 𝜔௣ , we can write 𝑛஽

ᇱ ≈ 1 −
ଵ

ଶ
ቀ

ఠ೛

ஐ
ቁ

ଶ

.  

(ii) For nonzero 𝛾 , 𝜀௥,஽
ᇱᇱ (Ω) is always positive, 

but 𝜀௥,஽
ᇱ (Ω) will be negative if Ω < ඥ𝜔௣

ଶ − 𝛾ଶ and 

positive for Ω > ඥ𝜔௣
ଶ − 𝛾ଶ . Combined with Eqs. 

(22) and (23) these imply that 𝑛஽
ᇱᇱ(Ω) >  𝑛஽

ᇱ (Ω) for 
Ω < ඥ𝜔௣

ଶ − 𝛾ଶ  and reverse will be true when 

Ω > ඥ𝜔௣
ଶ − 𝛾ଶ . 

(iii) When Ω is quite small as compared to 𝜔௣ 
and comparable with 𝛾 so that 𝜔௣

ଶ ≫ Ωଶ + 𝛾ଶ, then 

from Eq. (42) we see that 𝜀௥,஽
ᇱ ൫Ω ≪ 𝜔௣൯ will be  

negative with quite large magnitude while 
𝜀௥,஽

ᇱᇱ ൫Ω ≪ 𝜔௣൯ will be positive and reasonably 
large depending on the value of 𝛾/Ω . 
Consequently, 𝑛஽

ᇱᇱ൫Ω ≪ 𝜔௣൯  will be much larger 

than 𝑛஽
ᇱ ൫Ω ≪ 𝜔௣൯ . Furthermore, dominance of 

𝑛஽
ᇱᇱ(Ω)  in the expression for 𝑅(Ω)  (Eq. (29)), 

indicates that 𝑅஽൫Ω ≪ 𝜔௣൯  will be reasonably 
close to unity. Physically, these features imply that 
at quite low frequencies (Ω ≪ 𝜔௣) , the electric 
field cannot penetrate the metal and that most of 
the e.m. radiation will be reflected by it. 

(iv) If Ω = 𝜔௣  implying that 
ఠ೛

మ

ఊమାஐమ  ≈ 1 

(assuming that 𝛾 is quite small) then 𝜀௥,஽
ᇱ ൫𝜔௣൯ ≈ 0 

and 𝜀௥,஽
ᇱᇱ ൫𝜔௣൯ =

ఊ

ఠ೛
 ≪ 1. Thus, both 𝜀௥,஽൫𝜔௣൯ and 

𝑛஽൫𝜔௣൯ ≈ 0. However, if 𝛾 is not very small then 
𝜀௥,஽

ᇱ ൫𝜔௣൯ , 𝜀௥,஽
ᇱᇱ ൫𝜔௣൯ , 𝑛஽

ᇱ ൫𝜔௣൯  and 𝑛஽
ᇱᇱ൫𝜔௣൯  are 

nonzero and their magnitudes will depend on the 
value of 𝛾 . Furthermore, since 𝑛஽

ᇱ ൫𝜔௣൯  and 
𝑛஽

ᇱᇱ൫𝜔௣൯  are nonzero though reasonably small 
 𝑅஽൫𝜔௣൯ will still be high and will depend upon 
the value of 𝛾. 
(v)  For Ω > 𝜔௣ , 𝛾 ≪ Ω  and Ωଶ + 𝛾ଶ ≈ Ωଶ . 

Therefore, 𝜀௥,஽
ᇱ ൫Ω > 𝜔௣൯ = 1 − ቀ

ఠ೛

ஐ
ቁ

ଶ
> 0  and 

𝜀௥,஽
ᇱᇱ ൫Ω > 𝜔௣൯ ≈ 0. In this case, from Eqs. (24) and 

(25), we have  

𝑛஽
ᇱ ൫Ω > 𝜔௣൯ ≈ ට𝜀௥,஽

ᇱ ൫Ω > 𝜔௣൯ = ൜1 − ቀ
ఠ೛

ஐ
ቁ

ଶ
ൠ

ଵ/ଶ

 

and 𝑛஽
ᇱᇱ ≈ 0  so that 

 𝑅஽൫Ω > 𝜔௣൯ ≈ {𝑛஽
ᇱ (Ω) − 1}ଶ {𝑛஽

ᇱ (Ω) + 1}ଶ⁄ . 
Thus, 𝑛஽

ᇱ (Ω) and,  
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Fig. 10. Plots for 𝜀௥,஽

ᇱ (Ω) (below the zero line) and 
𝜀௥,஽

ᇱᇱ (Ω) (above the zero line) as function of 
conducting material with 𝜔௣ = 15

0.5 eV (black solid line), 𝛾 = 1.0 eV (red dash
line), and 𝛾 = 2.0 eV (blue dash-dash line).
that both the axes have been highly truncated. 
 
 
hence, 𝑛஽(Ω)  become nonzero when 
𝜔௣ , and attain maximum value 1 for 
Obviously,  𝑅஽(Ω ≫ 𝜔௣)  will be zero.
words, at very high frequencies, the free electron 
contribution is unimportant.                                     
   To bring out various aspects discussed above, w
have plotted 𝜀௥,஽

ᇱ (Ω) and 𝜀௥,஽
ᇱᇱ (Ω) as function of 

for a metal characterized by 𝜔௣

𝛾 = 0.5, 1.0, and 2 .0 𝑒𝑉 in Fig. 10. Note that 
lies between 9 and 20 eV for most of the 
conducting materials and that we have taken 
𝜔௣ = 15 𝑒𝑉  to analyze the experimental data for 
aluminium in Section 5. Since 
𝜀௥,஽

ᇱ (Ω) and 𝜀௥,஽
ᇱᇱ (Ω) are quite high and we wanted 

to clearly bring out the effect of change in 
we have taken Ω  values from 0.6 eV to 2.4 eV 
rather than keeping these sufficiently
the 𝜔௣ value. However, it must be mentioned that 
the value of 𝜀௥,஽

ᇱ (Ω)  changes from negative to 
positive at Ω  = 14.99, 14.97, and 14.87 eV for 
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(below the zero line) and 
(above the zero line) as function of Ω for a 

15 eV  and 𝛾 =

eV (red dash-dot 
dash line). Note 

that both the axes have been highly truncated.  

become nonzero when Ω  exceeds 
, and attain maximum value 1 for Ω ≫ 𝜔௣ . 

will be zero. In other 
words, at very high frequencies, the free electron 

                                     
To bring out various aspects discussed above, we 

) as function of Ω 
𝜔௣ = 15 𝑒𝑉  and 

in Fig. 10. Note that 𝜔௣ 
9 and 20 eV for most of the 

and that we have taken 
to analyze the experimental data for 

 magnitudes of 
are quite high and we wanted 

to clearly bring out the effect of change in 𝛾 value, 
values from 0.6 eV to 2.4 eV 

sufficiently higher than 
However, it must be mentioned that 

changes from negative to 
= 14.99, 14.97, and 14.87 eV for 

𝛾 = 0.5, 1.0, and 2.0 eV, resp
accord with the relation 

 
Fig. 11.  Graphic representation of  
line) and 𝑛஽

ᇱᇱ(Ω)   (dash
15 eV and 𝛾 = 0.5 eV 
   
 
Ω = ඥ𝜔௣

ଶ − 𝛾ଶ  found above
𝜀௥,஽

ᇱ ൫𝜔௣൯  and 𝜀௥,஽
ᇱᇱ ൫𝜔௣

0.033 for 𝛾 = 0.5 eV
respectively, for 𝛾 = 2
values for 𝛾 = 0.1 eV are 4
   The plots for  𝑛஽

ᇱ (Ω
from 1 eV to 25 eV) for 
0.5 and 2.0  eV have been projected in Fig. 11. 
These exhibit predominance of 
However, for Ω > 𝜔

becomes nonzero approaching 1 for 

mentioned in the discussion of case (iv) above, 

𝑛஽
ᇱ ൫𝜔௣൯ as well as 𝑛஽

ᇱᇱ

values considered here. These have values 0.131 
and 0.127 for  𝛾 = 0.5 eV, and 0.27 and 0.24 for 
= 2.0 eV. However, the
0.058 and 0.057, respectively.
   The effect of 𝛾 on the variation of 
has been shown by plotting the graphs for 
15 eV, and 𝛾 = 0.0 , 0
Fig. 12. Here too, the presence of 
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and 2.0 eV, respectively, which are in 
accord with the relation  

 

Fig. 11.  Graphic representation of  𝑛஽
ᇱ (Ω) (solid 

(dash-dot line) vs Ω  for 𝜔௣ =

 (black) and 2.0 eV (red). 

found above. Furthermore,  
൫ ௣൯  have values 0.001 and 

eV , and 0.018 and 0.131, 
2.0  eV. The corresponding 
are 4× 10ିହ and 0.007.   

(Ω)  and 𝑛஽
ᇱᇱ(Ω)  vs Ω  (varied 

from 1 eV to 25 eV) for 𝜔௣ = 15 eV  and 𝛾 =

eV have been projected in Fig. 11. 
exhibit predominance of 𝑛஽

ᇱᇱ(Ω) for Ω < 𝜔௣. 

𝜔௣, 𝑛஽
ᇱᇱ(Ω) ≈ 0 and 𝑛஽

ᇱ (Ω) 

becomes nonzero approaching 1 for Ω ≫ 𝜔௣.  As 

the discussion of case (iv) above, 

஽
ᇱᇱ൫𝜔௣൯ are nonzero for the 𝛾 

values considered here. These have values 0.131 
0.5 eV, and 0.27 and 0.24 for 𝛾 

their values for 𝛾 = 0.1 eV are 
and 0.057, respectively.    

on the variation of 𝑅஽(Ω) with Ω 
has been shown by plotting the graphs for 𝜔௣ =

0.1 ,  0.5 , 1.0,  and 2 . 0 eV in 
Fig. 12. Here too, the presence of damping leads to 
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smoothing of corner and departure of the 
maximum reflectivity from unity
considerations show  

 
Fig. 12. Spectral dependence of 
𝜔௣ = 15 eV,  and 𝛾 = 0.0  (black solid line), 
𝛾 = 0.1 eV (red dash-dot line),  𝛾 =
dash-dash line), 𝛾 = 1.0 eV (brown solid 
𝛾 = 2.0 eV (purple dash-dot line). 
 
 
that the metals are immensely reflective for the 
e.m. radiation with frequencies less than their 
respective plasma frequencies and are 
when Ω >  𝜔௣. This explains why metals are very 
good reflectors of visible light and transparent to x
rays; their 𝜔௣  values lie in the ultraviolet region.
This situation is sometimes called ultraviolet 
transparency of metals.   
   It is worth mentioning that the electrons bound to
the atoms in the conducting materials act as 
Lorentz oscillators and, therefore, analysis of their 
experimental data pertaining to the electrical and 
optical properties discussed here must be carried 
out employing models involving many Lorentz 
oscillators along with the DM. This arrangement 
constitutes the so-called DLOM. Furthermore, if 
the material contains more than one metal then 
expressions for different physical quantities in the 
DM are also modified to include more terms with 
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and departure of the 
maximum reflectivity from unity. These 

 

Fig. 12. Spectral dependence of 𝑅஽(Ω)  for 
(black solid line), 

= 0.50 eV (blue 
eV (brown solid line), and 

that the metals are immensely reflective for the 
e.m. radiation with frequencies less than their 

are transparent 
This explains why metals are very 

good reflectors of visible light and transparent to x-
values lie in the ultraviolet region. 

This situation is sometimes called ultraviolet 

the electrons bound to 
the atoms in the conducting materials act as 

oscillators and, therefore, analysis of their 
experimental data pertaining to the electrical and 
optical properties discussed here must be carried 
out employing models involving many Lorentz 
oscillators along with the DM. This arrangement 

DLOM. Furthermore, if 
the material contains more than one metal then 
expressions for different physical quantities in the 
DM are also modified to include more terms with 

appropriate values of the plasma frequencies, 
damping constants, and fraction
a particular type (see, e.g. [10]).   
   It is pertinent to point out that the way we have 
introduced the many oscillators LOM
preceding section, 𝜔௣

However, while analyzing the optical spectra of 
materials using this model or its combination with 
the Drude model (the DLOM)
values of 𝜔௣ are used and even 
are employed (see, e.g. [
 
5 Some Illustrative Applications of LOM

and DLOM 
 

In this section, we demonstrate some 
representative applications of the formulae derived 
in sections 3 and 4 by 
experimental data pertaining to optical constants 
for a wide range of angular frequencies
energies in respect of 
We have directed our attention 
rather than the dielectric functions because the 
former are themselves defined in terms of the latter 
and because their experimental investigation is 
relatively easy. Furthermore, the choice of the 
examples discussed has mainly
availability of easily accessible data in the 
literature. 
Before proceeding further, it may, however, be 
emphasized that our aim is to illustrate the 
applications and not to claim the high quality of 
agreement between the model calculations and the 
experimental data. Otherwise also, as pointed out 
earlier too, the models discussed in this article are 
classical in nature and are being used for analyzing 
the properties which are properly understood in the 
framework of quantum mechanical description.  
 
(i). Rutile (TiO2) crystal, which is
semiconductor, is a substance having 
refractive index in the visible region. It is used for 
the manufacture of certain optical elements, and in 
photocatalysis and dilute magnetism. The 
experimental values of 
values from 0.83 eV to 6.20 eV have been taken 
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appropriate values of the plasma frequencies, 
and fraction of the electrons of 

particular type (see, e.g. [10]).    
It is pertinent to point out that the way we have 

many oscillators LOM in the 

௣  is fixed and ∑  𝑓௝௝  = 1. 
However, while analyzing the optical spectra of 

this model or its combination with 
(the DLOM), more than one 

are used and even  𝑓௝ larger than unity 
(see, e.g. [9] and [10]).  

Some Illustrative Applications of LOM, DM 

In this section, we demonstrate some 
representative applications of the formulae derived 
in sections 3 and 4 by considering analysis of 

data pertaining to optical constants 
angular frequencies / photon 

in respect of materials of different types. 
We have directed our attention to optical properties 
rather than the dielectric functions because the 
former are themselves defined in terms of the latter 
and because their experimental investigation is 

ly easy. Furthermore, the choice of the 
examples discussed has mainly been guided by the 
availability of easily accessible data in the 

Before proceeding further, it may, however, be 
emphasized that our aim is to illustrate the 

not to claim the high quality of 
agreement between the model calculations and the 
experimental data. Otherwise also, as pointed out 
earlier too, the models discussed in this article are 
classical in nature and are being used for analyzing 

ich are properly understood in the 
framework of quantum mechanical description.   

) crystal, which is a large band-gap 
semiconductor, is a substance having quite a high 
efractive index in the visible region. It is used for 

the manufacture of certain optical elements, and in 
photocatalysis and dilute magnetism. The 
experimental values of 𝑛ᇱ(Ω)  and 𝑛ᇱᇱ(Ω)  for Ω 
values from 0.83 eV to 6.20 eV have been taken 
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from [16] and have been used to 
corresponding 𝑅(Ω)  values employing Eq. (29). 
All these optical parameters as function of 
shown in Fig. 13. It may be mentioned that 
𝑛ᇱᇱ(Ω), 

 
Fig. 13. A comparison of single oscillator
LOM plots for 𝑛ᇱ(Ω)  (black solid line), 
(blue dash-dash line), and 𝑅(Ω) (dark green solid 
line) obtained by using 𝜔௣ = 10

4.1 𝑒𝑉 , and 𝛾 = 0.85  eV with the 
data [16] for 𝑛ᇱ(Ω) (red points and dash
𝑛ᇱᇱ(Ω) (dark brown points and dot
𝑅(Ω)  (pink points and dot-dot line)  for 
crystal. 
 
 
and 𝑅(Ω) have peaks of 5.39, 3.56, and 0.62 
3.88, 4.32, and 4.77 eV, respectively.
acceptable fit to this single-peak 
LOM has been obtained with 
𝜔଴ = 4.1 𝑒𝑉, and 𝛾 = 0.85 eV. The corresponding 
plots have also been included in Fig. 13
it may be mentioned that model calculations based 
on 𝜔௣ = 10.0 𝑒𝑉, 𝜔଴ = 4.08 𝑒𝑉, and 
led to a very good fit for 𝑛ᇱ(Ω) but a poor one for 
𝑛ᇱᇱ(Ω) . Similarly, a commendably good fit for
𝑛ᇱᇱ(Ω) but not for 𝑛ᇱ(Ω) was obtained with 
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been used to determine 
values employing Eq. (29). 

All these optical parameters as function of Ω are 
in Fig. 13. It may be mentioned that 𝑛ᇱ(Ω), 

 

Fig. 13. A comparison of single oscillator-based 
(black solid line), 𝑛ᇱᇱ(Ω) 

) (dark green solid 
10.0 𝑒𝑉,  𝜔଴ =

eV with the experimental 
(red points and dash-dot line), 

(dark brown points and dot-dot line), and 
dot line)  for TiO2 

, and 0.62 at Ω =  
eV, respectively. A reasonably 

 data using the 
 𝜔௣ = 10.0 𝑒𝑉, 

eV. The corresponding 
Fig. 13. However, 

it may be mentioned that model calculations based 
, and 𝛾 = 0.60 eV 
but a poor one for 

. Similarly, a commendably good fit for 
was obtained with 𝜔௣ = 

9.40 𝑒𝑉,  𝜔଴ = 4.18
However, in both these cases the agreement 
between model calculations and experimental 
results for 𝑅(Ω) was relatively poor.
observations show that a single
inadequate to analyze the data for 

 
Fig. 14. Model calculations for TiO
employing two oscillators 
𝜔௣ = 10.30 𝑒𝑉,  𝜔଴ଵ = 3.95 eV,

 𝑓ଵ= 0. 30, and 𝜔଴ଶ= 4.25 eV,
0.70. Legends for the model calculations and the 
experimental data are the same as in Fig. 13.
 
 
Accordingly, a two-oscillator fit was 
and the outcome together with the parameters used 
is depicted in Fig. 14. Obviously, the fits are better 
than those displayed in Fig. 13. 
 
(ii). Silica (SiO2) is a well
used in microelectronics, in structural materials, in 
production of glass and optical fibers, and as an 
additive in the food and pharmaceutical industries.
We could get experimental data for 
𝑛ᇱ(Ω) up to Ω  = 5.91 eV [16] and extracted the 
values for 𝑛ᇱᇱ(Ω) for Ω
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18 𝑒𝑉 , and 𝛾 = 0.95  eV. 
However, in both these cases the agreement 
between model calculations and experimental 

was relatively poor. In fact, these 
ations show that a single-oscillator model is 

inadequate to analyze the data for TiO2 crystal. 

 

Model calculations for TiO2 crystal 
two oscillators with parameters 

= 3.95 eV,  𝛾ଵ = 0.45  eV, 

= 4.25 eV,  𝛾ଶ = 1.0 eV,  𝑓ଶ= 
Legends for the model calculations and the 

experimental data are the same as in Fig. 13.  

oscillator fit was carried out 
and the outcome together with the parameters used 

Obviously, the fits are better 
than those displayed in Fig. 13.  

) is a well-known insulator and is 
used in microelectronics, in structural materials, in 
production of glass and optical fibers, and as an 

the food and pharmaceutical industries. 
We could get experimental data for SiO2 crystal for 

= 5.91 eV [16] and extracted the 
Ω up to 19.4 eV from Fig.1 in 
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[15]. These are projected in Fig. 15. Note that the
values of 𝑛ᇱᇱ(Ω) are close to 0 for Ω
it has four peaks of magnitudes: 1.48, 1.08, 0.95, 
and 0.92 at Ω = 10.2, 11.4, 14.2, and 17.2 eV, 
respectively. We have not calculated
𝑅(Ω) values because of the lack of nonzero values 

 
Fig. 15. Plots showing LOM fitting of 
experimental data pertaining to 𝑛ᇱ(
[16]) and 𝑛ᇱᇱ(Ω) (green points with dash
extracted from Fig. 1 in [15]) for crystalline SiO
with four oscillators having parameters 
13.5 𝑒𝑉 , 𝜔଴ଵ = 10.2 eV,  𝛾ଵ = 0.35
𝜔଴ଶ= 11.3 eV,  𝛾ଶ = 1.65 eV,  𝑓ଶ= 0.28, 
eV,  𝛾ଷ = 1.9 eV,  𝑓ଷ= 0.26, 𝜔଴ସ= 16.7 eV,
eV, and 𝑓ସ= 0.36. The model-based curves are 
solid line for 𝑛ᇱ(Ω)), red dash-dot line
and blue dash-dash line for 𝑅(Ω).  
 
 
of both 𝑛ᇱ(Ω)  and 𝑛ᇱᇱ(Ω)  over the same spectral 
range. A reasonably good fit to the data shown in 
Fig. 15 has been obtained using 
with parameters listed in the caption to this figure. 
The model-based plots for 𝑛ᇱ(Ω), 𝑛
are also included in the figure.
possible to improve the fit by considering 
number of oscillators.   
 

                                                               January-March 2025

                                                                                                                                       www.physed

[15]. These are projected in Fig. 15. Note that the 
Ω up to 8 eV and  
1.48, 1.08, 0.95, 

10.2, 11.4, 14.2, and 17.2 eV, 
calculated experimental 

values because of the lack of nonzero values  

 

. Plots showing LOM fitting of available 
(Ω)  (pink points 

points with dash-dot line 
for crystalline SiO2 

with four oscillators having parameters 𝜔௣ =

35  eV,  𝑓ଵ = 0.10, 
= 0.28, 𝜔଴ଷ= 14.0 

= 16.7 eV,  𝛾ସ = 2.8 
based curves are black 

dot line for 𝑛ᇱᇱ(Ω) , 

over the same spectral 
range. A reasonably good fit to the data shown in 

 four oscillators 
with parameters listed in the caption to this figure. 

) 𝑛ᇱᇱ(Ω), and 𝑅(Ω) 
included in the figure. It should be 

by considering a higher 

(iii). Plots for optical parameters of alkali metals as 
function of Ω are quite simple and do not show any 
structure. These are well accounted for by DM. As 
typical representative of these we have displayed 
experimental data for reflectivity 

 
Fig. 16. Reflectance vs 
lines with points represent the experimental data 
 𝑅௘(Ω)  from [17] while the full lines are for the 
outcome  𝑅஽(Ω)  determined from the 
parameters given in the text. The upper curves are for 
K and the lower ones for Rb. 
 
 
graphs for potassium (
reported by Monin and Boutry
corresponding DM based results 
by using 𝜔௣ = 3.75 𝑒𝑉

𝜔௣ = 3.32 𝑒𝑉, 𝛾 = 0.24

the content of this figure.
the model calculations and the experimental data 
for the two metals is reasonably good.
   In contrast with alkali metals, optical properties 
of other metals like aluminium, silver, gold, 
copper, chromium, etc. are not e
alone. These require DM combined with many
oscillator Lorentz model. As an example, we have 
considered aluminium (Al) because this can be 
safely considered as a free electron gas system 
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Plots for optical parameters of alkali metals as 
are quite simple and do not show any 

structure. These are well accounted for by DM. As 
typical representative of these we have displayed 
experimental data for reflectivity  𝑅௘(Ω) vs Ω  

 

Fig. 16. Reflectance vs Ω for K and Rb. The dash-dot 
lines with points represent the experimental data 

from [17] while the full lines are for the 
determined from the DM using 

parameters given in the text. The upper curves are for 
K and the lower ones for Rb.  

potassium (K) and rubidium (Rb) 
Monin and Boutry [17] in Fig. 16. The 

corresponding DM based results  𝑅஽(Ω)  obtained 
𝑒𝑉 , 𝛾 = 0.1  eV for K and 
24 eV for Rb also constitute 

this figure. The agreement between 
the model calculations and the experimental data 
for the two metals is reasonably good. 

In contrast with alkali metals, optical properties 
of other metals like aluminium, silver, gold, 

etc. are not explained by DM 
alone. These require DM combined with many-
oscillator Lorentz model. As an example, we have 
considered aluminium (Al) because this can be 
safely considered as a free electron gas system 
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despite being a non-alkali metal. The experimental 
data for 𝑛௘

ᇱ (Ω), 𝑛௘
ᇱᇱ(Ω), and  𝑅௘(Ω)

eV has been taken from [18] and plotted i
The presence of a peak in the first and dips in the 
last two at Ω close to 1.5 eV is quite clear. This is 
an  

 

 
Fig. 17. Plots depicting experimental data 
𝑛௘

ᇱᇱ(Ω) , and  𝑅௘(Ω)  (red points joined with dot
line) [18]; DM fitting with 𝜔௣ = 15

eV (blue dash-dash line), and excellent DLOM fit 
obtained with four oscillators having parameters
𝜔௣ = 15.0 𝑒𝑉 ,  𝛾଴ = 0.04  eV,  𝑓଴

contribution), 𝜔଴ଵ = 0.12 eV,  𝛾ଵ =
0.23, 𝜔଴ଶ= 1.56 eV,  𝛾ଶ = 0.23 eV, 
1.80 eV,  𝛾ଷ = 1.35  eV,  𝑓ଷ = 0.19, 
 𝛾ସ = 5.0  eV, and  𝑓ସ = 0.03 (black solid line)
aluminium. 
  
 
indication of departure from the DM behaviour, 
which too is shown in the figure; the parameters 
used to get this plot are 𝜔௣ =
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alkali metal. The experimental 
( ) for Ω up to 20 

been taken from [18] and plotted in Fig. 17. 
presence of a peak in the first and dips in the 

close to 1.5 eV is quite clear. This is 

 

 

 

ing experimental data 𝑛௘
ᇱ (Ω) , 

red points joined with dot-dot 
15.0 eV, 𝛾 = 0.55 

dash line), and excellent DLOM fit 
four oscillators having parameters 

଴ = 0.51 (DM 
= 0.35  eV,  𝑓ଵ = 

eV,  𝑓ଶ= 0.04, 𝜔଴ଷ= 
= 0.19, 𝜔଴ସ = 4.3 eV, 
(black solid line) for 

indication of departure from the DM behaviour, 
which too is shown in the figure; the parameters 

= 15.0 𝑒𝑉 , 𝛾 =

0.55 eV. An impressive fit to the experimental data 
is obtained using DLOM with four oscillators with 
the parameters listed in the caption of Fig. 17; the 
relevant optical parameters have been denoted by 
𝑛ᇱ(Ω), 𝑛ᇱᇱand 𝑅(Ω).  
 
(iv). In ionic solids like 
potassium chloride, rubidium bromide, 
cations and anions are charged and undergo 
vibrations about their equilibrium positions in the 
crystal lattice. As  
such, these can be treated as Lorentz oscillators 
with equal and opposite charges
the relevant ion. Obviously, masses of these 
oscillators are much higher, and their fundamental 
angular frequencies are much smaller as compared 
to the corresponding quantities for electronic 
oscillators considered in section 2.
resonant frequencies lie in the infrared region. In 
addition, the valence electrons of the cations as 
well as the anions can also be treated as Lorentz 
oscillators having high characteristic frequencies
Consequently, the dielectric and o
of these types of crystals get contributions from 
ionic as well as electronic oscillators and their 
experimental data have been analyzed using 
numerous-oscillators LOM. As an example, it may 
be mentioned that reflectance vs 
potassium chloride has about six sharp peaks 
maximum value of about 0.3, 
peaks for Ω  between
Obviously, its analysis will involve 
oscillators.  
 
(v). A plasma is an electrically conducting medium 
having nearly equal number of positively charged 
ions and electrons, produced at high temperatures 
and / or very low number density. The ions and 
electrons can move around independently of each 
other. Since the electrons are not bound to any ion, 
like metals, a plasma does not have any 
characteristic resonant frequency, i.e., 
Furthermore, because of low number density (
𝜔௣ is quite small (~4

the collisions of electrons are essentially negligible 
implying that 𝛾 = 0. Thus, a plasma 
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. An impressive fit to the experimental data 
is obtained using DLOM with four oscillators with 
the parameters listed in the caption of Fig. 17; the 
relevant optical parameters have been denoted by 

)

In ionic solids like sodium chloride, 
rubidium bromide, etc. both 

cations and anions are charged and undergo 
vibrations about their equilibrium positions in the 

such, these can be treated as Lorentz oscillators 
with equal and opposite charges, and mass that of 

relevant ion. Obviously, masses of these 
oscillators are much higher, and their fundamental 
angular frequencies are much smaller as compared 

corresponding quantities for electronic 
considered in section 2. Generally, their 

frequencies lie in the infrared region. In 
, the valence electrons of the cations as 

well as the anions can also be treated as Lorentz 
having high characteristic frequencies. 

Consequently, the dielectric and optical properties 
of these types of crystals get contributions from 
ionic as well as electronic oscillators and their 
experimental data have been analyzed using 

oscillators LOM. As an example, it may 
reflectance vs Ω  plot for 

has about six sharp peaks with 
maximum value of about 0.3, and some broad 

between 7 eV and 22 eV [3]. 
Obviously, its analysis will involve many Lorentz 

A plasma is an electrically conducting medium 
equal number of positively charged 

, produced at high temperatures 
or very low number density. The ions and 

electrons can move around independently of each 
Since the electrons are not bound to any ion, 

lasma does not have any 
characteristic resonant frequency, i.e., 𝜔଴ = 0 . 
Furthermore, because of low number density (𝑁) 

× 10ିହ − 4 × 10ିଷ 𝑒𝑉) and 
the collisions of electrons are essentially negligible 

0. Thus, a plasma essentially 
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corresponds to the first case discussed in Section 4. 

Accordingly, for a plasma 𝜀௥(Ω) = 1 − ൫𝜔௣ Ω⁄ ൯
ଶ

, 
which is a real quantity. Also, 𝑛(Ω) =

ට1 − ൫𝜔௣ Ω⁄ ൯
ଶ

.  Both of these are close to unity 

for very large Ω  values. Note that  𝑛(Ω)  is 
imaginary for Ω < 𝜔௣ and real but less than unity 
for Ω > 𝜔௣ . Furthermore, from 𝛾 = 0 case in 
Fig.12, we infer that a plasma will be 100% 
reflective for e.m. waves of frequency Ω < 𝜔௣ and 
highly transmissive for Ω significantly higher than 
𝜔௣ . This is in consonance with the fact that 
ionosphere, which is a plasma layer around the 
earth having 𝜔௣~108 rad s-1, reflects back the radio 
signals of lower frequencies extending the range of 
receiving stations on the earth and is transparent to 
the signals with higher frequencies (the so-called 
short waves) enabling communication with 
satellites in space. 
 
6 Epilogue 

 
It is worth mentioning that at extremely high 
angular frequencies ( Ω → ∞ ), the dielectric 
function is real and unity in LOM as well as DM. 
Physically, this means absence of polarization of 
the medium which is so because the electrons do 
not respond to the applied field. Under these 
conditions, there is neither refraction nor 
absorption and only high transmission of the 
incident e.m. wave.   
   We close the article by quoting Wooten [3], 
‘Both the Lorentz and Drude models are largely ad 
hoc, but still useful as starting points and for 
developing a feeling for optical properties. …many 
features of these classical models have quantum 
mechanical counterparts which are easily 
understood as generalizations of their classical 
analogs’.  
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Appendix : Analysis of Complementary and 
Particular Integral Solutions for a One-
dimensional Forced Oscillator 

The equation of motion giving dynamical balance 
of forces for a one-dimensional forced damped 
harmonic oscillator corresponding to the one 
described by Eq. (1) can be written as 
 
         �̈�(𝑡) + 𝛾�̇�(𝑡) + 𝜔଴ 

ଶ 𝑥(𝑡) = 𝐹𝑒ି௜ஐ௧.        (A1) 
Here, 𝑥(𝑡) is instantaneous displacement, 𝐹  is the 
amplitude of the applied force and other symbols 
have the same meaning as in Eq. (1). The general 
solution of this second-order nonhomogeneous 
linear differential equation with constant 
coefficients consists of two parts: (i) the 
complementary or homogeneous solution, 𝑥஼ி(𝑡), 
and (ii) the particular or nonhomogeneous solution, 
which is also called particular integral, 𝑥௉ூ(𝑡). For 
an underdamped oscillator satisfying the condition 
𝛾 < 2𝜔଴, these solutions are given by  
 
 
             𝑥஼ி(𝑡) =  𝐴𝑒ିఊ௧/ଶ𝑠𝑖𝑛 (𝜔𝑡 + 𝜃)          (A2) 
 

with 𝐴  as amplitude,  𝜔 = 𝜔଴ට1 −
ఊమ

ସఠబ 
మ   as 

damped angular frequency, and 𝜃 as initial phase; 
and  
 

𝑥௉ூ(𝑡) =  
1

(𝜔଴
ଶ − Ωଶ) − 𝑖𝛾Ω

𝐹𝑒ି௜ஐ௧ 

 

                        = ൜
൫ఠబ

మିஐమ൯ା௜ ఊஐ

൫ఠబ
మିஐమ൯

మ
ା(ఊஐ)మ

ൠ 𝐹𝑒ି௜ஐ௧.     (A3) 

 
Accordingly, for the complete solution of Eq. (A1), 
we have  
 
                    𝑥(𝑡) = 𝑥஼ி(𝑡) + 𝑥௉ூ(𝑡).               (A4) 

 

   Note that for an oscillator having initial 
displacement 𝑥଴ and initial velocity 𝑣଴, 
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 𝐴 =
ටఠమ௫బ

మା(௩బା
ംೣబ

మ
)మ

ఠ
 ,   and   𝜃 = 𝑡𝑎𝑛

                                                                      
                

Also, in Eq. (A2), since 𝑒ି
ം೟

మ  is a uniformly 
decreasing function of time, 𝑥஼ி

oscillations about the equilibrium position with 

continuously diminishing amplitude 
becomes zero. Note that the oscillations 
usually referred to as transients and effective 

damped amplitude  𝐴𝑒ି
ം೟

మ   is said to define 
envelope of decay of 𝑥஼ி(𝑡) . Obviously, 
decrease in amplitude is fast if 𝛾 is large
versa. To appreciate the effect of damping 
parameter 𝛾 on 𝑥஼ி(𝑡) in a better way, we note that

𝐴𝑒ି
ം೟

మ  will be 0.1 % of 𝐴 at time 𝑇 =

ଵଷ.଼ଶ

ఊ
 . Thus, for 𝑡 > 𝑇 , 𝐴𝑒ି

ം೟

మ  and hence

may be essentially taken as zero.   
   Next, simplifying Eq. (A3), we can write its real 
part as 
 

                        𝑥௉ூ
ᇱ (𝑡) = 𝐵 cos(Ω𝑡 − 𝜑

 
where 
 

𝐵 =
ி

ටቀ𝜔0
2−Ω2ቁ

2
+(𝛾Ω)2

, and 𝜑 = 𝑡𝑎𝑛ିଵ

 
In fact, this is the same expression as we 
considering the nonhomogeneous term as 
𝐹 cos(Ω𝑡)  in Eq. (A1). Clearly, 
oscillatory function with constant amplitude 
From experimental observation point of view, 
complete solution for Eq. (1) can be written as
 
                   𝑥(𝑡) = 𝑥஼ி(𝑡) + 𝑥௉ூ

ᇱ (𝑡)

 
As argued above, for sufficiently large times 
𝑇 , the transients vanish and only the particular 
solution is left, and we have 
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𝑡𝑎𝑛ିଵ ൬
ఠ௫బ

௩బା
ംೣబ

మ

൰.  

                                                                      (A5)   

is a uniformly 
஼ி(𝑡)  describes 

oscillations about the equilibrium position with 

continuously diminishing amplitude 𝐴𝑒ି
ം೟

మ  till it 
Note that the oscillations 𝑥஼ி(𝑡) are 

usually referred to as transients and effective or 

is said to define the 
) . Obviously, the 

is large and vice 
appreciate the effect of damping 

in a better way, we note that 

=
ିଶ ୪୬ (଴.଴଴ଵ)

ఊ
=

and hence 𝑥஼ி(𝑡) 

simplifying Eq. (A3), we can write its real 

𝜑),                (A6) 

ቀ
ఊஐ

ఠబ
మିஐమ

ቁ.  (A7) 

In fact, this is the same expression as we obtain by 
considering the nonhomogeneous term as 

Clearly, 𝑥௉ூ
ᇱ (𝑡)  is an 

oscillatory function with constant amplitude 𝐵. 
From experimental observation point of view, a 

solution for Eq. (1) can be written as 

( ).               (A8)  

As argued above, for sufficiently large times 𝑡 >
only the particular 

 
                           𝑥(𝑡) =
 
This is said to give a 
problem. 
   To elaborate this aspect in
we have plotted 𝑥஼ி

𝑥஼ி(𝑡) + 𝑥௉ூ
ᇱ (𝑡)  for a damped forced oscillator 

characterized by (arbitrarily chosen) parameters 
𝜔଴ = 4.0 rads-1, 𝛾 = 1.0 s

 
Fig. A1. Plots showing time variation of
(black dashed line), 𝑥௉ூ

ᇱ

𝑥(𝑡)  (red dash-dot line) for a forced oscillator 
having parameter values
solid line represents the envelope of decay of  
𝑥஼ி(𝑡). 
 
 
ms-1, 𝐹 = 1.0 N, and Ω 
rads-1, A = 0.13 m, 𝜃 = 0.23 rad, B = 0.13 m, and 
𝜑 = 0.40 rad, in Fig. A1. This clearly shows that 
for small t values 𝑥(𝑡)

𝑥஼ி(𝑡) and 𝑥௉ூ
ᇱ (𝑡), while for reasonably large times 

(𝑡 > 𝑇 = 13.82 𝑠) 𝑥஼ி

the steady state solution. We can extend this 
treatment straightaway for a forced one
dimensional harmonic oscillator to the case of 
relevant three-dimensional oscillator.
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( ) = 𝑥௉ூ
ᇱ (𝑡).                        (A9)  

 steady state solution to the 

To elaborate this aspect in a proper perspective, 

஼ி(𝑡) , 𝑥௉ூ
ᇱ (𝑡) , and 𝑥(𝑡) =

for a damped forced oscillator 
characterized by (arbitrarily chosen) parameters 

= 1.0 s-1, 𝑥଴ = 0.03 m,  𝑣଴ = 0.50  

 

showing time variation of 𝑥஼ி(𝑡) 

௉ூ
ᇱ (𝑡) (green solid line), and 

dot line) for a forced oscillator 
values listed in the text. Blue 

solid line represents the envelope of decay of  

 = 3.0 rads-1 so that 𝜔 = 3.97 
= 0.23 rad, B = 0.13 m, and 

= 0.40 rad, in Fig. A1. This clearly shows that 
( ) gets contribution from both 

, while for reasonably large times 

஼ி(𝑡) = 0 and 𝑥(𝑡) = 𝑥௉ூ
ᇱ (𝑡) , 

he steady state solution. We can extend this 
treatment straightaway for a forced one-
dimensional harmonic oscillator to the case of 

dimensional oscillator. 
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