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Editorial

Revitalizing the Physics Education Journal
The Physics Education Journal of the Indian Association of Physics Teachers
(IAPT) has been dormant for some time due to several significant challenges,
including the COVID-19 pandemic disruptions, website management technical
issues, and transition in editorial management. However, we are pleased to an-
nounce that we are undertaking a complete renewal of the journal website to meet
current standards expected of a quality academic publication.

Acknowledgments and Gratitude
We express our sincere gratitude to DAE-BRNS for continuing their financial sup-
port, which will sustain the journal for the next five years. We also thank the new
editorial team members who have generously volunteered their services to main-
tain the high quality of this journal.

Publication Schedule and Plans
To ensure that previously accepted papers receive their due recognition, we have
decided to publish Volume 38 & 39 with four quarterly issues containing these
papers, scheduled from April 2024 to January 2025. Almost all papers have been
typeset in LaTeX by our local team, proofread by the authors, and are now ready
for publication.

Enhancing Transparency and Accountability
As we continue our pursuit of excellence in academic publishing, we are imple-
menting several new initiatives to enhance transparency, accountability, and the
overall quality of our journal. These changes are designed to uphold the integrity
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of the academic publishing process and provide our readers with the most accurate
and reliable scientific information.

New Publication Requirements
1. Copyright Transfer Agreement: Effective immediately, all authors submit-

ting articles must sign a copyright transfer agreement.

2. Enhanced Reference System: Authors must provide clickable links for all
DOI and URL references, and include a minimum of 10-15 references per
article.

3. Chicago Style Citation: Authors must follow the Chicago style of referenc-
ing to maintain consistency and clarity.

4. Anti-Plagiarism Verification: Authors must submit an anti-plagiarism report
generated using reputable software with their manuscript.

5. Visual Abstracts: Each submission must include a visual abstract summa-
rizing the article’s main findings and implications.

Submission Guidelines
Authors should submit manuscripts with all required supporting documents through
our online submission system once it is operational. Please ensure your manuscript
adheres to our guidelines and includes all required elements, including the copy-
right transfer agreement, properly formatted references with clickable links, and
anti-plagiarism report.

Call for Submissions
We welcome comments and scholarly rebuttals to any of the published papers
from IAPT members and our broader readership. In the interim, kindly submit
your papers via email to chiefeditorphyedu2025@gmail.com &
secretaryphyedu2025@gmail.com.

Thank You for your continued support and cooperation.
Professor O.S.K.S Sastri
Editor-in-Chief
Physics Education Journal,
Indian Association of Physics Teachers
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Abstract

The Boltzmann constant can be easily obtained

in teaching laboratories using a traditional

method. The method devised here uses the

ExpEYES-17, a low-cost, microcontroller-based

digital data acquisition system, where the actual

experiment is performed with real diodes, and

Python is used to complement the learning.

1 Introduction

The determination of fundamental physi-
cal constants plays a crucial role in under-
standing the underlying principles of na-
ture. One such constant, the Boltzmann

constant (kB), establishes a fundamental re-
lationship between temperature and energy,
serving as a cornerstone in statistical me-
chanics and thermodynamics. Traditional
methods for determining kB often involve
complex experimental setups and extensive
manual data collection. However, modern
technological advancements have enabled
the development of cost-effective and effi-
cient methodologies that enhance accuracy
while simplifying the process.

The COVID-19 pandemic and sub-
sequent lockdowns disrupted traditional
hands-on laboratory education, highlight-
ing the need for a new paradigm of on-
line and remote practical experiments.
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The transition to virtual learning neces-
sitated the adoption of digital tools that
could facilitate real-time data acquisition,
remote control of experiments, and compu-
tational analysis. In response, digital labo-
ratory platforms such as ExpEYES-17 have
emerged as powerful alternatives, allowing
students and researchers to conduct physics
experiments from their homes or in hybrid
learning environments. The availability of
low-cost, open-source hardware and soft-
ware has further expanded access to exper-
imental learning, overcoming geographical
and logistical barriers.

In this study, we present an alternative
approach to determine the Boltzmann
constant using a PN junction diode and
the ExpEYES-17 data acquisition system.
Previously, a study [7] was published to find
Boltzmann Constant. In this article, we have
applied curve fitting method, and deter-
mined the reverse saturation current as well.

ExpEYES-17 is a low-cost,
microcontroller-based digital data ac-
quisition system specifically designed for
educational and research applications. It
offers precise control over experimental
parameters, real-time data visualization,
and seamless integration with Python-
based computational tools. The versatility
of ExpEYES-17 has been demonstrated
in various experimental setups, includ-
ing measurements of electronic circuit
parameters, sensor-based studies, and
thermodynamic experiments [1, 10].

The experiment is based on the current-
voltage (I-V) characteristics of a PN junc-
tion diode, which follows the well-known
diode equation. By analyzing the exponen-
tial relationship between current and volt-
age in the forward bias region, we extract
the Boltzmann constant using a curve-fitting
technique. The experiment also incorpo-
rates a Platinum Resistance Thermometer
(PT100) to measure the temperature of the
diode during operation, ensuring accuracy
in calculations.

Previous studies have successfully
employed ExpEYES-17 for undergraduate
physics experiments, as documented in
works published in IOP Physics Education
and IAPT Physics Education [8, 9, 11, 14, 15].
These works highlight the effectiveness of
the system in hands-on learning and exper-
imental physics education, demonstrating
its applicability in teaching fundamen-
tal physics principles. Inspired by these
studies, our work further extends its util-
ity by providing a refined approach for
determining the Boltzmann constant.

This approach provides students and
researchers with an accessible and efficient
method for determining the Boltzmann con-
stant while reinforcing fundamental con-
cepts in semiconductor physics, thermo-
dynamics, and experimental data analysis.
The integration of Python-based computa-
tion further enhances the learning experi-
ence, making it a valuable addition to un-
dergraduate and postgraduate physics lab-
oratories.
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2 The ExpEYES-17

The ExpEYES-17 is basically a data acquisi-
tion system / kit along with a four channel
digital storage oscilloscope (DSO) which
was developed by a group of scientists and
researchers at the Inter-University Acceler-
ator Center (IUAC), New Delhi, India. The
name of the kit is short form of expEriments
for Young Engineers & Scientists. The main
architecture has been designed using the
Micro-controller PIC24EP64GP204 and
runs by Python. The hardware design and
necessary software are freely available [17]
to share knowledge and foster interest in
experiments worldwide.

The top view of the kit has been shown
in Fig. 1. There are separate connector
blocks - output block, input block and
I2C modules. The output block contains
programmable sources for various signals
and voltages. PV1 and PV2 are two pro-
gramable direct voltage sources with 12
bit resolution. It has two square waves
generators SQ1 and SQ2. The frequency
of these sources can be varied from 4Hz to
100kHz as well as duty cycle. However, the
frequency range of sine or triangular waves
is lower (5Hz to 5kHz) compared to that of
square waves. The waveforms other than
square wave is obtained from WG. The WG
indicates the complements of the signals of
WG. Apart from these outputs, there are
One digital Output OD1, and one constant
current source CCS which can supply 1mA
current. Any other waveforms which are

not specified can also be generated by
writing a simple python code as discussed
in the user manual.

Figure 1: The inputs & outputs of the ExpEYES-
17 kit.

On the other hand, inputs for sig-
nal capturing have been integrated into
the input block, which contains six input
terminals. The IN1 is used to measure
capacitance upto 10nF and the frequency
counter IN2 is able to measure frequencies
upto several MHz. The input terminals
A1 and A2 are capable of measuring ana-
log voltages within ±16V range having
maximum 1Msps sampling rate. Other
inputs, A3 can measure ±3.3V and MIC
is capable of capturing audio signals.A
detailed discussion about the device can be
found in article [10].

The kit is connected to laptop / com-
puter through usb port and no external
power is needed to run the device. The
Fig. 2 displays the graphical user interface
GUI which is written on C and python.
The GUI consists of oscilloscope display
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and the control sliders for PV1, PV2, SQ1,
WG and four oscilloscope channels A1, A2,
A3 and MIC including the time base and
trigger control. There is a list of about 50
experiments from school to graduate levels
that can be performed with this kit. But one
may design other experiments too.

Figure 2: A view of the User Interface (Soft-
ware) of the ExpEYES-17 kit.

3 Theory:

3.1 Boltzmann’s Constant:

Ludwig Eduard Boltzmann (1844-1906)
was an Austrian theoretical physicist and
philosopher. His greatest achievements
were the development of statistical mechan-
ics, and the statistical explanation of the
second law of thermodynamics. In 1877 he
provided the current definition of entropy,
S = KBln(ω), interpreted as a measure
of the statistical disorder of a system.[19].
Max Planck named the constant kB the

Boltzmann constant.

Figure 3: Ludwig Eduard Boltzmann (1844-
1906)

3.2 PN Junction diode, and finding the

Boltzmann Constant from its

equation:

The discovery of semiconductors ushered in
a new era of electronic technology. The pure
semiconductors behave like ordinary resis-
tance and follow the Ohm’s current-voltage
relation and they have no practical applica-
tions in electronic devices. Some impurities
are doped to produce impure semiconduc-
tors. Depending upon the doping materials,
the impure semiconductors are either p-
type or n-type. The former contains a large
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number of positively charged holes and
a small number of electrons. The n-type
semiconductor contains large number of
electrons and few numbers of holes. In
Fig. (4) p-type and n-type semiconductors
are shown.

Figure 4: p type and n type semiconductors,
and p-n junction diode, formed on a single crys-
tal [18]

When different materials are doped
onto a single crystal in such a way that one
side forms a p-type region and the other
side forms an n-type region, it creates a
PN junction, as shown in Fig (4). Almost
all the electronic devices contains one or
more such pn junctions. Since the p-side
has a high concentration of holes and the
n-side has a high concentration of electrons,
electrons naturally diffuse toward the p-side
and holes toward the n-side. Electrons and
holes recombine as they diffuse across the
p- and n-sides. However, some electrons
on the p-side near the junction cannot re-
combine. Similarly, holes on the n-side near
the junction line can not recombine. The
electrons near the junction line on the p-side
and holes on the n-side set up an electric

field and this electric field prevents further
diffusion of holes from p-side and electrons
from the n-side. A charge depletion region
is created across the junction, as shown in
Fig (4) forming a barrier potential V0. This
barrier potential varies from 0.1V to 0.3V.

Such pn junction is called a junction
diode or simply diode, which may be con-
nected to a power supply in two different
ways. When p-side is connected with pos-
itive terminal to the source and n-side to its
negative terminal, is called forward biasing.
In this connection, holes on p-side and elec-
trons on n-side get repulsion by the positive
and negative terminals, respectively. If the
potential difference V across the junction is
greater than the barrier potential V0, holes
from p-side and electrons from n-side cross
the barrier and produces the forward cur-
rent I. This forward current and applied po-
tential difference are related by

I = Is

(
e

qV
nKBT − 1

)
, (1)

where, q is the charge of electron,
KB is Boltzmann’s constant, T is absolute
temperature of the junction and n = 1 for
Germanium (Ge) cryatal and 2 for Silicon
(Si) crystal. The revers saturation current is
denoted by Is. Another type of connection,
called reverse bias connection when p-side
is connected with the negative terminal and
n-side to the positive terminal of the source.
In this connection, holes from p-side and
electrons from n-sides are attracted by the
negative and positive terminals, respec-
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tively. Only, few electrons from p-side and
holes from n-side get repulsion and diffuse
across the junction and produces very small
amount of reverse saturation current Is.

In this experiment we use both Ge and
Si diode in forward bias. At the room tem-
perature, (T ≈ 300K), and V = 0.5V to 1V,

e
qV

nKBT varies from of the order 104 to 108 REF
and thus e

qV
nKBT >> 1. This enables us to ne-

glect 1 compared with the exponantial term
and approximate the Eq. (1) as

I = Is e
qV

nKBT , (2)

The above equation can be written after
taking the logarithim of both side

ln(I) =
qV

nKBT
+ ln(Is) , (3)

which is the equation of a straight line

y = m x + c . (4)

In the above equation, m = △y
△x is the

slope of the straight line and c denotes the
length where the straight line cuts the y-axis.
Now comparing, the Eqs. (3) and (4), one
can write

y = ln(I) ,

x = V ,

m =
q

nKBT
,

c = ln(Is) .

In the experiment, we plot graph of
ln(I) − V and determine the slope m =

△ln(I)
△V . This value of the slope m is equal to
q

nKBT . Therefore,

KB =
q

nT
m

. (5)

Eq. (5) is our working formula for De-
termination of the value of the Boltzmann’s
constant.

3.3 Temperature sensing using RTD

(PT100) Sensor:

Resistor Temperature Detectors (RTD) are
temerature sensors that sense change of
temperature by measuring the change in
the value of a resistor. Many RTD elements
consist of a length of fine wire wrapped
around a ceramic or glass core but other
types constructions are alsocommon. The
RTD wire is a pure material, typically
platinum, nickel, or copper. The material
has an accurate resistance/temperature
relationship which is used to provide an
indication of temperature. As RTD elements
are fragile, they are often housed in protec-
tive probes, mostly covered in a steel tube
that is hermatically sealed.

Platinum, a noble metal and having
the most stable resistance–temperature rela-
tionship over the largest temperature range,
was proposed by Sir William Siemens as
an element for a resistance temperature
detector back in 1871. Figure (5) shows
a schematic of a common wire-wound
Platinum Resistor Thermal sensor.
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One important property of metals that
is used to construct the resistive elements of
RTDs is the linear approximation of the re-
sistance versus temperature relationship be-
tween 0° C and 100° C. This temperature co-
efficient of resistance is denoted by α and
having units of Ω/(Ω°C):

α =
R100 − R0

100 × R0
(6)

where R100 is the resistance of the metal at
100° C, and R0 is the resistance at 0° C.

Typically, industrial PRTs have a nomi-
nal alpha value of α = 3.85 × 10−3 per ° C.

Figure 5: Schematic of a PRT.

Eq. (5) shows that the Boltzmann Con-
stant KB is a function of temperature in ab-
solute scale. We have used a PT100 Plat-
inum Ressistance Thermometer to measure
the temperature of the P-N Junction diode
during the experiment, and then convert
the masured temperature to absolute scale.
PT100 has a typical resistance value of 100Ω
at the 0° C. The Resistance Temperature re-
lation of a PT100 sensor for temperatures
greater than 0° C is given by the Callen-
dar–Van Dusen equation

Rt = R0(1 + At + Bt2) (7)

where, t=temperature, Rt= resistance at
temperature t, and R0= resistance at 0° C.

For industrial grade of PRT, standard
EN 60751:1995 provides values for the
coefficients from the value of α of Eq (6) as

A = 3.9083 × 10−3°C−1,
B = −5.775 × 10−7C−2

Since the coefficient B is very small, the
resistance changes almost linearly with the
temperature.

For positive changes in temperature, so-
lution of the quadratic equation using the fa-
mous Sreedhar Achraya formula yields the
following relationship between temperature
and resistance:

t =
−A +

√
A2 − 4B(1 − Rt−Ro f f set

R0−Ro f f set
)

2B
(8)

PT100 sensors comes with a length of
wire, and thus, the resistance of the wire
is added as a offset value with the mea-
sured temperature, which must me sub-
tracted from the values of the measured re-
sistances as shown in the equation (8). This
equation is used in the python program to
determine the temperature of the diode dur-
ing the experiment.
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3.4 Curve fitting to find the Boltzmann

Constant:

Equation (3) shows that a straight line can
be found by plotting the Log10 Id vs Vd data.
We must fit a starigt line that is best fit with
the experimental data, find its slope(m) and
intercept(c) to find the values of KB and Is.

Linear regressions of x and y, a Least
Squares Regressions Method for fitting
curve is used here. In this method, a
straight line is fitted by the means of min-
imizing the vertical distances between the
actual data points and the straight line. The
coefficients of an equation analogous to
equation (4), y = a1x + a0 are calculated
from the following relations:

a0 =
∑ yi ∑ x2

i − ∑ xi ∑ xiyi

n ∑ x2
i − (∑ xi)2

(9)

a1 =
n ∑ xiyi − ∑ xi ∑ yi

n ∑ x2
i − (∑ xi)2

(10)

where m and c are analogous to a1 and
a0, respectively. xi and yi are the deviations
between the experimental data and fitted
line points. The details of the expressions
are out of the scope of discussions of this
article, and can be found in [4].

4 Experimental Set-up:

The whole experimental set-up consists of
two parts, namely,

• Hardware, i.e., the ExpEYES-17 kit and
the Circuit for the experiment, and

• Python Program, i.e., the Software for
the experiment

The parts are elaborated below in the
following sections.

4.1 Circuit for the experiment:

Figure 6: Circuit for finding Diode Characteris-
tics for KB.

The ExpEYES-17 is the main equipment
used in the experiment to generate and
measure the required signals. A simple
circuit, as shown in the left hand side
with respect to ground in the figure (6),
is constructed with the help of wires and
crocodile clips. We have used two diodes
in this experiment. Diode 1N4148 is a
Silicon diode, and 1N60 is a Germanium

38/2/1 8 www.physedn.in
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diode. The diode under test is shown as
D1. The diode is biased through a resistance
R1. The purpose of using the resistor is
to determine the diode current using an
equation, as ExpEYES-17 cannot measure
current directly. The voltage accross the
diode is sensed by the Channel A1 of the
ExpEYES-17 while the diode gets dc bias
from the variable voltage source PV1. PV1
is controlled by the python program listed
in Listing (1).

The left hand side of the figure (6), with
respect to the ground, shows the schematic
of the connection of PT100 temperature sen-
sor. In ExpEYES-17, a constant current
source is available for use via the terminal
CCS. It is designed to deliver 1 mA of con-
stant current, however, due to tolerances of
the components used, this current varies a
little bit from device to device. The PT100 is
connected between the CCS and the ground
terminal, and the voltage caused by the flow
of the costant current generated by CCS ac-
cross the PT100 is sensed via the A3 terminal
of the ExpEYES-17 kit. The A3 terminal can
sense ±3.3Vand has a high input resistance
of 10MΩ. A non-inverting amplifier built
around a TL082 OP-AMP in the ExpEYES al-
lows the gain of the A3 A3 input to be set
by connecting a resistor from terminal Rg to
ground, to ground, as given by equation (11)

Gain = 1 +
10000

Rg
(11)

The temperature obtained by this arrange-
ment is used to compute the value of the

Boltzmann constant using the python pro-
grams.

Figure 7: Actual circuit with the ExpEYES-17
for the experiment. The n side of the 1N60 Diode
is connected to ground, and p side to PV1 via
a 1KΩ resistor. The black clip takes the VD to
A1. The PT100 is connected between CCS and
ground, the red clip takes the Vt to A3. An-
other 1KΩ resistor is connected between Rg and
ground.

Figure (7) shows the actual connection
of the circuit on the ExpEYES-17 kit.

4.2 Software for the experiment:

The software for this program is nothing but
a couple of programs written in python. Li-
braries specific to ExpEYES-17 are included
in the program, and the libraries required
to plot the diode characteristics, transfer the
data from one program to another, and to
curve fit the plots.

38/2/1 9 www.physedn.in
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4.2.1 Program 1:

The first Python program (1) generates a list
of diode voltages and currents by varying
PV1. The range of the non-linear section is
selected using vdliml and vdlimh since the
logarithm of the non-linear region results in
a linear plot. Each voltage-current reading is
accompanied by temperature data from the
PT100 sensor, converted to absolute values
and stored in latemp[] for averaging in pro-
gram (2).

This program produces two sets of
lists: vda[] and ida[] for plotting in figures
(9) and (10), and lvda[] and lida[] for
calculating KB in program (2). The Cal-
lendar–Van Dusen equation (7) is used to
compute temperature from PT100 resistance
changes, accounting for device offsets. The
wire resistance at 0◦C, denoted as ro f f set, is
used for calibration. Data transfer between
the two programs is handled via text files
using the pickle library.

4.2.2 Program 2:

The second Python program (2) processes
the voltage-current lists from program (1)
to plot ln(I) vs. V and determine the
slope m = ∆ ln(I)

∆V through curve fitting (3.4).
The resulting straight-line fit, located in the
fourth quadrant with a positive slope, is
used to compute the Boltzmann constant
separately for Si and Ge diodes.

Unlike assuming room temperature,
this program utilizes temperature readings

recorded in program (1) to compute an
accurate average. The calculated KB values
are compared with standard values, and the
percentage error is determined. Addition-
ally, the logarithm of the reverse saturation
current, log10 Is, is derived from the y-axis
intercept.

Figure (8) shows typical output for a Sil-
icon Diode.

Figure 8: Typical Program output, as given out
by program (2) for a Si diode 1N4148

5 Results:

Plots in figures (9) and (10), show the VI
characteristics of a Ge and a Si diode. The
data generated to plot the curves are used
to compute the Boltzmann constant.

Figures (11) and (12) show the plots of
the experimental data and the linear fitted
curve for the Ge and Si Diodes, respectively.

Figure (12) shows the screenshot of
the program output as well with the plot.
The calculated values of KB and Is along
with the average temperature in Kelvin, are
displayed as output.

38/2/1 10 www.physedn.in
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Figure 9: Ge (1N60) Diode Characteristics for
KB generated running Program (1).

Figure 10: Si (1N4148) Diode Characteristics for
KB, generated running Program (1).

The percentage error of measurement δ

is also calculated by the program using the
given relation:

δ =
vA − vE

vE
× 100% (12)

Where vA and vE are the actual and ex-
act value of any parameter being measured.
Table (1) tabulates the value vA obtained
by the experiment, and the value of the

Figure 11: Log10 Is plot (Scatter), and fitted
curve (Line) plot for Si (1N4148) Diode to find
KB, generated running Program (2).

Figure 12: Log10 Is plot (Scatter), and fitted
curve (Line) plot for Ge (1N60) Diode to find KB,
generated running Program (2).

percentage error δ in each case, given the
exact value vE of the Boltzmann Constant is
KB = 1.38 × 10−23 JK−1.

Table (2) tabulates the values of the
reverse saturation current IS for each case.
It appears from the data that in case of

38/2/1 11 www.physedn.in
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Table 1: Data recorded for KB

Model Mat. vA of KB in JK−1 δ (%)
1N60 Ge 1.47 × 10−23 6.72

1N4148 Si 1.30 × 10−23 −5.35

Table 2: Data recorded for IS

Model Mat. IS in nano Amperes
1N60 Ge 114.11

1N4148 Si 4.59

Germanium, the amount of IS is higher than
that of a Si diode.

6 Discussions:

The experiment designed here is not new
to undergraduate physics students, but the
approach is. This method may provide an
additional way to solve the problem, com-
plementing the traditional hands-on experi-
ment method, where each data point is col-

lected manually. The use of python is an-
other interesting approach to design such
age-old experiments in a new way. The au-
thors are at opinion that the use of ExpEYES-
17 in the undergraduate laboratories along
with the traditional methods can definitely
widen the horizon of learning.
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Appendix

The Program listings are provided below.

1 # Data Collection for finding Boltzmann Constant

2
3 #Initialization of device

4 import eyes17.eyes

5 p = eyes17.eyes.open()

6 from pylab import *

7 import numpy as np

8 import matplotlib.pyplot as plt

9
10 #import libraries

11 import time

12 import math

38/2/1 12 www.physedn.in
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13 import pickle

14
15 #Get the Material of the Diode being used

16 mat=input ("Type S for Silicon , or G for Germanium and press ENTER:")

17 if (mat==’S’):

18 eta=2

19 mat1=’Silicon ’

20 colname=’red’

21 vdliml= 0.40 #the lower limit of the exponential part of

the V-I plot.

22 vdlimh= 0.75 #the upper limit of the exponential part of

the V-I plot.

23 elif (mat==’G’):

24 eta=1

25 mat1=’Germanium ’

26 colname=’blue’

27 vdliml= 0.15 #the lower limit of the exponential part of

the V-I plot.

28 vdlimh= 0.25 #the upper limit of the exponential part of

the V-I plot.

29 else:

30 print(’Diode Material not defined ’)

31
32 #Get the Number of the Diode being used

33 mod=input ("Type the diode model number and press ENTER:")

34
35 #define constants for Temperature recording

36 A = 3.9083e-3 #value of coefficient A

37 B = -5.7750e-7 #value of coefficient B

38
39 #measured values of offset and constant current source

40 a3offset = 0.0005908659726263022 #offset voltage at a3

41 iccs = 0.0011132813656059932 #ccs current in A

42
43 #other parameters for temperature recording

44 Rg = 977 #value of 1k resisor

45 gain = 1 + 10000/ Rg #gain at a3 using Rg

46 r0 = 101.8 #pt100 resistance at 0 deg c

47
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48 #Finding the data for plot and calculation

49 vda = [] # Initiate Diode voltage list

50 ida = [] # Initiate Diode current list

51 lida = [] # Initiate log I list

52 lvda = [] # Initiate list for next plot

53 latemp = [] # Initialize list for Absolute Temperature recording

54
55 pv1 =0.0

56 while (pv1 <= 4.00):

57 p.set_pv1(pv1) #set bias voltage

58 p.set_state(CCS=1) #enable ccs

59 time.sleep (0.025) #give the device time to set the

voltage/current

60 vs = pv1 #check bias voltage

61 vd = p.get_voltage(’A1’) #get Diode voltage

62 va3 = p.get_voltage(’A3’) #Read A3 for temperature

measuremnent

63 vt = va3 - (gain * a3offset) #correct offset in measuring A3

64 vpt100 = vt/gain # voltage across PT100

65 rt = vpt100 / iccs #voltage for curent teperature

66 C = 1 - (rt - 1.8)/(r0 - 1.8) #find c and exlude offset

resistor of pt100 wire

67 ctemp = (-A + math.sqrt( A*A - 4 * B * C) )/ (2.0 * B) #find

current temperature

68 atemp = 273.15 + ctemp #find temperature in absolute

scale

69 idx = (vs -vd)/969 #find Diode current for 1K Ohm in

Amp

70 idma = idx *1000 #current in mA for I-V plot

71 if vdliml <= vd <= vdlimh: #non -linear section of the plot

72 if idx > 0 : #discard negative value , if any

73 idlog = math.log10(idx) #convert I to log

74 lida.append(idlog) #append in the list of id

75 lvda.append(vd) #append in the list of vd

76 latemp.append(atemp) #append in the list of absolute

temperature

77 vda.append(vd) #append in list for vd vs id plot

78 ida.append(idma) #append in list for vd vs id plot

79 p.set_state(ccs=0) #disable ccs
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80 pv1 += 0.05 #next value of source voltage

81
82
83 #save the lists in a file to calculate the Boltzmann Constant

84 with open("ivdata.txt", "wb") as f:

85 pickle.dump(lvda , f) #dump the vda values in a text

file

86 pickle.dump(lida , f) #dump the log (10) ida values in a

text file

87
88 #save the temeratures list in a file to calculate the Boltzmann

Constant

89 with open("tempdata.txt", "wb") as f:

90 pickle.dump(latemp , f) #dump the temperature values in

Kelvina in a text file

91
92 #Plot

93 plt.title(’Forward I-V Characteristics of P-N Junction Diode’) #Plot

Title

94 plt.xlabel(’Diode Voltage Vd (Volt)’) #x axis label

95 plt.ylabel(’Diode Current Id (MilliAmp)’) #y axis label

96 plt.plot(vda , ida , color= colname , label=’Diode

Material=’+str(mat1)+’ & Model No=’+str(mod)) #plot graph

97 plt.grid(True) #show gridlines

98 plt.legend(loc=’upper left’) #show legend

99 plt.show() #show graph

Listing 1: Python Program to generate data to find Boltzmann Constant using p-n junction
diode, and to plot the diode characteristics.

1 # Plotting of V - Log10I plot and calculation of Boltzmann Constant

2
3 #import libraries

4 import matplotlib.pyplot as plt

5 import scipy.optimize as opt
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6 import numpy as np

7 import pickle

8 from math import *

9
10
11 #Get the Material of the Diode being used

12 print(’Select the Material of the Diode being used’)

13 mat=input ("Enter S for Silicon , or G for Germanium and press ENTER:")

14 if (mat==’S’):

15 eta=2

16 mat1=’Silicon ’

17 colname=’red’

18
19 elif (mat==’G’):

20 eta=1

21 mat1=’Germanium ’

22 colname=’blue’

23
24 else:

25 print(’Diode Material not defined ’)

26
27 q = 1.602176634e-19 #standard value of unit charge

28 ks = 1.380649e-23 #standard value of k

29
30 with open("ivdata.txt", "rb") as f: # Unpickling V-log10I data

31 Vd = pickle.load(f)

32 Id = pickle.load(f)

33
34 with open("tempdata.txt", "rb") as f: # Unpickling Temperature data

35 atemp = pickle.load(f)

36 at=sum(atemp) / len(atemp) # Find avg value of

Temperature in Kelvin

37
38 #intialization for curve fitting

39 x,y=[] ,[]

40 for i in range(len(Vd) ):

41 x.append(Vd[i])

42 y.append(Id[i])

43 n=len(x)
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44
45 ## Linear equation : y=a+bx fit

46 def func(x,a,b):

47 return a+b*x

48 sx=0.0

49 sy=0.0

50 sxy =0.0

51 sx2 =0.0

52 for i in range(n):

53 sx=sx+x[i]

54 sy=sy+y[i]

55 sxy=sxy+x[i]*y[i]

56 sx2=sx2+x[i]*x[i]

57 D=n*sx2 -sx*sx

58 A=sy*sx2 -sx*sxy

59 B=n*sxy -sx*sy

60 a=A/D

61 b=B/D

62 print ("a,b=",a,b)

63
64 fx=[]

65 for i in range(n):

66 fx.append(func(x[i],a,b))

67
68
69 k = q/(2.303 * eta * (at) * b) #find k from fitted curve

70 pe = ((k - ks)/ks)*100

71 Is = 10 ** a

72 print("Temperature = ", at , "Kelvin")#print temperature during

experiment

73 print("Boltzmann Constant=", k/1.0e-23, "X 10^( -23) J/K") #print the

value of k

74 print("Percentage Error= ", pe , "%")

75 print("Is= ", Is*1.0e9 , "nA") # Print Is

76
77 ## Plot

78 plt.title(’Log10(I) vs Vd Plot\n to find Boltzmann constant ’)

79 plt.xlabel(’Vd (Volt)’)

80 plt.ylabel(’Log10(I)’)
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81
82 plt.scatter(x, y, label="Expt. data"+" (Diode

Material="+str(mat1)+")",linewidth =2)

83 plt.plot(x, fx , "red", label="Linear fit", linewidth =2)

84 plt.grid(True)

85 plt.legend(loc="upper left")

86 plt.show()

Listing 2: Python Program to find Boltzmann Constant using curve fitting of a straight line
based on the data obtained from program (1)
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Abstract

The main topic of this article is a discussion
about the best way to show students that the
proportionality of mass and weight, strictly
true for point-like particles, is an excellent
approximation for objects of “normal” size. The
usual way of addressing this issue, although
very simple, is not entirely satisfactory. Our
approach considers first and second order,
coordinate dependent, gravimetric effects,
connected to the internal geometry of objects;
these effects, extremely small, are estimated
through examples.

1 Introduction

Direct proportionality of mass and weight is a
well-established principle, proven as an exper-
imental fact for all bodies in the same place.
However, apart from the special case of uni-
form gravitational field, this principle is only
valid locally, that is for point particles. When
both the variability of the gravitational field
and the bodies’ internal structure cannot be
ignored, the point-particle approximation fails

and the proportionality of mass and weight
cannot be regarded as strictly exact. Anyway,
discrepancies involved are generally tiny and
can safely be overlooked in most situations we
commonly experience.

It should be deemed that teachers usu-
ally show students that for common bodies
the acceleration of gravity does not vary ap-
preciably (or, otherwise said, the gravitational
field is uniform) within the size of the object,
which can be done very simply. At least at
the college level, but also at the high-school
level, after having presented relative motions
and introduced the “apparent forces” in non-
inertial reference frames - or “inertial forces”
as we want to call them - teachers specify that
the weight force on the earth’s surface is the
resultant of the (true) gravitational force and
of the apparent (inertia) forces, in particular
the centrifugal force if the body is stationary.

Limiting the problem to the gravitational
component only (let’s say it G) teachers
follow the usual simple path of differentia-
tion ∆G/G = ∆R−2/R−2 = −2∆R/R =

−2h/R, where R is the radius of the earth
and h is the height of the body (or, if stu-
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dents do not know the differentials, simply
calculate G(R + h)/G(R) = R2/(R + h)2).
Since the difference in the first order is already
very small, 2h/R typically being of the order
of 10−8, that of the second order is obviously
negligible for any practical effect.

But we immediately realize that this
method is flawed as the inverse proportion of
the gravitational force to the square of the
distance is strictly valid for point particles
(and in the other special case of centrally-
symmetric homogeneous bodies). In this way
we implicitly assume the conclusion, as affirm-
ing uniformity of the gravitational field within
point objects is tautological: our argument
contains a circularity and runs into a logical
fallacy (petitio principii). Furthermore, prop-
erly speaking, h does not correlate to the ob-
ject size: it merely represents a (small) dis-
placement of the body (or rather, its center of
mass) from the surface of the earth.

Thus the argument is ineffective for ex-
tended bodies of arbitrary shape as it does
not properly capture the effect on weight force
(in either a rotating or a non-rotating frame)
of the variation of g within the object size;
it would be preferable to find a different ap-
proach, allowing us to address the topic in
broader generality and rigour.

2 Background

According to the “Declaration on the unit of
mass and on the definition of weight; con-
ventional value of gn”: «The word “weight”
denotes a quantity of the same nature as a

“force”: the weight of a body is the product of
its mass and the acceleration due to gravity;
in particular, the standard weight of a body is
the product of its mass and the standard ac-
celeration due to gravity.» [1] And, contextu-
ally: «The kilogram is the unit of mass; it is
equal to the mass of the international proto-
type of the kilogram.»1 The value adopted for
the standard acceleration due to gravity (on
earth) is gn = 980.665 cm s−2. Thus, for the
weight force:

w = mg, (1)

where m is the mass of the object and g is the
acceleration vector due to gravity (We denote
vectors, like g, w, G, as bold letters and rep-
resent their magnitudes, like g, w, G, as italic
letters).

More generally, weight means the grav-
itational force (or this plus the centrifugal
force) on a small mass compared to that of
the source (e.g. “the weight of astronauts on
the Moon”).

It is important to notice that “weight”
and “gravitational force” are the same force
but the use of either term is contextual and it
is good practice to adhere to conventions on
their use to avoid ambiguity. Calling the grav-
itational force on a celestial body “weight”
creates confusion, and contradicts the conven-
tion that reserves this word for practical use
(on weight vs gravitational force see e.g. [2]).

Hence the use of “weight” should be re-

1The definition of the kilogram in terms of the in-
ternational prototype is obsolete and no longer in force
since 20 May 2019; it has been redefined in terms of
the Planck constant.
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served for the force experienced by an object
with mass in a gravitational field (e.g. light
is bent by gravitational fields, although it has
not weight, because it is massless).

We are now ready to introduce the
alternate differentiation pathway ∆g/g =

1/g (∆g/∆R)∆R = R/g (∆g/∆R) h/R,
where h is now the linear size of the object
and g(R) (gravitational + centrifugal) does
not have a form given a priori. In this way
we see that the less restrictive condition that
the gradient ∆g/∆R is the same order of g/R

would fulfill the requirement of uniformity of
the gravitational field within the size of the
object.

In a more formal way, if we think of the
body made up of particles of masses mi, being
m =

∑
i mi the mass of the entire body and

ρ(r) =
∑

i miδ(r − ri) its density, where δ is
the Dirac delta function, the weight force is
the generalization of eq. (1) by integration
over the whole space:

w =
∫∫∫

ρ(r)g(r) dτ =
∑

i

mig(ri). (2)

For an uniform field (g(r) = gẑ) the equation
(2) reduces to (1) and the internal size and
geometry of the body are irrelevant.

But the uniformity condition for g only
holds approximately near the earth’s surface.
The earth’s gravitational field is not uniform
even on a small scale; modern gravimeters al-
low us to appreciate g with eight or nine sig-
nificant digits (some µgals); this is how to say
that variations in the earth’s gravity between
points even a few centimeters apart are de-
tectable instrumentally.

In this article we consider very small
(some ppb) coordinate dependent effects. At
these scales there are several others effects,
both instrumental and environmental, which
are not so weak. For example, g has a depen-
dence on time: the effect of terrestrial tides
alone is two orders of magnitude greater (a
few hundreds µgals), to which are to be added
the effects of tides in the oceans, the hydro-
logical and barometric components, also vari-
able over time, and so on; also the motion (if
any) of the measuring instrument has to be
taken into account. Moreover, although in-
dependent of the mass m of the body under
consideration, g generally depends on “other”
masses; it will be assumed that these external
masses vary very slowly.

Obviously we should not forget to men-
tion the major non-gravitational contribution
to weight, that of the centrifugal force due to
diurnal rotation (which is a component of g);
the centrifugal force is some part per thousand
of the gravitational force and the dependence
of the two forces on the distance, from the cen-
ter or from the axis, is different; the effect on
the weight of Archimedes’ thrust in the air is
also significant. In the following we shall leave
all these effects just mentioned aside from the
present study and focus our attention on co-
ordinate related ones, dependent on size and
geometric configuration of objects.

It is easy to see that for bodies for
which experiments can be established, such
as for bodies near the earth’s surface, these
coordinate-dependent effects are far too small
for the standard resolution of dynamometers
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and scales. To this end we take Taylor series
expansions truncated to the second-order of
the functions g(ri) in eq. (2) centered about
Rcm = 1

m

∑
i miri, that is the radius vector

conducted from the origin of the coordinates
to the body center of mass:2

g(ri) = gcm + (ri − Rcm) · ∇g
∣∣∣
Rcm

+
1
2 ((ri − Rcm) · ∇)2 g

∣∣∣
Rcm

(3)

(where gcm is evaluated in the center of mass).

By fixing the origin of the coordinates in
the center of the earth, the equation (3) is
quite exact for all applications in which we
need to evaluate the weight force on bodies
located on or near the earth’s surface. In fact,
under these conditions |ri − Rcm| ≪ R with
|Rcm| ∼= R (assuming R ≃ 6.371 × 106 m for
the earth’s mean radius) and the third and
higher-order terms can be overlooked.

3 The first order effect.
Implications for precision mass
measurements

For a (small) displacement of a body from P

to a near point P ′ we can express the variation
of g within the body by means of the eq. (3)
as:

g(r′
i) = g(P′) +

(
r′

i − P′
)

· ∇g
∣∣∣
P′ (4)

(overlooking the small second order term).
For a rigid body holds the distance preserv-
ing condition ∥r′

i − P′∥ ≡ ∥ri − P∥. For the
2Under suitable analyticity conditions for the func-

tions g(ri).

sake of simplicity we assume the special con-
dition of a purely translational displacement
(preserving distance, angle, sense, and orien-
tation) such that r′

i − P′ ≡ ri − P, so that, if
we take P as the center of mass, the second
term of the right-hand side vanishes identi-
cally by introducing eq. (4) in eq. (2), and
eq. (4) reduces to

g(P′) = gcm +
(
P′ − Rcm

)
· ∇g

∣∣∣
Rcm

. (5)

In turn, eq. (2) reduces to

w′ = wcm + w−1, (6)

where

w−1 = m
(
P′ − Rcm

)
· ∇g

∣∣∣
Rcm

. (7)

Applying the gradient criterion ∇g ∼
g/R we easily obtain w−1/wcm ∼ h/R, so,
for a body similar in size and mass to the ob-
solete kilogram prototype (h ∼ a few centime-
ters) w−1 ∼ 10−7 − 10−8 N.

In recent decades, in view of the redefini-
tion of the SI units, in particular the kilogram,
the goal set by the CGPM was to achieve
accuracy of the order of 10−8. Laboratories
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such as the National Physical Laboratory in
the UK and numerous other metrology labs
around the world have worked for years to
achieve the required accuracy with Kibble’s
balances. At the meeting of 17th May 2019
of the CCM, I. A. Robinson (NPL) stated:
«Whilst, at present, it is theoretically possible
to measure the principal quantities to around
2–3 parts in 10 9 a number of other effects in
the apparatus must be taken into account.» [3]
This is a number of practical reasons, which
limit accuracy, such as alignments, vibrations,
etc. The NPL also plans to develop simpler
Kibble’s balances, affordable and operable in
laboratories not as highly–specialized as NPL,
capable of 10−8 accuracy. At this accuracy
level, a number of systematic effects has to be
taken into account, including gravimetric con-
tributions (see e.g. [4]). An historical account
of the development of these sensitive balances
in the context of the proposed reform of the
SI is outlined in [5].

Apparently, gravimetric effects such as
those we are talking about were first consid-
ered in the early 1970s in connection with the
development at the National Bureau of Stan-
dards of the “One Kilogram Balance” NBS
No. 2, whose standard deviation was approx.
4 µg. [6]

Such kind of balances, used for compar-
ing masses, compare the attractive gravita-
tional forces between weights (or loads) and
the earth. It is assumed (often implicitly)
that these forces are exactly proportional to
the masses of the loads (in vacuum) and do
not vary during the measurement. The force

on a standard weight used for the compari-
son of masses depends on the distance from
the center of the earth to the center of grav-
ity of the weight.3 A second weight, of a dif-
ferent configuration, may have its center of
gravity at a different distance from its base
and thus the distance of the weight’s center of
gravity from the center of the earth will be dif-
ferent when the weight is placed on the weigh-
ing pan (which operates with the bases of the
weights to be compared virtually on the same
level). In this way, the constant of propor-
tionality between the gravitational forces and
the masses of the weights on the pan will be
slightly altered, leading to a systematic error
in the results of the comparisons between the
masses, the so-called “gravitational configura-
tion effect” introduced by Almer and Swift. [7]

If we consider a reference weight wr =

mrg(R) and a second equal weight wx, whose
centers of gravity are spaced by a distance
∆h = d above their bases, then, from eqs.
(6) and (7):

wx = wx,cm + wx,−1,

wx,cm = mxg(R),

wx,−1 = wx,cm · 1
g

∂g

∂h
(∆h) ,

3We anticipate here the notion of center of grav-
ity that we will resume later. To practical effects of
the discussion carried out in this section we can con-
sider the center of gravity coincident with the center
of mass, although the two concepts, in general, are to
be kept distinct.
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or, in the approximation of the gravitational
component alone,

wx,−1 = −wx,cm · 2d

R
. (8)

And, having imposed wx = wr,

mx = mr + m−1 = mr +
2dmr

R
. (9)

The term m−1 = 2dmr/R in eq. (9) is
the (first order) corrective term that must be
applied to the mass of the second weight to
take into account the difference in the force of
gravity on the weights placed on the weigh-
ing pan of the balance whose centers of grav-
ity are at different distances from their bases.
The corrective term can be evaluated indepen-
dently of the equation (8), valid in the approx-
imation of the gravitational component alone,
by directly measuring the acceleration of the
free fall g and the gradient of the gravitational
field ∂g/∂h in the place in which the mass
calibration takes place.

In the case d = +1 cm the correction
for the comparison of nominal weights of
1 kg calculated using the equation (9) is ap-
prox. +3 µg. The old Pt-Ir kilogram proto-
type (density 21.55 kg/dm3) is a right circular
cylinder with a volume of approx. 46.5 cm3

and approx. the same height (39 mm) as
the diameter. Stainless steel samples (den-
sity 8.00 kg/dm3), having volume (125 cm3)
respecting the same proportions, have a height
of 54.2 mm. The resulting distance of the sam-
ples’ centers of mass (/gravity) from their base
is higher than that of the prototype’s center of
mass from its base by an amount of 7.6 mm,
which leads to a correction of +2.4 µg. For

comparison, as Almer and Swift stated: «Cur-
rently, mass comparisons at the 1-kg level
can be carried out with standard deviations as
small as 1.5 parts in 109.» [7]

This correction is far from being the most
significant; the largest volume (≈ 80 cm3)
of the stainless steel 1-kg samples results in
a correction for the aerostatic thrust of ap-
prox. +94 mg (assuming an air density of
1.2 kg/m3), that is about 40,000 times the
gravitational effect. [8] Nonetheless the grav-
itational correction becomes significant for
high precision mass measurements. In fact,
accuracy is limited not only by the achievable
precision and uncertainty associated with the
value of the sample, but also by systematic
errors. It can be said that the accuracy of
the results of the measurements is achieved
only after all the relevant systematic errors
have been identified and evaluated. This im-
plies that in the design of an experiment all
factors, even those that at first appear small,
must be estimated to establish their potential
importance as systematic factors affecting the
measured results.

4 The second order effect

By introducing eq. (3) into eq. (2) and notic-
ing that the first order term vanishes identi-
cally for the choice of Rcm , eq. (2) reduces
to

w = wcm + w−2,

where

wcm = mgcm
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and

w−2 =
1
2
∑

i

mi ((ri − Rcm) · ∇)2 g
∣∣∣
Rcm

(or, in the continuous limit)

=
1
2

∫∫∫
ρ(r) ((r − Rcm) · ∇)2 g

∣∣∣
Rcm

dτ .

The term wcm is the weight force acting
on the material point to which the body is
reduced, having the mass of the body and lo-
cated in its center of mass.

The term w−2 is a second order gravi-
metric correction that takes into account the
effect of the internal geometry of the body,
estimated as follows:

w−2 = wcm · 1
2 · 1

g

∂2g

∂z2 (∆z)2 ,

or, in the purely gravitational component ap-
proximation,

w−2 = wcm · 3d2

R2

(where ∆z = d is the linear size of the object).
It represents the difference due to mass distri-
bution around the center of mass compared to
the situation in which all the mass is thought
to be concentrated in one point. More for-
mally, it can be shown (see e.g. [9]) that the
mass distribution intervenes to second order
through the inertia tensor of the body. For
a right circular cylinder of mass 1 kg a few
centimeters high, like a copy of the old Pt-Ir
kilogram prototype, the order of magnitude
of the w−2 term is ∼ 10−16 − 10−17 N, the
same of the weight of the equivalent mass of
1 joule, just 1⁄10 of that of the mass of an
Escherichia coli bacterium and one hundred

thousand times smaller than that of the mass
of a human cell.

Although fully negligible for bodies of or-
dinary mass near the surface of the earth, sim-
ilar but a bit more significant effects occur in
various kinds of problems, often faced with
methods borrowed from celestial mechanics;
in these situations, all the possible contribu-
tions must be carefully evaluated both in the-
oretical analyses and in the design of the ex-
periments. A typical example are tidal phe-
nomena, whose effects depend on the gradient
of the gravitational field, rather than on in-
tensity, and the variations of the gravitational
force from one part of the object to the other
must be considered. Meanwhile, there is no
doubt that in these situations the bodies can-
not be thought of as material points; New-
ton had already noticed that the exact results
obtained for point-like particles are only ap-
proximate in presence of gravitational force
between extended bodies attracting at short
distances. In celestial mechanics it is usually
satisfactory to stop calculations at the second
order of approximation.

Moreover, as the size of the objects un-
der consideration are on a planetary or sub-
planetary scale, i.e. a significant fraction (say,
from a few thousandths to a few hundredths)
of the earth’s radius (think, for example, of
lithosphere segments of which we want to
study the isostatic conditions), or when the
bodies are very close to an attracting center
(a situation encountered in geophysical and
astrophysical contexts), also the assumptions
under which the equation (3) holds can fail
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and additional contributions should be con-
sidered.

In addition, sometimes it is not even pos-
sible to set up experiments or carry out direct
measurements; when this occurs, the evalua-
tion of gravitational forces needs ad hoc mod-
eling of objects, which may require, for exam-
ple, the computation of quadruple or sextuple
integrals and numerical integration (see, for
example, [10]).

5 The elusive center of gravity.
Near–uniform field

The slight variation of the gravitational field
within the size of earthly objects brings us to
the interesting questions of the parallel field
and the center of gravity.

The earth’s gravitational field can be lo-
cally modeled by a field consisting of paral-
lel vectors of (slightly) non-uniform intensity.
This picture is useful because it allows us to
introduce the “scalar weight” w in a coher-
ent way,4 providing a tool to face and clarify
the problem of determining a unique point (if
any) where you can think applied the total
weight force acting on all the particles of the
body, i.e. its center of gravity.5 A real gravita-
tional field cannot be both parallel and non-

4“scalar” here does not mean invariant under rota-
tion; here we intend 1-dimensional 1-component scalar
field.

5The center of gravity is susceptible to other def-
initions, which we will not deal with here. A defini-
tion different from that of the weighted average can
be given, for example, in the case of the spherically
symmetric field.

uniform at the same time. It is convenient
to examine the case of the near-uniform field,
which, in addition to being simplistic, repro-
duces the gravitational field near the earth’s
surface with an excellent degree of approxi-
mation. Furthermore, with this choice, the
problem can be dealt with in one dimension.
For the usual central field

g(r) = −k
r

∥r∥3

(k = GM for the earth’s gravitational field)
∇ · g = 0 everywhere. In the near-uniform
model we consider a small cylindrical region
where there is a field of vectors parallel to ẑ,
having non-uniform modulus, so defined:

g(r) = g(z)ẑ = −kz−2ẑ, (10)

with z ≳ R.
The equation (10) does not represent a

real Newtonian gravitational field as g does
not have zero divergence. However, for z large
enough, i.e. far from the center of the field
(e.g. near the earth’s surface), the divergence
is small and the eq. (10) is a very good ap-
proximation, locally (far from the center of the
earth), of a gravitational field generated by a
spherically symmetric mass distribution.6 In
this framework, the center of gravity of a body
can be defined through the “equipollent” mo-
ment condition (see [11], p. 18). The moment

6We assume the simplified picture of spherical
earth, uniform density, not rotating; we abstract from
all possible disturbing factors (assuming absence of
air, no influence of celestial bodies, etc.). The inin-
fluence of the body under examination on the central
gravitational field is also assumed (external field ap-
proximation).
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of a single force on a particle is perpendicular
to the force and the vector radius from the co-
ordinate origin to the position of the particle.
In general, however, this is not true for a sys-
tem of forces; the total moment of a system
of forces around a point O (the pole, which
we will also assume as the origin of the coor-
dinates) is generally not perpendicular to the
total force vector acting on the system.

The moment Teq of the system of forces
equipollent to a single weight force w acting
on the body satisfies the vector equation

Teq = Rcg × w, (11)

where w is the total weight force acting on
the body, defined by eq. (2) and Rcg is the
radius vector joining the pole with the point
of application of this force, i.e. with the body
center of gravity. The total moment of the
forces acting on the system is by definition
T =

∑
i ri × wi , and the total weight force

w =
∑

i wi . Imposing the perpendicularity
condition to these two vectors is equivalent to
making the equation (11) valid for T, that we
rewrite as

∑
i

(ri − Rcg) × wi = 0. (12)

The equation (12) (torque equation) does
not have solution if T and w are not orthog-
onal (and neither is zero) and in this case the
center of gravity vector Rcg ≡ (X, Y , Z) can-
not be determined by this method. We do
not examine here the existence conditions of
the solutions of the torque equation, whose de-
tailed discussion can be found, for example,

in [12]. Fortunately, in the special case of par-
allel field the orthogonality condition is met.7

If we choose the z–axis in the direction of the
field, then wi = wi ẑ and eq. (12) reduces to
the linear system

∑
i (xi − X) wi = 0 ,∑
i (yi − Y ) wi = 0 .

The moment of total weight force will
have only the x and y components different
from zero, from which the X and Y compo-
nents of the vector Rcg can be calculated;
these define the line of action of the total
weight force. There remains the z compo-
nent to be determined (the torque equation
for the z component is a null identity). We
observe, however, that under the assumptions
made the equation (12) can be rewritten as(∑

i

wiri − wRcg

)
× ẑ = 0. (13)

Then, as the pole O can be chosen arbi-
trarily and ẑ is a fixed vector, the equation
(13) can be satisfied by choosing the vector
Rcg defined as (see [11], p. 48)

Rcg =
1
w

∑
i

wiri =
1
w

∑
i

mig (ri) ri (14)

or, in the continuous limit,

Rcg =
1
w

∫∫∫
ρ(r)g (r) r dτ , (15)

which constitute the definition of the center
of gravity in the case of parallel field. For a
uniform field the equation (15) becomes

Rcm =
1
m

∫∫∫
ρ(r)r dτ , (16)

7Another case in which this condition is met is that
of a planar system of forces.
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that is Rcg coincides with the center of mass
radius vector. In the equations (15) and (16)
it is implied that

w =
∫∫∫

ρ(r)g(r) dτ ,

m =
∫∫∫

ρ(r) dτ .

With series expansions of w and g (r) in
eq. (15) around the center of mass,8 using the

equations (3) and (10), and truncating after
the first order, we have (we omit the detailed
steps):

Rcg = Rcm + R−1 + · · · ,

R−1 = − 2
mZcm

∫∫∫
ρ (r) (z − Rcm · ẑ) (r − Rcm) dτ . (17)

If as an example we consider a solid in
the shape of a right cylinder or a rectangle
parallelepiped, very elongated with respect to
its basis, resting on the earth’s surface so as
to approach the situation of a parallel and
near-uniform field, we reduce the problem to
one dimension. If h is the height of the solid,
the z–coordinate of its center of mass will be

given by Zcm = R + h/2; we also express the
variable of integration as a function of the co-
ordinate in the system of the center of mass
ζ = z − Zcm; finally, for simplicity, suppose
the solid of uniform density ρ. Then we can
write the Z coordinate of the center of gravity
as

Z = Zcm + Z−1 + · · · = Zcm − 2
hZcm

∫ h/2

−h/2
ζ2 dζ + · · · = Zcm − h2

6Zcm
+ · · · .

The term Z−1 = −h2/6Zcm
∼= −h2/6R

in the first order of approximation represents
the displacement of the center of gravity apart
from the center of mass. This is a tiny dif-
ference: in the case of Dubai’s Burj Khal-

8See previous note 2.

ifa, currently the tallest building in the world
(h = 829.80 m), the center of gravity is only
about 2 cm below the center of mass! The cen-
ter of gravity is a specially elusive concept. It
identifies a defined point, but, unlike the cen-
ter of mass, it does not have a definite posi-
tion. Its position depends, in general, on the
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relative positions of the body under consid-
eration and the attractive mass. As can be
seen from the equation (17), when the dis-
tance Zcm

∼= R of the body from the center
of the earth increases, the center of gravity
approaches the center of mass. This feature
makes it difficult to work with the center of
gravity and in practice this concept is seldom
used. The detailed treatment of this and other
interesting problems related to the center of
gravity is beyond our scope; an introductory
discussion on these topics can be found on the
Wikipedia page “Centers of gravity in non-
uniform fields”9 and related talk, 10 to which
the interested reader is referred.

6 Conclusions

We have established that the proportionality
of mass and weight for ordinary bodies can
be taken as an excellent approximation in all
cases of practical interest. However, it is ad-
visable for students to always clarify the limits
of validity of this approximation, both in their
theoretical meaning and for the aspects re-
lated to the sensitivity of the experiments. For
this purpose, the gradient criterion ∆g/∆R ∼
g/R is suitable for exploring the variation of
the gravitational force within the size of the
body. While it is easy to show that this gravi-
metric effect is negligible for ordinary bodies,
special caution should be observed when, in
investigating certain areas, you go beyond the

9https://en.wikipedia.org/wiki/Centers_
of_gravity_in_non-uniform_fields

10https://en.wikipedia.org/wiki/Talk:
Centers_of_gravity_in_non-uniform_fields

validity range of the point particle approxi-
mation. In geophysics, hydrostatics and as-
trophysics various situations are encountered
of strongly inhomogeneous gravitational field
and the gravitational effects connected to the
internal geometry of the bodies cannot be ne-
glected. Such effects must be carefully consid-
ered; for example: in celestial mechanics and
astrodynamics, in the calculation of the short-
distance interaction of non-spherical shaped
bodies (see, e.g., [13–15]); in geophysics, in the
calculation of the gravimetric field of a polyhe-
dral plate (see, e.g., [16–18]); in hydrostatics,
in the computation of the thrust, where the
pressure gradient is replaced by the product of
the density of the fluid and the gravitational
field (see, e.g., [19]). These problems are ad-
dressed on a case-by-case basis and often re-
quire the development of specific solutions.
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Abstract

Prisms are commonly used in classrooms to

study refraction and dispersion, with 60◦ prisms

being the most prevalent in school and college

laboratories. In this article, we explore the

reasons behind their widespread use. Using

Cauchy’s law, we determine the refractive

indices for violet and red light for a selected

prism. Applying Snell’s law and the principle

of total internal reflection, we demonstrate

that a 60◦ prism provides optimal dispersion,

maximizing the separation between red and

violet rays over a broad range of incidence

angles.

1 Introduction

In 1666, Sir Isaac Newton [1] investigated
the effect of passing light through triangu-
lar glass prisms with different refracting an-
gles. His experiments led to the conclusion
that white light consists of a spectrum of col-
ors. Over time, extensive studies on dis-

persion led to new techniques for determin-
ing refractive indices [2, 3, 4, 5, 6]. Despite
these advancements, equilateral prisms re-
main the standard in school and college lab-
oratories, with textbooks consistently de-
picting 60◦ prisms in sections on refraction
[7, 8]. However, the reasoning behind this
preference is unclear. Do these prisms offer
superior dispersion? In this article, we ex-
plore this question, beginning with a review
of refraction through a prism in the next sec-
tion.

2 Refraction through a prism

In Figure 1, we can see that A is the angle of
the prism, i1 is the angle of incidence, i2 is
the angle of emergence, r1 is the angle of re-
fraction at the first side and r2 is the angle of
refraction for the second side. For refraction
of light through a prism we have r1 + r2 = A
and deviation[7]

d = i1 + i2 − A (1)
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Figure 1: Refraction through a prism

From Snell’s law we have sin i1 = µ sin r1

and sin i2 = µ sin r2, where µ is the refractive
index of the prism. Then substituting for i2
and r2

d = i1 + sin−1 [µ sin(A − r1)]− A

Finally substituting the value of r1, the angle
of deviation

d = i1 + sin−1
[

µ sin(A − sin−1
(

sin i1
µ

)]
− A

(2)
The Equation(2) shows that deviation de-
pends only on refractive index, angle of inci-
dence and angle of the prism. Next we will
obtain refractive index for some colors.

3 Refractive index for red and

violet rays

For each color we have different refractive
index given by Cauchy’s law[4]

µ = A +
B
λ2

where A and B are Cauchy’s constants. By
using minimum deviation method, we can
find A and B and then µ for different λ. Us-
ing a prism available in the laboratory, we

got the refractive index for red and violet
light as

µr = 1.40 (3)

µv = 1.58 (4)

respectively. These values will be different
for different prisms. We are interested in
finding the deviation of red and violet rays
which are related with µ. Hence we found
µ only for red and violet. Next we will find
whether for any A and angle of incidence,
dispersion is possible.

4 Total internal reflection and

absence of dispersion for some

angle of incidences

When the light rays travel from an optically
denser medium to a rarer medium, for a par-
ticular angle of incidence called critical an-
gle C given by the relation sin C = 1

µ is
reached, the ray will be totally internally re-
flected. We will check whether this will hap-
pen for red and violet rays for different an-
gled prisms. Using the µ given by Eqn(3)
and (4) the critical angle for red and violet
are

Cred = 45.58◦

Cviolet = 39.26◦

Using the expression r1 = sin−1
(

sin i1
µ

)
we

can get the refraction angle for the first sur-
face and using r1 + r2 = A, we can find
the refracting angle for the second surface
r2. Let us check whether r2 matches with
the critical angle values for different angle
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of incidences. We will find this for i =

30◦, 35◦, 40◦and 60◦ for different A’s.

4.1 For i = 40◦

From the Table 1 we can observe that when

Table 1:
A µ = 1.4 µ = 1.58

in degree r2 in degree r2 in degree
10 -17.33 -18.14
20 -7.33 -8.14
30 2.67 1.86
40 12.67 11.86
50 22.67 21.86
60 32.67 31.86
70 42.67 41.86
80 52.67 51.86

A is 70◦, the violet ray gets totally internally
reflected and hence there will be no disper-
sion. The negative sign in the refracted an-
gle for small prisms is due the refraction to
the other side of the normal compared to the
side of the incident ray.

4.2 For i = 60◦

The value of r2 for different angles of the
prism are given in Table 2. Here violet
light gets totally internally reflected for 80◦

prism. We see that for larger angle of inci-
dence the total internal reflection happens
for larger angle prisms. So let us go for low
angle of incidence.

Table 2:

A µ = 1.4 µ = 1.58
in degree r2 r2

10 -28.21 -23.24
20 -18.21 -13.24
30 -8.21 -3.24
40 1.79 6.76
50 11.79 16.76
60 21.79 26.76
70 31.79 36.76
80 41.79 41.76

Table 3:
A µ = 1.4 µ = 1.58

in degree r2 in degree r2 in degree
10 -14.21 -11.1
20 -4.21 -1.1
30 5.71 8.9
40 15.71 18.9
50 25.71 28.9
60 35.71 38.9
70 45.71 48.9
80 55.71 58.9

4.3 For i = 35◦

We can see that the total internal reflec-
tion happens for both violet and red for 70◦

prism. Usually we take angle of incidence
between 30◦ and 60◦. So we find what hap-
pens at = 30◦, which is given in Table 4.
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4.4 For i = 30◦

When we take i = 30◦ we see that for A =

60◦ there is no dispersion.

Table 4:

A µ = 1.4 µ = 1.58
in degree r2in degree r2 in degree

10 -11.1 -8.66
20 -1.1 1.34
30 8.9 11.34
40 18.9 21.34
50 28.9 31.34
60 38.9 41.34
70 48.9 51.34
80 58.9 61.34

5 Observations from the above

studies

Above studies show that for getting disper-
sion without total internal reflection upto
60◦ prism, we have to choose the angle of in-
cidence between i = 30◦ and i = 60◦. Next
we will find for which angled prism we get
maximum dispersion with the above choice
of angle of incidences.

6 Separation between violet and

red rays

From Eqn(2) we can find deviation for vio-
let, dv and deviation for red dr and to get a
maximum separation, dv − dr must be large.

So we found dv − dr for different i and A.
We found that dv − dr is maximum for a 60◦

prism, which ensures maximum dispersion.
This is shown in Table 5

Table 5:

A in degrees dv − dr in degrees
10 2.1
20 3.95
30 5.76
40 7.93
50 11.17
60 19.13
70 Absent
80 Absent

7 Conclusions

In typical laboratory experiments, the angle
of incidence is chosen between 30◦ and 60◦.
Our analysis demonstrates that, within this
range, a 60◦ prism provides the best disper-
sion, ensuring well-separated red and violet
rays. This explains why equilateral prisms
are widely used in educational settings for
studying refraction and dispersion. Their
optimal performance in practical conditions
makes them the preferred choice for instruc-
tional experiments.
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Abstract

The purpose of this article is to expose the

students and other readers to the wonderful

world of solitons – the self-sustaining solitary

waves. Beginning with a brief review of the

history of their discovery as waves on water

surface and their modeling by the Korteweg-de

Vries nonlinear partial differential equation, and

characterization as particles, we have given a

concrete definition for these. A simple soliton

solution for the afore-mentioned equation has

been elucidated. Also included is a summary

of Sine-Gordon and Nonlinear Schrödinger
equations. The question ‘why care for solitons?’

has been answered by giving an overview of

multifaceted theoretical and practical appli-

cations of its concepts in various branches of

science, particularly physics. Effort has been

made to keep the presentation as elementary as

possible omitting some mathematical subtleties

of the subject.

1 Introduction

When we read or hear the word ‘wave’, the
immediate thing that comes to our mind is
‘the wave moving on the surface of water’.
A stone thrown into still water of a pond cre-
ates a disturbance that travels radially out-
wards in all directions from the point of hit-
ting while the water particles on the surface
vibrate up-and-down. Thus, as the wave
propagates away from the point of its origin,
the water particles remain where they were
(a cork or a paper boat placed on the sur-
face shows only up-and-down oscillations
but no forward motion) and only energy is
transported outwards.
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A wave is a continuous disturbance
from the state of equilibrium that travels
from one region of space to another and
transports energy / information without
any translational movement of the interven-
ing medium. The properties which charac-
terize a wave and distinguish one from an-
other are velocity, amplitude, angular fre-
quency, and wavelength. Some well-known
examples of waves are transverse waves on
vibrating strings (which form the basis of
musical instruments like veena, sarangi, vi-
olin, etc.), longitudinal or pressure waves in
a gas, voltage and current waves along an
electrical transmission line, electromagnetic
waves (with light and radio waves as typ-
ical examples) in the free space / vacuum
or a material medium, etc. Interestingly, ir-
respective of their diverse individual prop-
erties, these waves are treated by common
mathematical formalism [1].

The partial differential equation (PDE)
describing a progressive wave, travelling
along x – direction with disturbance func-
tion u(x, t) at point x at instant of time t,
reads

∂2u(x, t)
∂t2 = v2 ∂2u(x, t)

∂x2 . (1)

This celebrated wave equation was first in-
troduced and solved in a general way by
d’Alembert in 1747, while developing a
mathematical model of a vibrating string.
Here, v is the velocity of propagation of the
wave and is also called phase velocity of the
wave. u(x, t) represents transverse displace-
ment in a string or water wave, pressure in
a sound wave in air, voltage or current in

an electrical transmission line (where Eq. (1)
is called telegraphist’s equation) and so on.
Note that Eq. (1) is a linear partial differ-
ential equation so that superposition princi-
ple holds good. Accordingly, if u1(x, t) and
u2(x, t) are solutions of this second-order
differential equation, then any linear combi-
nation of these functions is also a solution.
From physics point of view this means that
if two (or more) different waves are present
in a medium, the disturbance at any point
at any given time is the sum of the distur-
bances separately produced by these indi-
vidual waves.

It is common practice to denote partial
derivatives of a function u (x, t) with respect
to time and position coordinate by using t
and x as subscripts of ∂ and u, and to sup-
press the explicit dependence on these vari-
ables. Thus, ∂u(x,t)

∂t ≡ ∂tu≡ ut , ∂u(x,t)
∂x ≡

∂xu ≡ ux, and so on. In these short-hand no-
tations, the classical wave equation, Eq. (1),
can be written as

∂2
t u − v2∂2

xu = utt − v2uxx = 0. (2)

We shall use the second abbreviation in this
article. It may be added that waves are
quite commonly observed in higher spatial
dimensions and the preceding equation is
modified to read

utt − v2∇2u = 0, (3)

where ∇2 is the Laplace operator in the cho-
sen coordinate-system.

The wave travelling in +x – direction,
sometimes called the forward wave, is rep-
resented by the implicit function u (x, t) =
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f1(x − vt) while the one moving in −x –
direction (the backward wave) is given by
u (x, t) = f2(x + vt). The arguments x ∓ vt
are usually referred to as the characteristic
variables. The profile of the wave is gov-
erned by the mathematical form of f1 or
f2. Under ideal conditions, the waves de-
scribed by f1 and f2 do not change their
form as these propagate. Thus, the shape of
the wave given by f1(x − vt) at time t > 0
will be the same as at t = 0 except that it is
shifted to the right by an amount vt.

It may be added that if the function de-
scribing a progressive wave is such that the
profile of the disturbance at time t = 0 is
either a sine or a cosine function then it is
known as a harmonic or a sinusoidal wave.
Accordingly,

u (x, t) =a cos (k [x − vt]), (4)

a sin (k [x − vt]),

or

a exp (ik [x − vt])

represent a harmonic wave of amplitude a,
propagation constant or angular wave num-
ber k (which gives periodicity in the space
coordinate x), wavelength λ = 2π/k, and
angular frequency ω = 2πυ = 2πv

λ = vk.
Therefore, Eq. (4) can also be written as

u (x, t) = a cos (kx − ωt) (5)

and so on. The argument (kx − ωt) is phase
of the wave at point x at time t. Obviously,
for a specific point x it changes linearly with
time t. Of course, the phase of the wave can

be generalized to read (kx − ωt + θ), with θ

as phase at x = 0, t = 0.

If the medium through which a wave
is passing, is such that the phase velocity of
the wave is the same for all frequencies (i.e.,
v = ω

k = constant, independent of both ω

and k), then it is called a non-dispersive or
dispersion less medium. On the other hand,
a medium is said to be dispersive if the wave
velocity is different for different frequencies
( ω

k ̸= constant). Note that free space is non-
dispersive medium for light waves while
glass is a dispersive medium for these.

Now, if we consider an arbitrary pulse
(a one-time disturbance or a wave of very
short duration), which is a linear superpo-
sition of many harmonic waves with differ-
ent angular frequencies, it will travel with-
out deformation in its profile in a non- dis-
persive medium as all the constituent waves
move with the same speed. However, in a
dispersive medium, the phase velocities of
the component harmonic waves are differ-
ent so that the fast-moving constituents go
ahead, and the slow ones lag behind. Conse-
quently, the pulse changes its shape as time
evolves and will spread out or disperse as
it moves (leading to decrease in its ampli-
tude and increase in width). In this case, we
talk about group velocity vg = dω/dk. It
is this velocity with which energy is trans-
ported by the pulse or any wave comprising
different frequencies. The expression, such
as ω = k − k3 or ω = ω0| sin( k

2)|, giving the
variation of ω as a function of k is known as
a dispersion relation.
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Before proceeding further, it is worth-
while to point out that if we redefine time

such that t
′
= vt, then ut =

∂u(x,t
′
)

∂t′
∂t

′

∂t = vut′

and, similarly, utt = v2ut′t′ . Accordingly,
Eq. (2) is transformed to read ut′t′ − uxx= 0.
Replacing t′ by t and keeping in mind that
the rescaled time has dimension of length
rather than time, we can rewrite the wave
equation, as utt − uxx = 0. A comparison
of this equation with the original equation,
viz. Eq. (2), shows that the envisaged trans-
formation is equivalent to taking v = 1. Of
course, dimension of u in both the equations
is the same.

It is pertinent to note that like the lin-
ear differential equation describing simple
harmonic oscillator, the wave equation, Eq.
(1) or (2), is obtained by assuming the am-
plitude of wave to be small. As such, it
is an idealized model for the one- dimen-
sional wave motion. However, if the deriva-
tion is made for more realistic situations,
which necessarily involve nonlinearity, we
get wave equations involving dispersive as
well as nonlinear terms. One such nonlinear
partial differential equation (NLPDE) was
derived by Korteweg and de Vries (usually
abbreviated as KdV) in 1895 to describe the
propagation of waves in one-dimension on
the surface of a shallow canal assuming the
flow to be inviscid, incompressible, steady
and irrotational. In its standard dimension-
less form, as commonly used in the current
literature, it reads [2, 3, 5, 8]

ut − 6uux + uxxx = 0. (6)

Here, t and x are normalized time and nor-

malized coordinate in the direction of wave
propagation, respectively. If in any problem
similar equation of evolution turns out to
be of different form, it can be transformed
into this standard form of the KdV equa-
tion by using an appropriate scale. Here,
the first term gives time evolution of the dis-
turbance proceeding in +x – direction. The
second term in this equation is nonlinear,
which leads to steepening or narrowing of
the wave. Also, because of the presence of
nonlinear term, the principle of superposi-
tion of solutions does not hold good. This, in
turn, makes wave structure robust in inter-
actions / collisions with other wave struc-
tures. The third term is the dispersion part
and will give rise to a nonlinear relationship
between ω and k. In fact, the KdV equa-
tion is the simplest NLPDE that incorporates
both nonlinearity and dispersion.

Eq. (6) admits a solution of the form
u (x, t) = A sech2 (x, t, A) indicating pres-
ence of amplitude in the argument. This
represents a bell-shaped profile, which de-
scribes a solitary wave first observed by
Russell in 1834. This feature of the KdV
equation and its modified form has been
found to be very useful in the study of
waves in elastic rods, liquid-gas bubble mix-
tures, plasmas, anharmonic lattices, etc., be-
sides the water waves.

In this article, we delineate upon the
fascinating and interesting topic of solitary
waves from pedagogic point of view at rea-
sonably basic level [2-10]. In Section 2, we
give an overview of their discovery, devel-
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opment of the subject and nomenclature as
solitons. This is followed by Section 3 where
a precise definition of solitons is given. Sec-
tion 4 is devoted to description of a simple
soliton-solution of the KdV equation which
is being used as a prototypical example
of exactly solvable soliton-bearing model.
This approach involves easily understand-
able mathematics and, still, makes the con-
cept quite transparent. Also included are
some remarks regarding various solutions
of this equation. Then we move on to Sec-
tion 5 to give a brief information about two
other NLPDEs leading to different flavours
of solitons. Section 6 summarizes versatile
applications of the solitons to a wide vari-
ety of systems in diverse fields. We close the
article in Section 7 by making some general
comments.

2 A Historical Account of the

Discovery of Solitary Waves

and Growth of the Subject

We shall not be able to do justice to all the
spectacular developments in vast subject of
solitons with an elegant history of nearly
two centuries and shall concentrate mainly
on those contributions that had a larger in-
fluence on the overall progress, particularly
from physics point of view.

It was in 1830’s that a Scottish civil en-
gineer and naval architect named John Scott
Russell, with a view to develop an effi-
cient design for canal boats, performed ex-
periments on moving boats in Edinburgh-

Glasgow canal to find relation between their
shape, speed, and the force needed to push
them. One day in August 1834, this young
man (then 26 years old) was observing the
motion of a boat that was being rapidly
drawn along a narrow channel by a pair of
horses. He found that when the boat sud-
denly stopped, the moving water collected
around it in a state of violent agitation and
then abruptly it rolled forward with great
velocity of about 13 - 14 km / hr in the form
of a nearly 9 m long and 30 - 50 cm high
smooth and well-marked accumulation of
water. This heap travelled on the surface of
water without any change in its profile or
speed till it was lost in the windings of the
channel after a follow up of about 2 km. He
called this singular wave ‘the wave of trans-
lation’. Obviously, this discovery was essen-
tially a random happenstance.

Impressed by this unexpected observa-
tion, Russell carried out extensive meticu-
lous experiments about the nature of these
waves of elevation in many canals, rivers,
lakes, and in a large wave tank in his back
garden. He concluded that this wave mo-
tion was unique and quite different from
other types of oscillatory motions – the
speed depends on its amplitude and the
depth of water, and they never merge.
Therefore, he started referring to them as
‘solitary waves’ in the sense that this wave
had only a single protuberance traveling
without any change in its shape, size, or
speed. Treating it as a gravity wave, he
found that speed of the wave on a water sur-
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face with undisturbed depth h is given by
v =

√
g(h + a) , where a is amplitude of the

wave. This showed that the larger the am-
plitude of a wave higher its speed – a mirac-
ulous nonlinear effect.

However, he could not convince his
contemporaries, particularly mathemati-
cians, about the importance and even
novelty of these waves mainly because his
findings were at variance with the then
accepted theories of hydrodynamics and
he himself could not give an analytical
formalism. What was strikingly surprising
and unusual about this wave and was not
appreciated by the scientists at that time
is: A coherent hump of water was formed
out of turbulence produced by sudden
stopping of boat in shallow water and this
protrusion maintained its characteristics
over quite a long distance in contrast with
the normal behavior of water waves that
spread out and disappear after travelling
over reasonably short distances.

Despite this situation, Russell’s work
was followed by Stokes’ efforts in 1847 to
get some theoretical interpretation and by
Boussinesq’s (1871) and Rayleigh’s (1876)
successful explanation of the nature of these
waves. They used Euler’s equations of mo-
tion for an inviscid, incompressible fluid
and not only obtained Russell’s formula for
speed but also an expression for the wave
profile, reading

u (x, t) = a sech2 [A (x − vt)]. (7)

Here, A is a parameter that depends on the
amplitude a and the height h of water sur-

face from the base of the canal. This expres-
sion is strictly true for a ≪ h. However,
these scientists did not derive or write the
differential equation satisfied by the above
expression for u (x, t). This task was done by
Dutch mathematician Korteweg and his stu-
dent de Vries in 1895 who obtained the re-
markable Eq. (6) and derived various wave
properties which were similar to those ob-
served by Russell in different experiments,
though they did not refer to the work done
by him. Not only this, it also seems that
even they themselves did not realize the im-
portance of their finding as they did not
pursue it further. Continuing the narra-
tion of the history, it may be mentioned that
in 1955, Fermi, Pasta, Ulam, and Tsingou,
working at one of the world’s earliest com-
puters (the MANIAC machine), performed
numerical investigation of heat transfer in a
solid modeled by a one-dimensional lattice
consisting of equal mass anharmonic oscil-
lators. They observed that there was a pe-
riodic recurrence in the distribution of en-
ergy rather than expected equipartition of
energy among the modes. This astound-
ing result and the fact that the system con-
sidered by these scientists was closely re-
lated to discretization of the KdV equation,
prompted Zabusky and Kruskal (1965) to
undertake the initial value problem for the
KdV equation [11]. Pursuing insightful nu-
merical simulations, they (i) mimicked the
Russell’s solitary waves; (ii) explained the
odd results of Fermi, Pasta, Ulam, and Tsin-
gou; and (iii) found that when two or more
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of the KdV solitary waves interact or collide
with each other they neither break up nor
disperse and rather emerge out preserving
their individual shapes and velocities as if
there was no interaction. These do undergo
a small change in their phase on collision.

Keeping in view their last- mentioned
novel finding that assigned remarkable cor-
puscular or particle-like characteristic to
these waves, they coined the term ‘soliton’
for these solitary waves to emphasize its
kinship with electron, photon, phonon, etc.
that behave like both particle and wave. In
fact, it was this milestone work that brought
the KdV equation into limelight after being
in obscurity for nearly seven decades. How-
ever, the first rigorous analytical solution
to this famous equation reading u (x, t) =

−B sech2
[√

B
2 (x − 2Bt − x0)

]
was given

by Gardner and coworkers in 1967 [5,12].
The method developed by them involves
formulating a scattering problem with de-
sired solution as potential and solving this
as a first step. The outcome of this solu-
tion is then used to reconstruct u (x, t). This
technique is referred to as Inverse Scatter-
ing Method. They also obtained the general
multi-solitons or n-solitons solution for the
KdV equation. The salient feature of this
method lies in the fact that it provides ex-
act solution for nonlinear wave equations
by linear techniques and is useful in dis-
covering solitons. Later, this ingenious ap-
proach together with its generalizations and
the novel method put forward by Hirota
(1971) for obtaining multi-soliton solutions,

provided powerful tools for solving many
physically interesting NLPDEs and, thus,
for studying solitons. However, we shall not
dwell on details of these techniques or other
methods developed for solving the soliton-
bearing equations as these are too technical
in nature. In the meantime, Toda (1967) re-
ported existence of a soliton in a discrete, in-
tegrable system, which is now called Toda
lattice.

These developments opened up fasci-
nating vistas, and established study of soli-
tons or solitary waves as a vibrant and flour-
ishing topic of research among mathemati-
cians, physicists, engineers, and others. On
one hand, this boom led to discovery of nu-
merous soliton-bearing nonlinear evolution-
ary PDEs in one or more space-dimensions
and thus adding to mathematical richness
of theory of solitons. On the other hand,
solitons became objects of immense physi-
cal importance. In fact, solitons play same
role in the description of nonlinear systems
as harmonic waves in the linear systems.
Consequently, lot of effort has been directed
at exploiting fecundity of applications of
this concept in different branches of science.
However, before going ahead, we first de-
fine solitons in Section 3.

3 Defining a Soliton

Strictly speaking solitons are such solutions
of the NLPDEs that (i) do not change profile
while travelling nor do they disperse, im-
plying complete stability; (ii) survive colli-
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sions, emerging unblemished; (iii) cannot be
constructed as a superposition of harmonic
waves; and (iv) the speed of the wave pro-
file depends on its amplitude. Thus, soli-
tons are self-reinforcing, non-dissipative,
and persistent solitary waves of finite ampli-
tude, and are indubitably nonlinear entities.
These propagate undistorted over long dis-
tances and maintain their speed and shape
upon collision / interaction with other such
waves.

However, the term ‘soliton’ has been
used by scientists in a relatively loose man-
ner for the objects which do not necessarily
fulfil all the above requirements. It is, in a
way, used to signify a spatially compact, fi-
nite field energy configuration which may
or may not be time dependent. This term
has also been adopted to cover a large class
of solitary excitations that are localized in
space-time and though long-lived, are only
metastable. Thus, the condition of these be-
ing perfectly stable is relaxed. In this sense,
some of the soliton solutions can be identi-
fied as elementary excitations. Such moder-
ation of the definition has made the realm of
usage of the theory of solitons quite vast.

4 Rudimentary Solution of the

KdV Equation

Guided by the approach presented by
Drazin and Johnson [2], to obtain a travel-
ling or progressive wave solution to the KdV
equation, Eq. (6), we introduce a new vari-
able or parameter η = x − vt, which repre-

sents the position in a reference frame mov-
ing with the wave with speed v. Note that ∂η

∂x
= 1 and ∂η

∂t = −v. Also, the solution can be
written as f (η) ≡ f in place of u (x, t) and it
represents a wave travelling with speed v in
the original coordinate system. Now,

ut =
∂u
∂t

=
d f
dη

∂η

∂t
= −v f

′
,

ux =
∂u
∂x

=
d f
dη

∂η

∂x
= f

′
,

and

uxxx =
∂3u
∂x3 = f

′′′
.

Making these substitutions into Eq. (6), we
get

−v f
′ − 6 f f

′
+ f

′′′
= 0. (8)

Obviously, the NLPDE has been trans-
formed into an ordinary differential equa-
tion with the nonlinear and dispersive terms
intact. Integrating the above differential
equation with respect to single variable η,
we have

−v f − 3 f 2 + f
′′
= C1, (9)

where C1 is arbitrary constant of integration.
Multiplying with f

′
on both sides of this

equation and integrating again, we obtain

−v
f 2

2
− 3

f 3

3
+

( f
′
)

2

2
= C1 f + C2. (10)

Here, C2 is second arbitrary constant. Eq.
(10) can be rewritten as

( f
′
)

2
= 2{ f 3 +

v
2

f 2 + C1 f + C2} ≡ 2 F( f ).
(11)

38/2/4 8 www.physedn.in



Physics Education July-September 2024

Figure 1: An arbitrary plot showing typical
dependence of F( f ) on f as per Eq. (11).

This gives us f
′

in terms of a cubic polyno-
mial in f , where C1 and C2 are determined
by the initial conditions satisfied by the KdV
equation.

Now, f (η) being solution of wave
equation, it represents a (classical) wave dis-
placement, and, therefore, it must be real
(so that it can be observed) and finite or
bounded. This, in turn, implies that f

′
too

is real so that ( f
′
)

2
≥ 0 and hence F( f ) ≥

0. Thus, only those f (η) are physically
acceptable for which F( f ) is non-negative.
Since F( f ) is a cubic polynomial, it will
have three real-valued zeros defined by f 3 +
v
2 f 2 + C1 f + C2 = 0. Let these be f1, f2, and
f3 and, in general, such that f1 < f2 < f3.
Of course, sometimes two or all the three ze-
ros may coincide with each other. Note that
for a cubic polynomial with the coefficient
of the cubic term as unity, the sum of its ze-
ros equals negative of the coefficient of the

square term. Thus,

f1 + f2 + f3 = −v
2

. (12)

Since v is speed of propagation of the wave,
it will be positive along the +x – direction
and this demands that

f1 + f2 + f3 < 0. (13)

Obviously, f1 will certainly be negative and
the signs of f2 and f3 may be negative or
positive depending on the values of v, C1

and C2.
For extremely large | f |, F( f ) is gov-

erned by f 3, and, therefore, F( f ) is negative
for negative large values of f and is positive
for positive large magnitudes of f . Since f1

and f3 are, respectively, the lowest and the
largest zeros of F( f ), it will be negative for
f < f1 and it will be positive for f > f3.
So, at the zero f1, F( f ) goes from negative
values to positive values, and at the zero f3,
it must again go from negative to positive
values. Accordingly, at the zero f2, sign of
F( f ) values changes from positive to nega-

tive; Fig. 1. Thus, F( f ) and hence ( f
′
)

2
is

positive for f1 < f < f2 and for f > f3. But
it is bounded only for f1 < f < f2, There-
fore, acceptable solution f (η) must lie be-
tween f1 and f2, which must be distinct.

Since f1, f2, and f3 are zeros of F( f ), we
can express it as product of three factors:

F ( f ) = ( f − f1)( f − f2)( f − f3). (14)

This together with Eq. (11) gives us

df
d η

= ±[2( f − f1)( f − f2)( f − f3)]
1/2.

(15)
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Confining ourselves to the region f1 < f <

f2 (and the corresponding η values η1 < η <

η2), we get from Eq. (15)∫ η

η1

dη =±
∫ f

f1

dg

[2(g − f1)(g − f2)(g − f3)]
1/2 .

(16)
We have used g as variable in the integral
on the right-hand side as f is being taken
as upper limit. Now, we substitute g =

f1 +( f2 − f1) sin2 θ so that lower limit g = f1

corresponds to θ = 0, and the upper limit
g = f implies

f = f1 + ( f2 − f1) sin2 Θ, (17)

where Θ is upper limit value of θ. Mak-
ing these substitutions together with dg =

2 ( f2 − f1) sinθ cos θ dθ on the right-hand
side of Eq. (16), simplifying the resulting
expression, and using the fact that left-hand
side equals η − η1, we finally obtain

η = η1 ±
√

2
f3 − f1

∫ Θ

θ

dθ√
1 − m sin2 θ

= η1 ±
√

2
f3 − f1

w (say). (18)

Here,

m =
f2 − f1

f3 − f1
, (19)

such that 0 ≤ m ≤ 1. Also,

w =
∫ Θ

θ

dθ√
1 − m sin2 θ

, (20)

is incomplete elliptic integral of first kind
with parameter m.

Now, we define a new pair of functions
corresponding to w:

sn w ≡ sn (w|m) = sin Θ, (21a)

cn w ≡ cn (w|m) = cos Θ, (21b)

These are, respectively, called the Jacobi el-
liptic sine (snoidal) and Jacobi elliptic cosine
(cnoidal) functions. Θ is usually referred to
as Jacobi amplitude.

Note that for m = 0, w =
∫ Θ

0 dθ = Θ, so
that

sn w ≡ sn (w|0) = sin Θ = sin w, (22a)

cn w ≡ cn (w|0) = cos Θ = cos w. (22b)

Obviously, for m = 0, which happens when
f2 merges with f1 from above, i.e., f2 → f+1 ,
the functions sn w and cn w are periodic sin
and cos functions, respectively.

On the other hand, for m = 1,

w =
∫ Θ

0

dθ√
1 − sin2 θ

=
∫ Θ

0
sec θdθ

= ln[tan Θ+ sec Θ]

= ln

1 + tan
(

Θ
2

)
1 − tan

(
Θ
2

)
 (23)

This, on simplification, yields

tan(
Θ
2
) = tanh(

w

2
) (24)

which, in turn, gives sin Θ = tanh w and
cos Θ = sech w. These imply that

sn w ≡ sn (w|1) = sin Θ = tanh w, (25a)

cn w ≡ cn (w|1) = cos Θ = sechw. (25b)

Thus, for m = 1, the elliptic functions
sn w and cn w are aperiodic tanh w and sech w,
respectively. Note that m = 1 if the zeros f2

and f3 of F( f ) coalesce to form a double zero
( f2 → f−3 as f2 < f3) but are distinct from f1.
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After this digression, we come back to
Eq. (17), replace sin2 Θ by 1 − cos2Θ, and get

f = f2 − ( f2 − f1) cos2 Θ. (26)

In view of Eq. (21b), this can be rewritten as

f = f2 − ( f2 − f1) cn2 (w|m) , (27)

where

w = ±(η − η1)/

√
2

f3 − f1
, (28)

from Eq. (18). Since cn is an even function,
we omit ± sign and express Eq. (27) as

f (η) = f2

− ( f2 − f1) cn2

(√
f3 − f1

2
{η − η1}

∣∣∣∣∣m
)

.

(29)

This is called cnoidal wave solution of the
KdV equation – generalization of the sinu-
soidal wave.

In the limit m → 0, which is achieved
when f2 → f+1 , we use Eq. (22b) for cn w and
then the double angle trigonometric iden-
tity cos2 w = 1

2(1 + cos 2w), and get f (η) in
terms of cos function with ( f2− f1)

2 as coef-
ficient. Thus, f (η) describes an oscillatory
cosine wave with amplitude ( f2− f1)

2 , which,
obviously, is quite small. It is found that the
wave is dispersive in nature. This is low am-
plitude linear wave limit of the cnoidal solu-
tion. However, we shall not go into its fur-
ther discussion.

Next, for the case m = 1, which is the
most nonlinear limit, we use Eq. (25b) for

cn w and put f2 = f3 into Eq. (29). Accord-
ingly, we have

f (η) = f3

− ( f3 − f1) sech2({
√

f3 − f1

2
} {η − η1}).

(30)

Now, from the definition sech y = 2
ey+e−y ,

we note that sech y = 1 for y = 0 and
equals zero for y → ±∞. Thus,

sech2({
√

f3− f1
2 } {η − η1}) =1 for η = η1 and

0 for η → ±∞. The corresponding values
of f (η) are f1 and f3, respectively. Since
f1 is necessarily negative and less than f3,
f (η) has minimum value f1 at η = η1, and
maximum value f3 for η → ±∞. In other
words, if we plot a graph of f (η) as func-
tion of η, this will be a wave profile with
depression (upside-down) having value f1

at η = η1, and depth f3 − f1. However,
as we are looking for a model to describe a
waveform above the water surface, we con-
sider − f (η) rather than f (η). Accordingly,
− f (η) represents a profile with − f 1 at η =

η1 as peak and − f3 as minimum value for
η → ±∞. Consequently, we can identify
− f 1 − (− f3) = f3 − f1 as amplitude a of the
wave. Thus, Eq. (30) can be written as

− f (η) = − f3 + a sech2{
√

a
2
(η − η1)}.

(31)
The velocity of this wave is given by

v = −2( f 1 + f2 + f3) = 2a − 6 f3, (32)

where we have used f2 = f3 and f3 − f1 = a
in Eq. (12). Furthermore,

η = x − vt = x + 6 f3t − 2at. (33)
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Note that v is directly proportional to ampli-
tude implying that the larger the amplitude
the higher the speed. Also, for v to be posi-
tive, the zero f3 must be less than a

3 .
Having obtained the solution, Eq. (31),

for Eq. (6), and using Eq. (33), we can write

−u (x, t) = − f3 + a sech2{
√

a
2
(x − vt − η1)}

= − f3 + a sech2{
√

a
2
(x + 6 f3t − 2at − η1)}.

(34)

This describes a wave of elevation having
nonperiodic bell-shaped profile of ampli-
tude a (> 3 f3), travelling with speed v =

2a − 6 f3, initial phase factor −
√ a

2 η1, and
− f3 as ambient or undisturbed or equilib-
rium level. The presence of a in the argu-
ment of sech in Eq. (34) shows that the
shape of the wave depends on amplitude
in a complicated manner, which, in turn,
implies that − u (x, t) represents a nonlin-
ear wave. From the first equality in Eq.
(34) it is found that − u (x, t) + f3 = a if
x = vt + η1. Obviously, the peak appears
at x = η1 for t = 0 implying that η1 can be
taken to be 0 by using the location of the
peak at t = 0 as reference for measuring x.
Furthermore, − u (x, t) + f3 = a/2 when

x± = vt + η1 +
√

2
a ln

(√
2 ± 1

)
. Taking

the distance between the points at which the
height of the wave above the ambient level
is half the amplitude, as width of the profile,
called full width at half maximum, we have
∆x ≡ x+ − x− =

√
2
a ln

√
2+1√
2−1

. Thus, width

of the profile is inversely proportional to
√

a.
Combining this result with the statement af-

ter Eq. (33), we note that the wave of eleva-
tion described by Eq. (34) is such that taller
the wave, narrower and faster it is. It is the
solitary wave discovered by Russell and its
plot is depicted in Fig. 2 for three values of
t. Note that profile of the wave is the same
for all the three t values shown here and has
∆x = 3.94.

As a follow up of the preceding dis-
cussion, suppose we launch two solitary
waves having different amplitudes such that
the one with smaller amplitude is leading.
The wave with higher amplitude will have
larger velocity so that as time passes it will
come closer to the other wave, bump into it
at some instant of time and ultimately over-
take it. The end-result will be that the two
waves pass through each other without los-
ing their identity, i.e., they come out of the
collision unscathed – a particle-like robust-
ness. In fact, this aspect was also observed
by Russell.

It may be mentioned that the actual so-
lution, Eq. (30), representing a wave of de-
pression rather than a wave of elevation, is
a consequence of the negative sign of the
nonlinear term in the standard form of the
KdV equation, which has been solved here.
Furthermore, the cnoidal wave solution, Eq.
(29), is not the only possible solution to the
KdV equation; other simple looking solu-
tions have also been found. Besides, solu-
tions leading to more than one soliton, have
also been obtained.

It is worth emphasizing that the disper-
sion term uxxx in Eq. (6) gives rise to ten-
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Figure 2: One-soliton solution of the KdV
equation given by Eq. (34) at t = 2.0 (black),
4.0 (red), and 7.0 (blue) for a = 0.4; v = 4.0,
η1= 0.

dency of flattening or spreading of the wave
profile, while the nonlinear term −6uux

makes it steep and cohesive. The precise bal-
ancing of these two tendencies leads to ‘no
change in the shape’ of the wave, i.e., the
soliton solution. The KdV equation has been
found to be very useful in modeling the dy-
namics of physical systems characterized by
mild dispersion and weak nonlinearity.

By convention, the word ‘soliton’ is
used for the wave profile with positive
displacement (i.e., an elevation) and the
envelope with negative displacement (i.e.,
a depression) is called an anti-soliton.
Thus, − u (x, t) given by Eq. (34) de-
fines a soliton, while u (x, t) = f3 −
a sech2(

√ a
2 {x + 6 f3t − 2at − η1}) is an anti-

soliton. When a soliton and corresponding
anti-soliton collide with each other, the net
displacement is zero and this is referred to

as annihilation of soliton − anti-soliton pair.
However, generally these pairs collide and
then separate.

5 Some Other Soliton-Bearing

Nonlinear Partial Differential

Equations

It has been pointed out in the preceding sec-
tion that the solution of the KdV equation
maintains its shape indefinitely because of
exact cancellation of the spreading or broad-
ening produced by the dispersive term and
the narrowing effects of the nonlinear term.
In fact, any NLPDE containing dispersive
and nonlinear terms counterbalancing detri-
mental effects of each other will have soli-
ton solution. Of course, these solitons can
be distinctly different from the bell-shaped
solitons of the KdV equation. Two such evo-
lution equations having more than one soli-
ton solution and finding wide range appli-
cations in physics, biology, and engineering,
together with relevant brief comments, are
listed below. While writing these NLDPEs,
the variables involved are taken to be prop-
erly rescaled. In fact, these equations are
more useful than the KdV equation, which
has been discussed in detail not because it
is the oldest but because it is the simplest in
nature.

5.1 Sine-Gordon Equation

This NLPDE reads

uxx − utt − sin u = 0, (35)
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with sin u as nonlinear term. The presence
of u as argument of sin implies that this
equation describes angular disturbance ex-
pressed in radians. It was originally put for-
ward by Bour in 1862 during the investiga-
tion of surfaces of constant negative curva-
ture in 3-dimensional space. Later, it was
rediscovered by Frenkel and Kontorova in
1939 in their seminal work on study of crys-
tal dislocations, which are defects or irreg-
ularities in the crystal structure along some
direction and can even be mobile. It was
in 1962 that Perring and Skyrme obtained
a 2-soliton solution for Eq. (35). Subse-
quently, 1- and 3- soliton solutions were also
obtained. This equation drew lot of atten-
tion in 1970s onwards as it was found to
be useful in explaining many physical phe-
nomena and is the simplest NLPDE in a
periodic medium. It is interesting to note
that the name ‘sine-Gordon equation’ (SGE
in short) has its origin in its resemblance to
the well-known Klein–Gordon equation for
a free particle in relativistic quantum me-
chanics, which reads ∑j=x,y,z ϕjj − ϕtt − ϕ =

0, in natural units m = c = ℏ = 1, and was
discovered in 1926. Of course, the Klein-
Gordon equation is a linear partial differ-
ential equation, which can be considered as
special case of the SGE obtained by retaining
only first term in the Taylor series expansion
of sin u.

One of the soliton solutions of Eq. (35)
is

u (x, t) = 4 tan−1

[
e
± x−αt−x0√

1−α2

]
, |α| < 1, (36)

where α is normalized velocity of propaga-
tion of the solitary wave. The initial position
x0 can be easily taken as 0. Note that for fi-
nite constant value of αt, u (x, t) in Eq. (36)
with positive exponent has values 0, π and
2π rad for x → −∞, x = αt and x → ∞,
respectively. On the other hand, the corre-
sponding values of u (x, t) with negative ex-
ponents are 2π, π and 0 rad. Thus, the solu-
tion given by Eq. (36) is monotonically vary-
ing function of x, and is such that as x in-
creases from −∞ to ∞ for fixed value of t, u
changes from 0 to 2π for positive exponent
and from 2π to 0 for the negative exponent.
The value of u in both the cases is π when
x = αt. This feature of the solution for the
SGE is interpreted as following. Eq. (36) rep-
resents a twist or kink having same sign as
that of the exponent. These two situations
define soliton and anti-soliton, respectively,
and are known as 2π-kink and − 2π-kink
(or antikink); Fig. 3. In the context of non-
linear optics, these are, respectively, referred
to as +2π pulse and −2π pulse.

It is worth mentioning that a soliton so-
lution is said to be topological if it has its
origin in topological constraints and a twist
with variation in the value of x is an exam-
ple of this situation. As such, the SGE kink is
an iconic one-dimensional topological soli-
ton while the Russell’s water wave soliton
is non-topological. In fact, the structure of
a system is changed after the passage of a
topological-soliton wave through this.

The soliton solutions of SGE and its
modified versions find numerous and in-
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Figure 3: A sketch of the analytic solution
u (x, t) as function of x for the Sine-Gordon
equation for α = 0.8, t = 2.0, and x0=0. The
black line represents a 2π – kink, while the
dash-dot red line depicts antikink. These
have value π rad at x = 1.6.

valuable applications in condensed mat-
ter physics, nonlinear optics, biophysics,
astrophysics, relativistic field theory, geo-
physics particularly seismic modeling, and
in the description of mechanical transmis-
sion lines.

5.2 Nonlinear Schrödinger Equation

In 1968, Zakharov while studying nonlin-
ear waves in the small amplitude approxi-
mation on the surface of a deep fluid intro-
duced a NLPDE that can be written as

iut + uxx ± |u|2u = 0 (37)

This equation is referred to as Nonlinear
Schrödinger equation (abbreviated as NLSE)
because it looks like the highly acclaimed

1-dimensional time-dependent Schrödinger
equation of non-relativistic quantum me-
chanics (i.e., ih̄ψt +

h̄2

2m ψxx − Vψ = 0), with
nonlinear term ±|u|2 corresponding to po-
tential V. Note that, the Schrödinger equa-
tion is a linear PDE and ψ(x, t) is wave-
function of the particle assumed to be spin-
less. Of course, generally, the derivation
of NLSE has nothing to do with quan-
tum mechanics. The exact analytic solution
of NLSE, obtained by Zakharov and Sha-
bat in 1972 by using the inverse-scattering
method, showed that these describe deep-
fluid wave-envelope solitons which mod-
ulate a periodic sinusoidal wave. These
findings were experimentally verified by
Yuen and Lake in 1975. A different soli-
tary wave solution to this equation was re-
ported by Ma in 1979, and a rational-cum-
oscillatory solution was presented by Pere-
grine in 1983. Note that ± |u|2 in the nonlin-
ear term in NLSE is a sort of self-interacting
quantity, wherein upper and lower signs,
respectively, represent repulsive and attrac-
tive self-interactions. In view of this feature,
Eq. (37) is also known as cubic Schrodinger
equation.

However, before proceeding further, it
may be pointed out that NLSE is a sim-
plified version of the equations used by
Ginzburg and Landau in 1950 in their study
of the macroscopic theory of superconduc-
tivity, and by Ginzburg and Pitaevskii in
1958 in the theory of superfluidity. Further-
more, in 1964, Chiao et al and Talanov em-
ployed similar equation while investigating
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the phenomenon of self-focusing of optical
beams and the conditions under which an
electromagnetic beam can propagate with-
out spreading in nonlinear media.

The soliton solution of Eq. (37), with +
sign for the nonlinear term, determined by
Zakharov and Shabat reads

u (x, t) = aei{ v
2 (x−vt)+bt }sech{ a(x − vt)√

2
}.

(38)
Here, the wave amplitude a, velocity v,
and real constant b are such that a2 =

2
(

b − v2

4

)
> 0. While writing this solu-

tion, the initial phase and the initial posi-
tion appearing in the exponential and the
sech terms have been assumed to be zero.
The exponential term leads to an oscillatory
component with amplitude dependent sech
term as the envelope profile so that the re-
sulting wave packet is a modulated one; Fig.
4. Such a solitary wave described by an en-
velope with an internal oscillation or pul-
sation, is called a breather. Sometimes, the
terms envelope soliton and intrinsic local-
ized modes are also used for this entity, par-
ticularly in nonlinear lattice dynamics. The
u (x, t) given by Eq. (38) represents a mov-
ing breather as it advances in space. In con-
trast, a breather solution has been obtained
for the SGE that does not move and, hence,
is referred to as a stationary breather.

In nonlinear optics, the breather solu-
tion that produces self-focusing of the car-
rier wave is known as bright soliton and the
one giving self-defocusing is called the dark
soliton.

It may be added that in addition to
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Figure 4: Profile of the breather solution
given by real part of Eq. (38) for a = 1.0, v =
15.0, t = 1.0, b = 56.75. The black line depict-
ing internal oscillations is confined within
the red-line envelope soliton.

continuous NLSE, soliton solutions have
also been found for the discrete nonlinear
Schrödinger equation

iun,t + un+1 + un−1 ± |un|2un = 0, (39)

and some of its generalizations leading
to proper elaboration of many interesting
properties of nonlinear lattice chains.

The models that are compliant with
NLSE and its different variants have played
an important role in the developments
in nonlinear optics (light waves), soft-
condensed matter physics particularly Bose-
Einstein condensation (matter waves), fluid
dynamics, plasma physics, etc. and con-
tinue to be valuable even now.
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6 Some Applications of Solitons

The concept of solitons, including their dif-
ferent cousins, as sophisticated mathemat-
ical constructs to explore nonlinear phe-
nomena has not only revolutionized re-
search in mathematics as well as mathe-
matical physics leading to advent of many
new ideas and techniques, but has also been
fruitfully exploited in developing numerous
practical applications in different branches
of science and engineering. Besides the
three NLPDEs discussed in Sections 4 and 5,
many other equations such as modified KdV
equation, Benjamin-Ono equation, Boussi-
nesq equation, Davydov’s equations, etc.
have been found to be of immense value.
Most of different soliton bearing NLPDEs
have been solved analytically as well as
by numerical methods. In this section, we
briefly describe some typical problems in
various fields where solitons with their dif-
ferent manifestations have been employed,
and we certainly do not claim exhaustive-
ness of the list. Also, the topics dealt with
are being listed in alphabetical order.

1. Astrophysics and Cosmology

(a) Electrostatic solitary waves have
been experimentally observed in
astrophysical plasmas such as the
sun, the solar wind, lunar wake,
the planetary magnetospheres,
etc. Also, many theoretical models
have been proposed to interpret
the observed characteristics of
these waves.

(b) It has been shown that low di-
mensional black holes can be real-
ized as solitons of the sine Gordon
equation. Furthermore, it has been
ferreted out that some field the-
oretic models for studying black
holes also have soliton solutions
indicating their intimate relation-
ship.

(c) The Great Red Spot of Jupiter
(GRS), which is slightly oval and
nearly 16,000 km wide, is an anti-
cyclonic vortex that has persisted
for hundreds of years of con-
tinuous observation despite the
highly turbulent atmosphere on
the planet. Two- and three- dimen-
sional soliton models were put for-
ward for this in 1980s, wherein the
latter were found to be in better
agreement with the then available
data. However, some scientists be-
lieve that these models do not cap-
ture every minute detail of the GRS
as soliton.

(d) The solutions of some cosmolog-
ical models with the cosmologi-
cal constant have been found to
exhibit the existence of solitary
waves under specific conditions
besides the travelling wave peri-
odic solutions that resemble the
gravito-static waves.

2. Biological Systems

(a) The model developed for energy
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transfer and energy coupling in
hydrogen-bonded spines that span
the length of protein α-helices and
stabilize it, encompasses the so
called Davydov soliton. This soli-
ton represents a state composed
of an excitation of amide-I and its
associated hydrogen-bond distor-
tion. In fact, the relevant conjec-
tures have been supported by dif-
ferent spectroscopic studies of pro-
teins.

(b) The concept of Davydov soliton
has also been used to describe a
local conformational change of the
deoxyribonucleic acid (DNA) α-
helix, which too has been con-
firmed by experiments.

(c) Generation of force in the sliding
filament model of muscular con-
traction has also been attributed to
Davydov solitons.

(d) The intrinsic localized modes,
which arise from the anharmonic-
ity of interatomic potentials, have
been observed in proteins and
identified as solitons localized in
both space and time.

(e) The studies pertaining to electron
/ proton transport in α - helix sec-
tions of proteins, and the signal as
well as energy propagation in lipid
membranes have brought out the
involvement of soliton-like mecha-
nisms.

(f) Solitons obtained as solutions for
the Peyrard–Bishop model (and
its extended versions) put for-
ward to understand the dynam-
ics of DNA, explain important fea-
tures like local opening (i.e., sep-
aration of double-stranded DNA
into two single strands) and DNA
transcription. A similar soliton-
bearing model has also been de-
veloped to elucidate the long-
distance charge transport in DNA
molecule.

(g) The behaviour of many biopoly-
mers has been explained in terms
of breathers and this aspect too has
been investigated experimentally.

(h) The concept of solitary waves
has been recently used in neuro-
science as an alternative to the
earlier accepted ionic-hypothesis
based Hodgkin–Huxley model to
describe the propagation of signals
along the excitable cells such as
neurons and cardiac myocytes.

(i) Soliton-related mechanisms have
been reported to play an impor-
tant role in the eukaryotic multicel-
lular movements during morpho-
genesis and development.

(j) It has been proposed that the blood
pressure pulse is an outcome of a
KdV soliton produced in the heart
and its propagation in blood ves-
sels.
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3. Condensed Matter Physics

(a) The phase-slip centres in the
charge density wave condensate
formed during phase transitions
in which the electron density de-
velops a small periodic distortion
accompanied by a corresponding
modulation of the ion equilibrium
position, are solitons. These soli-
tons are found in one-dimensional
metals and organic conductors.

(b) Solitons occur in structural
phase transitions in quasi-one-
dimensional ferroelectrics.

(c) The flipping of spins in mag-
netic phase transitions in quasi-
one-dimensional ferromagnets as
well as antiferromagnets is associ-
ated with the kink solitons.

(d) Solitons have been found to be
instrumental in polymerization
mechanism and creation of bond
defects in polymers.

(e) The phenomena of transport
and existence of defects in two-
dimensional Coulomb gases and
two-dimensional spin systems
(i.e., thin films) are understood in
terms of solitons.

(f) A domain wall or a Bloch wall
in ferromagnets, ferrimagnets, fer-
roelectrics, etc. is an interface
that separates magnetic or electric
polarization domains of different

types. These walls are exact solu-
tions to SGE, NLSE, and their mod-
ifications and, hence, these have
been identified as relevant soli-
tons. These aspects have been ex-
perimentally verified by neutron
scattering, NMR, and ESR studies
in many materials.

(g) Starting from the Frenkel-
Kontorova model with on-site
periodic potential, mentioned
earlier in Section 5.1, the atomistic
theories of crystal dislocations
have been generalized to in-
clude physically more relevant
non-sinusoidal and anharmonic
interactions. Solitons, particularly
kinks, have been found to play
an important role in all these
models and have been confirmed
in experimental measurements.

(h) Liquid crystals (which are used
in display devices like televi-
sions, computer monitors, laptop
screens, calculators, etc,) are self-
organized anisotropic fluids that
are thermodynamically intermedi-
ate between the isotropic liquid
and the crystalline solid, showing
the fluidity of liquids and the or-
der of crystals. Thus, these are
mesophase entities. Being non-
linear materials, these have been
widely used for creation and de-
scription of various types of soli-
tons since 1968. The associated as-
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pects have led to new applications
of the liquid crystals.

(i) Solitons have been experimen-
tally observed in thin superfluid
4He films (a few atomic lay-
ers thick) adsorbed on solid sub-
strates (two-dimensional system)
as well as bulk superfluid 4He
(three-dimensional quantum ma-
terial) and have been theoretically
expounded using KdV equation
and still better by employing phe-
nomenological modeling based on
time-dependent density functional
theory.

(j) Different types of solitons have
also been observed in ultracold su-
perfluid 3He phases in the absence
as well as presence of magnetic
field (magnetic solitons). These
have been explained theoretically
using an NLSE like equation.

(k) An arrangement or device ob-
tained by sandwiching a thin
layer of a non-superconducting
material (up to about 3 nm thick
insulator or a few µm thick non-
superconducting metal) between
two layers of superconducting
material, is known as a Joseph-
son junction. It has a unique
and important feature that a dc
(supercurrent) can pass through
the junction / barrier from one
superconductor to the other even
in the absence of an applied volt-

age and a sinusoidal ac current is
generated when a fixed voltage
is applied across it. The former
is a consequence of quantum
tunneling of Cooper pairs (pairs of
electrons with opposite momenta
and spins loosely bound at very
low-temperatures due to electron-
lattice interactions) across the
nonconducting barrier and the lat-
ter makes it a nonlinear oscillator.
These junctions find applications
in quantum-mechanical circuits
such as superconducting quantum
interference devices (SQUIDs),
superconducting qubits, and
rapid signal flux quantum digital
devices. The dynamics of the
Josephson junction is reasonably
well described by a perturbed
SGE, which makes it a system
for the study of solitons and phe-
nomena associated with these. In
fact, discrete breathers have been
observed in arrays of Josephson
junctions, and the solitons in the
junctions which are much longer
than characteristic Josephson
penetration depth (which is of the
order 1 – 1000 µm), are known
as fluxons because they contain
one quantum of magnetic flux
(h/2e = 2.07x10-15 Wb; here h is
Planck’s constant and e is charge
of an electron).

(l) The cumulation of a macroscopic
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fraction of noninteracting identical
boson particles (the entities hav-
ing integer spin, which is actu-
ally an integer multiple of ℏ =

h/2π, and is described by sym-
metric wavefunction) in the low-
est energy or the ground state in a
system under appropriate charac-
teristic conditions of temperature,
number density, etc. is known as
Bose-Einstein (BE) condensation.
It represents a phase transition to
a state of matter in which a good
number of constituents of the sys-
tem suddenly coalesce into a sin-
gle coherent quantum mechanical
entity that can be described by
a wavefunction on nearly macro-
scopic scale. The condensate ap-
pears as a sharp peak in both po-
sition and momentum space. The
macroscopic dynamics of BE con-
densates near 0 K is generally
modeled by a 3-dimensional ver-
sion of NLSE with a term for the
trap potential and is called the
Gross–Pitaevskii equation. The so-
lutions of this and other similar
equations, lead to solitons of dif-
ferent types which have been ob-
served experimentally as well. Be-
sides, investigations on manipu-
lating the properties of solitons in
the BE condensates via nonlinear-
ity management have also been
carried out.

4. Engineering

(a) Mathematical and computational
studies of a variety of problems
in theoretical aerodynamics have
shown that in some situations,
solitons can lead to chaotic motion.

(b) The use of electrical components
with nonlinear permittivity and
permeability makes a transmission
line to be nonlinear. In fact, such
transmission lines (constructed
with easily available components)
constitute reasonably simple and
low-cost experimental devices for
investigating various aspects of
nonlinear waves. These properly
designed networks have been
shown to produce (electrical)
soliton pulses over a wide range
of frequencies and find applica-
tions in wide band focusing and
shaping of signals, and in instru-
mentation for microwave systems,
in high-speed sampling oscillo-
scopes, and for data transmission
in high-speed digital circuits, etc.

(c) A structure such as a rod or a pile
of plates with rectangular or circu-
lar cross-section made from some
metal, polymeric materials, etc.
that propagates elastic waves with
minimal loss of energy by restrict-
ing their transmission along its
length, is called an elastic or a solid
waveguide. Such waveguides pro-
vided with piezoelectric transduc-

38/2/4 21 www.physedn.in



Physics Education July-September 2024

ers are used for measurement of
strain, pressure, and temperature.
In addition, these waveguides find
applications in energy harvesting,
vibration control, health monitor-
ing, and wave steering for actua-
tion. If the nonlinearity produced
by properties of the constituent
material and by the strain is com-
pensated by the spatial dispersion
caused by the finite transverse size
of the waveguide, then longitudi-
nal density solitary waves can be
generated in it. These are gener-
ally described by Boussinesq-type
NLPDE of elasto-dynamics and
have been observed experimen-
tally. These so-called strain or bulk
solitons represent a powerful local-
ized wave that can transport elas-
tic energy over reasonably large
distances with negligible losses.

(d) Granular crystals are nonlinear tai-
lored metamaterials obtained from
tight packing of macroscopic solid
grains or particles like ball bear-
ings made of a metal or an al-
loy or bits of polymers such as
nylon, teflon, delrin, etc. (rather
than atoms or molecules) that in-
teract elastically. Like atoms in
a crystal, the particles in a gran-
ular crystal can also be arranged
in one-, two-, or three-dimensional
lattices. The freedom to choose
constituent particles with different

masses, sizes, material properties,
and geometries, and possibility to
arrange these in a variety of config-
urations in a lattice, make the gran-
ular crystals highly tunable even
in respect of the extent of nonlin-
earity. The dynamical description
of these fabricated crystals brings
out existence of traveling solitons
as well as discrete breathers in
these, which have been observed
experimentally. These aspects, in
turn, have made these engineered
or manipulated materials useful as
the shock-absorbers in armor and
sports helmets; for sound-focusing
devices, acoustic switches, acous-
tic logic elements; for mechanical
vibrational energy harvesting sys-
tems; and for converting mechan-
ical vibrations into electrical cur-
rent that could drive small sensors
or transmitters.

(e) The micro-electromechanical and
nano-electromechanical systems,
generally made from materi-
als like carbon nanotubes and
graphene, are artificial devices
that combine electrical and me-
chanical processes at micro and
nano scale, respectively. These
find applications in automobiles,
accelerometers, aerospace sys-
tems, sensors for environmental
monitoring, defence systems,
biomedical diagnostics, medical
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devices, signal processing, wire-
less communications, etc. Studies
pertaining to dynamics of many
such systems, particularly those
comprising arrays of nonlinear
oscillators, have established the
existence of discrete breathers in
these.

5. Hydrodynamics and Geophysics

(a) The discovery of ‘great wave of
translation’ by Russell in shallow
water and its theoretical model-
ing by KdV equation, have mo-
tivated many scientists to study
multifarious properties of shallow-
water solitary waves in the labora-
tory. A variety of wave-tank exper-
iments have been performed to in-
vestigate various aspects of these
waves, including different types
of collisions between solitons, and
these continue to be of interest
even now. Generally, the experi-
mental results exhibit good agree-
ment with relevant theoretical pre-
dictions. In addition, it is well
recognized that various properties
of shallow-water waves near the
beaches are successfully explained
by the KdV equation.

(b) The surface waves observed in
deep water have been identified
as envelope solitary waves, whose
theory was developed by Za-
kharov in terms of an NLPDE simi-

lar to the NLSE. These waves have
also been investigated experimen-
tally using large water tanks.

(c) The soliton solutions of the KdV
as well as the Benjamin-Ono equa-
tions have been used to de-
scribe internal gravity waves in
the ocean, which are large am-
plitude waves travelling at low
speed and originate from density
differences caused by variations in
temperature and saline concentra-
tion. These have been observed
and painstakingly studied in many
seas by oceanographers.

(d) The seemingly spontaneous and
extremely large rogue or monster
waves too have been modelled as
solitary waves.

(e) It has been argued that strong
velocity-dependence of amplitude
of a solitary wave disturbance
on the surface of water in an
ocean created by an underwater
earthquake, volcanic eruption, etc.
makes its amplitude larger as the
wave advances towards a beach. If
the wave energy is quite high, then
amplitude becomes so large that
the wave breaks down into numer-
ous waves of very large width (few
hundred kilometers) and small
amplitude (1 meter or so) as it
reaches the beach. The catastro-
phe so created at the beach results
in devastating tsunamis and hurri-
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canes.

(f) Because of resemblance of some
mountain ranges and layer dis-
tribution in some sedimentary
rocks with envelope wave pack-
ets, NLPDEs based mathematical
models have been developed to
show that geo-solitons may have
played an important role in their
formation.

6. Nonlinear Optics

Nonlinear optics is the branch of op-
tics that deals with the behaviour of
light in the materials in which the elec-
tric polarization produced by the elec-
tric field of the light passing through it
varies as higher powers of the electric
field strength, i.e. nonlinearly, partic-
ularly when the light intensity is high.
When a highly intense beam of laser ra-
diation propagates through a material
like silica-based glass, lithium niobate,
etc., additional phase shift (called self-
phase modulation) is introduced due
to intensity dependent refractive index
(the Kerr effect). This nonlinear phase
shift in the pulse leads to its shrinkage
in contrast with spreading produced by
dispersion. If these two opposing ef-
fects cancel each other, we get tempo-
ral optical solitons. Besides temporal
optical solitons, spatial optical solitons
have also been found to exist in many
nonlinear media. When an intense
light beam passes through such bulk

materials along, say, x – direction, it
may undergo diffraction along the two
transverse directions. If the broaden-
ing produced by diffraction is counter-
balanced by the narrowing caused by
the nonlinearity associated with inten-
sity dependent refractive index, spa-
tial optical solitons are obtained. In
addition to the temporal and spatial
solitons, spatiotemporal optical solitons
(where both the diffraction and disper-
sion effects are simultaneously compen-
sated by nonlinearity) have also been
created in some nonlinear optical ma-
terials. In a nutshell, an optical soliton
refers to a situation where light beam
or pulse (self-trapped in time or space
or both) travels through a nonlinear op-
tical material without any change in
its profile and velocity. These solitons
are mathematically described by NLSE
(continuous as well as discrete) and are
found in photonic crystal fibres, pho-
torefractive materials, photopolymers,
etc.

(a) The idea of temporal soliton trans-
mission in glass fibre waveguide
(or an optical fibre) was put forth
by Hasegawa and Tappert in 1973
on the basis of theoretical and nu-
merical calculations, and its exper-
imental observation in silica-glass
fibre was reported by Mollenauer
et al in 1980. When laser pulses
are used for communication em-
ploying optical fibre, the solitons
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involved are sometimes referred
to as fibre-solitons. Presently, it
is possible to propagate solitons
without degradation over thou-
sands of kilometers. Such a com-
munication has zero loss and no
dispersion, which explains the fo-
cus of a great research effort to un-
derstand the dynamics of soliton
transmission in optical fibres. Fur-
thermore, it brings out the impor-
tance of optical fibre communica-
tion in information technology and
in the long-distance, high band-
width communication – the well-
known internet and the world-
wide web.

(b) The spatial solitons in photorefrac-
tive polymers make these highly
efficient optical elements for trans-
mission of data and for control-
ling coherent radiation in various
electro-optical and optical commu-
nication devices.

(c) Ultra-short pulse solitons are being
used in the field of optical spec-
troscopy and medicine.

(d) Optical solitons in birefringent op-
tical fibres are used for optical
switching.

(e) The fabrication of materials with
extremely strong nonlinear effect
has made it possible to create op-
tical solitons even with very low
laser powers. These find applica-
tions in optical information storage

of large amount of data, all-optical
switches, and significantly faster
optical systems than any known
electronic devices. These concepts
form essential basis of the possible
optical digital computer system or
the photonic computer with soli-
tons as bits.

(f) Light or optical bullets which are
three-dimensional localized pulses
of electromagnetic energy and
have been observed in arrange-
ments like array of silica glass
waveguides, sapphire samples,
plasmas, etc., are examples of
spatiotemporal solitons. However,
these lose energy during interac-
tions / collisions implying that
these are not solitons in the strict
sense of the term.

7. Nuclear Physics

(a) Topological solitons have been
found to describe reasonably well
some properties of nuclei, includ-
ing prediction of binding energies
to the correct nuclear physics level.
This aspect has been found to have
substantial impact on the stud-
ies pertaining to nuclear matter in
neutron stars and in nuclear fu-
sion.

(b) Nontopological soliton models
based on simple phenomenologi-
cal field theories have been used
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to incorporate the quark structure
of hadrons in nuclear physics.

(c) It has been shown that the velocity
dependent terms in the nucleon-
nucleon potential lead to forma-
tion of solitons in nuclear matter,
which play role in nuclear multi-
fragmentation reactions.

8. Plasma Physics

Plasma physics deals with the study of
matter consisting of a large number of
charged particles – ions and / or elec-
trons. The presence of inter-particle
coulomb interaction makes plasmas a
nonlinear system and, as such, these of-
fer a good testing ground for the study
of solitons.

(a) The KdV and some other similar
NLPDEs have been used to de-
scribe the local charge density re-
flecting the local departure of the
charge from neutrality in the plas-
mas, and, thus, establishing the
presence of travelling solitons in
these.

(b) Ion-acoustic solitary waves have
been theoretically and experi-
mentally studied in magnetized
plasma.

(c) The Alfvén waves, observed in
plasmas on the earth and in the
space, are low-frequency travel-
ling oscillations of the ions caused
by the interaction of the magnetic

fields and electric currents within
the plasma. These magneto-
hydrodynamic waves were among
the first to be modeled using idea
of solitons.

(d) Dusty plasmas, which contain
small suspended particles, have
been modeled using nonlinear os-
cillator chains, showing the exis-
tence of discrete breathers in these.

(e) It is well known that space de-
bris objects, whose number in
earth’s orbit is estimated to be few
hundred million, pose immense
threat to the earth-orbiting satel-
lites. Also, these objects get elec-
trically charged due to their ex-
posure to the ionospheric plasma
environment. Some recent ana-
lytical, computational, and exper-
imental investigations have shown
that charged objects moving with
high speed through a plasma lead
to generation of plasma density
solitons. Accordingly, depending
on its size, charge and velocity, de-
bris object will produce solitons,
which can be detected by fixing
simple instruments on the space-
craft.

9. Quantum Mechanics, Elementary Parti-
cle Physics, and Field Theory

(a) With a view to develop a classi-
cal interpretation of quantum me-
chanics, Bohm and others treated
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quantum processes as stochas-
tic processes. This approach
was subsequently used to de-
rive a nonlinear relativistic Klein-
Gordon equation yielding soliton
solutions, which follow the aver-
age de Broglie-Bohm trajectories
analogous to the linear solutions
of the Schrödinger and the Klein-
Gordon equations. These ideas
have been extended to show that
even photon can be represented
as a soliton. A relationship be-
tween the electromagnetic ampli-
tude of this soliton and photon en-
ergy or frequency has been estab-
lished. Also, it has been proved
that the concept of photon-soliton
is in conformity with the famil-
iar interactions in the photoelectric
and Compton effects.

(b) Recall that solitons are confine-
ment of energy of the wave-
field, propagate without change in
shape, collide like particles, and a
soliton-antisoliton pair may get an-
nihilated. In view of these facts,
it was conjectured that if an ap-
propriate system of nonlinear field
equations admits soliton-solutions
then these may represent elemen-
tary particles. As such, ‘bags’ and
‘lumps’ in quantum fields are de-
scribed in terms of solitons. How-
ever, many of these issues are still
being debated [4].

(c) The instanton solutions of Yang-
Mills field equations used for
unifying electromagnetic and
weak forces are soliton-like be-
cause these are localized in space
as well as time.

(d) In order to explain the stability
of protons, neutrons, and mesons,
Skyrme (1961) developed a model
in which these elementary par-
ticles could be treated as topo-
logical defect solitons in a quan-
tum field. This stable field con-
figuration with special topological
properties came to be known as
skyrmion. However, this idea did
not find much ground in particle
physics even though it accounted
for some low-energy properties
of the nuclear particles. Inter-
estingly, skyrmion-like topologies
have been found to exist in many
condensed matter systems such
as some liquid crystal phases, BE
condensates, quantum Hall sys-
tems, and helimagnetic materials
in which neighbouring magnetic
moments arrange themselves in
a helical or spiral pattern. In
the last category of materials ex-
emplified by FeGe, Tb, Dy, etc.
these form domains as small as
1 nm and involve extremely low
energy. These features make mag-
netic skyrmions a good option for
developing very efficient memory-
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storage and other spintronics de-
vices. In fact, the activities in this
direction constitute the emerging
field called skyrmionics.

(e) The Einstein field equation, which
constitutes the backbone of the
general theory of relativity, de-
scribes gravity to be a consequence
of spacetime being curved by both
mass and energy. It is, in fact, a
set of ten NLPDEs in four indepen-
dent space and time variables, ex-
pressed as a tensor equation. Non-
linearity of the equation leads to
a solution, which has soliton char-
acteristics (confined to a finite re-
gion of spacetime and has a fi-
nite energy) and is called the grav-
itational soliton. It can be sep-
arated into two kinds - a soliton
of the vacuum Einstein field equa-
tion and a soliton of the Einstein–
Maxwell equations. Even black
holes, the main sources of gravi-
tational radiation, are two-soliton
solutions of Einstein’s equations in
vacuum.

7 Epilogue

It is indeed very interesting to note that
solitons occur over a wide range of scales.
On one side, these have been found to be
extremely useful in understanding various
phenomena at the nuclear and atomic level,
though their experimental manifestation is

not that straightforward. On the other hand,
these have been extensively observed and
manipulated in the macroworld. The linear
dimension of nuclear solitons is few femto-
meter (10-15 m), of the optical solitons is few
nm (10-9 m), of the solitons observed on the
surfaces of water bodies is few cm to few
meters or even few hundred kilometers, and
of the GRS solitons is thousands of kilome-
ters. Solitons associated with BE conden-
sates are observed at ultra-low temperatures
of 10-7 K or so, the hydrodynamic solitons
occur at around 300 K, the temperature over
the GRS is about 1600 K, and core tempera-
ture of the sun is about 107 K.

The distinctive behaviour of Josephson
junctions including magnetic flux quanti-
zation, superfluidity of helium, and Bose-
Einstein condensation (discussed under
condensed matter physics in Section 6) are
manifestations of quantum effects at macro-
scopic level. All of these have their origin
in the collective coherent behaviour of con-
stituent quantum particles with nonlinear
interactions, which balance the dispersive
effect of kinetic energy. As mentioned ear-
lier also different species of solitons (which
are coherent structures created by perfect
balance between effects of nonlinearity and
dispersion) have not only been predicted in
these systems using relevant NLPDEs (like
NLSE, etc.) but have also been observed
experimentally. Thus, the above-mentioned
systems are nonlinear quantum phenom-
ena where the Hamiltonian is a nonlinear
function of the wavefunction of the micro-
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scopic entities involved. It has been argued
(see, e.g. [4]) that nonlinear quantum the-
ory based on NLPDEs with solitons as in-
tegral part be developed in proper perspec-
tive to describe such systems and to investi-
gate related features in detail. It can be said
without any exaggeration that this develop-
ment will act as stimulant for a new surge
of soliton-oriented activities in condensed
matter physics, polymer science, and bio-
physics.

Lastly, to conclude the article, we quote
Kasman [9] “solitons have become (vital)
tools of scientists and engineers for under-
standing the universe”.
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